Skip to main content

Advertisement

Log in

Genetic diversity analysis of Afghan wheat landraces (Triticum aestivum) using DArT markers

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Crop landraces represent a source of useful genes endowing tolerance to biotic and abiotic stresses, and other agronomic traits including yield. Our study involved 446 Afghan wheat (Triticum aestivum L.) landraces collected from 16 provinces during three Japanese scientific expeditions in 1955, 1967, and 1979. The landraces and varieties were genotyped using 30,000 diversity array technology (DArT) genetic markers, of which 15,817 were polymorphic. The landraces were grouped into 15 subpopulations based on population structure and phylogenetic studies. DArT markers were used to group landraces based on their origins or collection sites and to differentiate East Asian genotypes, CIMMYT lines, and modern Afghanistan cultivars from Afghan landraces. The Afghan landraces were highly diverse compared with lines from other origins. These landraces seem to possess unique genes that might allow enrichment of the global wheat gene pool and improvements in wheat production worldwide. Our next objective is to identify genotypes with promising attributes and to conduct association mapping studies focusing on biotic and abiotic stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akbari M, Wenzl P, Caig V, Carng J, Xia L, Yang S, Uszynski G, Mohler V, Lehmensiek A, Kuchel H, Hayden MJ, Howes N, Sharp P, Vaughan P, Rathmell B, Huttner E, Kilian A (2006) Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet 113:1409–1420

    Article  CAS  PubMed  Google Scholar 

  • Bonman JM, Bockelman HE, Jin Y, Hijmans RJ, Gironella A (2007) Geographic distribution of stem rust resistance in wheat landraces. Crop Sci 47:1955–1963

    Article  Google Scholar 

  • Buerkert A, Oryakhail M, Filatenko AA, Hammer K (2006) Cultivation and taxonomic classification of wheat landraces in the upper Panjsher valley of Afghanistan after 23 years of war. Genet Resour Crop Evol 53:91–97

    Article  Google Scholar 

  • Crossa J, Burgueno J, Dreisigacker S, Vargas M, Herrera-Foessel SA, Lillemo M, Singh RP, Trethowan R, Warburton M, Franco J, Reynolds M, Crouch JH, Ortiz R (2007) Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure. Genetics 177:1889–1913

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dreisigacker S, Zhang P, Warburton ML, Ginkel MV, Hoisington D, Bohn M, Melchinger AE (2004) SSR and pedigree analyses of genetic diversity among CIMMYT wheat lines targeted to different mega environments. Crop Sci 44:381–388

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    PubMed Central  CAS  PubMed  Google Scholar 

  • Feldman M (2001) Origin of cultivated wheat. In: Bonjean AP, Angus WJ (eds) The world wheat book: a history of wheat breeding. Lavoisier Publishing, Paris, pp 3–53

    Google Scholar 

  • Francki MG, Walker E, Crawford AC, Broughton S, Ohm H, Barclay I, Wilson R, McLean R (2009) Comparison of genetic and cytogenetic maps of hexaploid wheat (Triticum aestivum L.) using SSR and DArT markers. Mol Genet Genomics 281:181–191

    Article  CAS  PubMed  Google Scholar 

  • Ghimire SK, Akashi Y, Maitani C, Nakanishi M, Kato K (2005) Genetic diversity and geographical differentiation in Asian common wheat (Triticum aestivum L.), revealed by the analysis of peroxidase and esterase isozymes. Breed Sci 55:175–185

    Article  CAS  Google Scholar 

  • Helbaek H (1959) Domestication of food plants in the old world. Science 130:365–372

    Article  Google Scholar 

  • Hirano R, Kikuchi A, Kawase M, Watanabe KN (2008) Evaluation of genetic diversity of bread wheat landrace from Pakistan by AFLP and implications for a future collection strategy. Genet Resour Crop Evol 55:1007–1015

    Article  Google Scholar 

  • Jaccoud D, Peng K, Felnstein D, Killian A (2001) Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res 29:e25

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kihara H (1944) Discovery of the DD-analyser, one of the ancestors of Triticum vulgare. Agric Hortic 19:13–14

    Google Scholar 

  • Kilian A, Huttner E, Wenzl P, Jaccoud D, Carling J, Caig V, Evers M, Heller-Uszynska K, Cayla C, Patarapuwadol S, Xia L, Yang S, Thomson B (2005) The fast and the cheap: SNP and DArT-based whole genome profiling for crop improvement. In: Tuberosa R, Phillips RL, Gale M (eds) Proceedings of the international congress “In the wake of the double helix: from the green revolution to the gene revolution”, 27–31 May 2003. Avenue Media, Bologna, pp 443–461

    Google Scholar 

  • Li YH, Guan RX, Liu ZX, Ma YS, Wang LX, Li LH, Lin FY, Luan WJ, Chen PY, Yan Z, Guan Y, Zhu L, Ning XC, Smulders MJ, Li W, Piao RH, Cui YH, Yu ZM, Guan M, Chang RZ, Hou AF, Shi AN, Zhang B, Zhu SL, Qiu LJ (2008) Genetic structure and diversity of cultivated soybean (Glycine max (L.) Merr.) landraces in China. Theor Appl Genet 117:857–871

    Article  CAS  PubMed  Google Scholar 

  • Maccaferri M, Sanguineti MC, Noli E, Tuberosa R (2005) Population structure and long-range linkage disequilibrium in a durum wheat elite collection. Mol Breed 15:271–289

