Skip to main content
Log in

An integrated molecular linkage map of diploid wheat based on a Triticum boeoticum × T. monococcum RIL population

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Diploid A genome species of wheat harbour immense variability for biotic stresses and productivity traits, and these could be transferred efficiently to hexaploid wheat through marker assisted selection, provided the target genes are tagged at diploid level first. Here we report an integrated molecular linkage map of A genome diploid wheat based on 93 recombinant inbred lines (RILs) derived from Triticum boeoticum × Triticum monococcum inter sub-specific cross. The parental lines were analysed with 306 simple sequence repeat (SSR) and 194 RFLP markers, including 66 bin mapped ESTs. Out of 306 SSRs tested for polymorphism, 74 (24.2%) did not show amplification (null) in both the parents. Overall, 171 (73.7%) of the 232 remaining SSR and 98 (50.5%) of the 194 RFLP markers were polymorphic. Both A and D genome specific SSR markers showed similar transferability to A genome of diploid wheat species. The 176 polymorphic markers, that were assayed on a set of 93 RILs, yielded 188 polymorphic loci and 177 of these as well as two additional morphological traits mapped on seven linkage groups with a total map length of 1,262 cM, which is longer than most of the available A genome linkage maps in diploid and hexaploid wheat. About 58 loci showed distorted segregation with majority of these mapping on chromosome 2Am. With a few exceptions, the position and order of the markers was similar to the ones in other maps of the wheat A genome. Chromosome 1Am of T. monococcum and T. boeoticum showed a small paracentric inversion relative to the A genome of hexaploid wheat. The described linkage map could be useful for gene tagging, marker assisted gene introgression from diploid into hexaploid wheat as well as for map based cloning of genes from diploid A genome species and orthologous genes from hexaploid wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akhunov ED, Akhunova AR, Dvorak J (2005) BAC libraries of Triticum urartu, Aegilops speltoides and Ae. tauschii, the diploid ancestors of polyploid wheat. Theor Appl Genet 111:1617–1622

    Article  PubMed  CAS  Google Scholar 

  • Anker CC, Niks RE (2001) Prehaustorial resistance to wheat leaf rust in Triticum monococcum (s.s.). Euphytica 117:209–215

    Article  Google Scholar 

  • Bai D, Knott DR, Zale JM (1998) The inheritance of leaf and stem rust resistance in Triticum monococcum L. Can J Plant Sci 78:223–226

    Google Scholar 

  • Bai J, Liu K, Jia X, Wang D (2004) An analysis of homoeologous microsatellites from Triticum urartu and Triticum monococcum. Plant Sci 166:341–347

    Article  CAS  Google Scholar 

  • Bennett MD, Leitch IJ (1995) Nuclear DNA amounts in angiosperms. Ann Bot 76:113–176

    Article  CAS  Google Scholar 

  • Boyko EV, Gill KS, Mickelson-Young L, Nasuda S, Raupp WJ, Ziegle JN, Singh S, Hassawi DS, Fritz AK, Namuth D, Lapitan NLV, Gill BS (1999) A high-density genetic map of Aegilops tauschii, the D genome progenitor of bread wheat. Theor Appl Genet 99:16–26

    Article  CAS  Google Scholar 

  • Bullrich L, Appendino ML, Tranquilli G, Lewis S, Dubcovsky J (2002) Mapping of a thermo-sensitive earliness per se gene on Triticum monococcum chromosome 1Am . Theor Appl Genet 105:585–593

    Article  PubMed  CAS  Google Scholar 

  • Cadalen T, Boeuf C, Bernard S, Bernard M (1997) An intervarietal molecular marker map in Triticum aestivum L. em. Thell. and comparison with a map from a wide cross. Theor Appl Genet 94:367–377

    Article  CAS  Google Scholar 

  • Castagna R, Borghi B, Huen M, Salamini F (1995) Integrated approach to einkorn wheat breeding. In Hulled wheats. Promoting the conservation and use of underutilized and neglected crops 4. In: Proceedings first Intl. workshop on Hulled wheat, Castelvecchio Pascoli, Tuscany, Italy. IPGRI, Rome, Italy, 21–22 July 1995