    Article  CAS  Google Scholar 

  • Marone D, Panio G, Ficco DBM, Russo MA, De Vita P, Papa R, Rubiales D, Cattivelli L, Mastrangelo AM (2012) Characterization of wheat DArT markers: genetic and functional features. Mol Genet Genomics 287:741–753. doi:10.1007/s00438-012-0714-8

    Article  CAS  PubMed  Google Scholar 

  • Mujeeb-Kazi A, Rosas V, Roldan S (1996) Conservation of the genetic variation of Triticum tauschii in synthetic hexaploid wheats and its potential utilization for wheat improvement. Genet Resour Crop Evol 43:129–134

    Article  Google Scholar 

  • Neumann K, Kobiljski B, Dencic S, Varshney RK, Borner A (2010) Genome-wide association mapping: a case study in bread wheat (Triticum aestivum L.). Mol Breed 27:37–58

    Article  Google Scholar 

  • Pritchard JK, Rosenberg NA (1999) Use of unlinked genetic markers to detect population stratification in association studies. Am J Hum Genet 65:220–228

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

  • Raman H, Stodart BJ, Cavanagh C, Mackay M, Morell M, Milgate A, Martin P (2010) Molecular diversity and genetic structure of modern and traditional landrace cultivars of wheat (Triticum aestivum L.). Crop Pasture Sci 61:222–229

    Article  CAS  Google Scholar 

  • Reynolds M, Dreccer MF, Trethowan R (2007) Drought-adaptive traits derived from wheat wild relatives and landraces. J Exp Agric 58:177–186

    CAS  Google Scholar 

  • Ruiz M, Giraldo P, Royo C, Villegas D, Aranzana MJ, Carrillo JM (2012) Diversity and genetic structure of a collection of Spanish durum wheat landraces. Crop Sci 52:2262–2275

    Article  Google Scholar 

  • Sharma KS, Habibi HK (2013) Wheat secure Afghanistan: assessing priorities. Wheat Inf Serv 115:11–15. www.shigen.nig.ac.jp/ewis

  • Smale M (1996) Understanding global trends in the use of wheat diversity and international flows of wheat genetic resources. Economics Working Paper 96-02. Mexico, DF, CIMMYT

  • Smale M (1997) The green revolution and wheat genetic diversity. Some unfounded assumptions. World Dev 25:1259–1269

    Article  Google Scholar 

  • Sohail Q, Shehzad T, Kilian A, Eltayeb AE, Tanaka H, Tsujimoto H (2012) Development of diversity array technology (DArT) markers for assessment of population structure and diversity in Aegilops tauschii. Breed Sci 62:38–45

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stodart BJ, Mackay MC, Raman H (2007) Assesment of molecular diversity in landraces of bread wheat (Triticum aestivum) held in an ex situ collection with Diversity Arrays Technology (DArT). Aust J Agric Res 58:1174–1182

    Article  CAS  Google Scholar 

  • Terasawa Y, Kawahara T, Sasakuma T, Sasanuma T (2009) Evaluation of the genetic diversity of an Afghan wheat collection based on morphological variation, HMW glutenin subunit polymorphisms, and AFLP. Breed Sci 59:361–371

    Article  CAS  Google Scholar 

  • Vavilov NI, Bukinich DD (1929) Agricultural Afghanistan. Bull Appl Bot Genet Plant Breed Supp 33:378–382, 474, 480, 584–585, 604 (in Russian)

  • Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A (2004) Diversity arrays technology (DArT) for whole-genome profiling of barley. Proc Natl Acad Sci USA 101:9915–9920

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • White J, Law JR, MacKay I, Chalmers KJ, Smith JSC, Kilian A, Powell W (2008) The genetic diversity of UK, US and Australian cultivars of Triticum aestivum measured by DArT markers and considered by genome. Theor Appl Genet 116:439–453

    Article  CAS  PubMed  Google Scholar 

  • Zeven AC (1998) Landraces: a review of definitions and classification. Euphytica 104:127–139

    Article  Google Scholar 

  • Zhang LY, Liu DC, Guo XL, Yang WL, Sun JZ, Wang DW, Sourdille P, Zhang AM (2011) Investigation of genetic diversity and population structure of common wheat cultivars in northern China using DArT markers. BMC Genet 12:42

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study was conducted under the aegis of the SATREPS-Afghan project supported by Japan Science and Technology and Japan International Co-operation Agency. We offer special thanks to Dr. Kenji Komatsu for his valuable contributions to the initial stages of sample collection.

Conflict of interest

No author has any possible conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohiro Ban.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10722_2015_219_MOESM1_ESM.pdf

Dendrogram showing diversity of Afghan wheat landraces. Each colour specify the major collection site. The year of collection and exact location also indicated in the figure (PDF 1434 kb)

10722_2015_219_MOESM2_ESM.pptx

Agro-ecological map of Afghanistan. Total area was divided into eight zones according to climate and crops grown (FAO). The number inside denotes each provinces (PPTX 377 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sohail, Q., Manickavelu, A. & Ban, T. Genetic diversity analysis of Afghan wheat landraces (Triticum aestivum) using DArT markers. Genet Resour Crop Evol 62, 1147–1157 (2015). https://doi.org/10.1007/s10722-015-0219-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-015-0219-5

Keywords

Navigation