  • Castagna R, Maga G, Parenzin M, Heun M, Salamini F (1994) RFLP-based genetic relationships of einkorn wheats. Theor Appl Genet 88:818–823

    Article  CAS  Google Scholar 

  • Devos KM, Dubcovsky J, Dvorak J, Chinoy CN, Gale MD (1995) Structural evolution of wheat chromosomes 4A, 5A, and 7B and its impact on recombination. Theor Appl Genet 91:282–288

    Article  CAS  Google Scholar 

  • Dhaliwal HS, Multani DS, Sharma SK, Singh M (1987) Induction of useful variability in Triticum monococcum L. Crop Improv 14:1–5

    Google Scholar 

  • Dhaliwal HS, Sidhu JS, Minocha JL (1993a) Genetic diversity in diploid and hexaploid wheats as revealed by RAPD markers. Crop Improv 20:17–20

    Google Scholar 

  • Dhaliwal HS, Singh H, Gill KS, Randhawa HS (1993b) Evaluation and cataloguing of wheat genetic resources for disease resistance and quality. In: Damania AB (ed) Biodiversity and wheat improvement. Wiley, Chichester, pp 123–140

    Google Scholar 

  • Dubcovsky J, Luo MC, Dvorak J (1995) Differentiation between homoeologous chromosomes 1A of wheat and lAm of Triticum monococcum and its recognition by the wheat Phl locus. Proc Natl Acad Sci USA 92:6645–6649

    Article  PubMed  CAS  Google Scholar 

  • Dubcovsky J, Luo MC, Zhong GY, Brandsteitter R, Desai A, Kilian A, Kleinhofs A, Dvorak J (1996) Genetic map of diploid wheat, Triticum monococcum L. and its comparison with maps of Hordeum vulgare L. Genetics 143:983–999

    PubMed  CAS  Google Scholar 

  • Dvorak J, Akhunov ED (2005) Tempos of gene locus deletions and duplications and their relationship to recombination rate during diploid and polyploid evolution in the Aegilops-Triticum alliance. Genetics 171:323–332

    Article  PubMed  CAS  Google Scholar 

  • Dvorak J, McGuire PE, Cassidy B (1988) Apparent sources of the A genome of wheats inferred from polymorphism in abundance, and restriction fragment length of repeated nucleotide sequences. Genome 30:680–689

    CAS  Google Scholar 

  • Eligio B, Krattinger SG, Keller B (2006) Development of simple sequence repeat markers specific for the Lr34 resistance region of wheat using sequence information from rice and Aegilops tauschii. Theor Appl Genet 113:1049–1062

    Article  CAS  Google Scholar 

  • Faris JD, Fellers JP, Brooks SA, Gill BS (2003) A bacterial artificial chromosome contig spanning the major domestication locus q in wheat and identification of a candidate gene. Genetics 164:311–321

    PubMed  CAS  Google Scholar 

  • Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B (2003) Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc Natl Acad Sci USA 100:15253–15258

    Article  PubMed  CAS  Google Scholar 

  • Gale MD, Atkinson MD, Chinoy CN, Harcourt RL, Jia J, Li QY, Devos KM (1995) Genetic maps of hexaploid wheat. In: Li ZS, Xin ZY (eds) Proceeding eighth international wheat genetics symposium. Agric Scientech Press, Beijing, pp 29–40

  • Gale MD, Cho S, Sharp PJ (1990) RFLP mapping in wheat-progress and problems. In: Gustafson JP (ed) Gene manipulation in plant improvement II. Plenum Press, NY, pp 353–363

    Google Scholar 

  • Goyal A, Bandopadhyay R, Sourdille P, Endo TR, Balyan HS, Gupta PK (2005) Physical molecular maps of wheat chromosomes. Funct Integr Genomics 5:260–263

    Article  PubMed  CAS  Google Scholar 

  • Gupta PK, Balyan HS, Edwards KJ, Isaac P, Korzun V, Röder M, Gautier MF, Joudrier P, Schlatter AR, Dubcovsky J, De la Pena RC, Khairallah M, Penner G, Hayden MJ, Sharp P, Keller B, Wang RCC, Hardouin JP, Jack P, Leroy P (2002) Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat. Theor Appl Genet 105:413–422

    Article  PubMed  CAS  Google Scholar 

  • Guyomarc’h H, Sourdille P, Charmet G, Edwards KJ, Bernard M (2002a) Characterization of polymorphic microsatellite markers from Aegilops tauschii and transferability to the D genome of bread wheat. Theor Appl Genet 104:1164–1172

    Article  PubMed  CAS  Google Scholar 

  • Guyomarc’h H, Sourdille P, Edwards KJ, Bernard M (2002b) Studies of the transferability of microsatellites derived from Triticum tauschii to hexaploid wheat and to diploid related species using amplification, hybridization and sequence comparisons. Theor Appl Genet 105:736–744

    Article  PubMed  CAS  Google Scholar 

  • Haldane JBS (1919) The combination of linkage values, and the calculation of distance between loci of linked factors. J Genet 8:299–309

    Article  Google Scholar 

  • Harjit Singh, Grewal TS, Dhaliwal HS, Pannu PPS, Bagga PPS (1998) Sources of leaf rust and stripe rust resistance in wild relatives of wheat. Crop Improv 25:26–33

    Google Scholar 

  • Heun M, Scha fer-Pregl R, Klawan D, Castagna R, Accerbi M, Borghi B, Salamini F (1997) Site of einkorn wheat domestication identified by DNA fingerprinting. Science 278:1312–1314

    Article  CAS  Google Scholar 

  • Huang L, Brooks SA, Li WL, Fellers JP, Trick HN, Gill BS (2003) Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics 164:655–664

    PubMed  CAS  Google Scholar 

  • Huang S, Sirikhachornkit A, Su XJ, Faris J, Gill B, Haselkorn R, Gornicki P (2002) Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc Natl Acad Sci USA 99:8133–8138

    Article  PubMed  CAS  Google Scholar 

  • Hussien T, Bowden RL, Gill BS, Cox TS, Marshall DS (1997) Performance of four new leaf rust resistance genes transferred to common wheat from Aegilops tauschii and Triticum monococcum. Plant Dis 81:582–586

    Article  Google Scholar 

  • Jauhar PP, Riera-Lizarazu O, Dewey WG, Gill BS, Crane CE, Bennett JH (1991) Chromosome pairing relationships among the A, B, and D genomes of bread wheat. Theor Appl Genet 82:441–449

    Article  Google Scholar 

  • Johnson BL, Dhaliwal HS (1976) Reproductive isolation of T. boeoticum and T. urartu and the origin of tetraploid wheats. Am J Bot 63:1088–1094

    Article  Google Scholar 

  • Khlestkina EK, Pestsova EG, Roder MS, Borner A (2002) Molecular mapping, phenotypic expression and geographical distribution of genes determining anthocyanin pigmentation of coleoptiles in wheat (Triticum aestivum L.). Theor Appl Genet 104:632–737

    Article  PubMed  CAS  Google Scholar 

  • Kihara H, Wakakuba S, Nishiyama I (1929) Notes on species hybrids of Triticum. Jpn J Genet 5:81–87

    Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Lebedeva TV, Peusha HO (2006) Genetic control of the wheat Triticum monococcum L. resistance to powdery mildew. Genetika 42:71–77

    PubMed  CAS  Google Scholar 

  • Lijavetzky D, Muzzi G, Wicker T, Keller B, Wing R, Dubcovsky J (1999) Construction and characterization of a bacterial artificial chromosome (BAC) library for the A genome of wheat. Genome 42:1176–1182

    Article  PubMed  CAS  Google Scholar 

  • Lincoln SE, Daly MJ, Lander ES (1993) Constructing genetic maps with MAPMAKER/EXP version 3.0: a tutorial and reference manual. Whitehead Inst Biomed Res Tech Rpt, 3rd edn. Whitehead Institute for Biomedical Research, Cambridge, p 97

  • Luo M, Deal KR, Yang Z, Dvorak J (2005) Comparative genetic maps reveal extreme crossover localization in the Aegilops speltoides chromosomes. Theor Appl Genet 111:1098–1106

    Article  PubMed  CAS  Google Scholar 

  • McFadden ES, Sears ER (1946) The origin of Triticum spelta and its free-threshing hexaploid relatives. J Hered 37:81–89, 107–116

    Google Scholar 

  • Mcintosh RA, Yamazaki Y, Devos KM, Dubcovsky J, Rogers WJ, Appels R (2003) Catalogue of gene symbols for wheat. Proceeding 10th international Wheat Genet. Symposium, Vol. 4. Paestum, Italy, 1–6 September 2003

  • Messmer MM, Keller M, Zanetti S, Keller B (1999) Genetic linkage map of a wheat-spelt cross. Theor Appl Genet 98:1163–1170

    Article  CAS  Google Scholar 

  • Mickelson-Young L, Endo TR, Gill BS (1995) A cytogenetic ladder-map of the wheat homoeologous group-4 chromosomes. Theor Appl Genet 90:1007–1011

    Article  CAS  Google Scholar 

  • Migui SM, Lamb RJ (2004) Seedling and adult plant resistance to Sitobion avenae (Hemiptera: Aphididae) in Triticum monococcum (Poaceae), an ancestor of wheat. Bull Entomol Res 94:35–46

    Article  PubMed  CAS  Google Scholar 

  • Paillard S, Schnurbusch T, Winzeler M, Messmer M, Sourdille P, Abderhalden O, Keller B, Schachermayr G (2003) An integrative genetic linkage map of winter wheat (Triticum aestivum L.). Theor Appl Genet 107:1235–1242

    Article  PubMed  CAS  Google Scholar 

  • Pestsova E, Ganal MW, Roder MS (2000) Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome 43:689–697

    Article  PubMed  CAS  Google Scholar 

  • Petersen G, Seberg O, Yde M, Berthelsen K (2006) Phylogenetic relationships of Triticum and Aegilops and evidence for the origin of the A, B, and D genomes of common wheat (Triticum aestivum). Mol Phylogenet Evol 39:70–82

    Article  PubMed  CAS  Google Scholar 

  • Quarrie SA, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, Steele N, Pljevljakusic D, Waterman E, Weyen J, Schondelmaier J, Habash DZ, Farmer P, Saker L, Clarkson DT, Abugalieva A, Yessimbekova M, Turuspekov Y, Abugalieva S, Tuberosa R, Sanguineti M-C, Hollington PA, Arague R, Royo A, Dodig D (2005) A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring x SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet 110:865–880

    Article  PubMed  CAS  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier M-H, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgensen AR, Allard RW (1984) Ribosomal DNA spacer length polymorphism in barley: Mendelian inheritance, chromosomal location and population dynamics. Proc Natl Acad Sci USA 81:8014–8018

    Article  PubMed  CAS  Google Scholar 

  • SanMiguel PJ, Ramakrishna W, Bennetzen JL, Busso CS, Dubcovsky J (2002) Transposable elements, genes and recombination in a 215-kb contig from wheat chromosome 5Am . Funct Integr Genomics 2:70–80

    Article  PubMed  CAS  Google Scholar 

  • Shi AN, Heath S, Murphy JP (1998) A major gene for powdery mildew resistance transferred to common wheat from wild einkorn wheat. Phytopathology 88:144–147

    Article  CAS  PubMed  Google Scholar 

  • Simons KJ, Fellers JP, Trick HN, Zhang Z, Tai Y, Gill BS, Faris JD (2006) Molecular characterization of the major wheat domestication gene Q. Genetics 172:547–555

    Article  PubMed  CAS  Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  PubMed  CAS  Google Scholar 

  • Song QJ, Shi JR, Singh S, Fickus EW, Costa JM, Lewis J, Gill BS, Ward R, Cregan PB (2005) Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet 110:550–560

    Article  PubMed  CAS  Google Scholar 

  • Sourdille P, Cadalen T, Guyomarc’h H, Snape JW, Perretant MR, Charmet G, Boeuf C, Bernard S, Bernard M (2003) An update of the courtot x Chinese spring intervarietal molecular marker linkage map for the QTL detection of agronomic traits in wheat. Theor Appl Genet 106:530–538

    PubMed  CAS  Google Scholar 

  • Sourdille P, Singh S, Cadalen T, Brown-Guedira GL, Gay G, Qi L, Gill BS, Dufour P, Murigneux A, Bernard M (2004) Microsatellite-based deletion bin system for the establishment of genetic–physical map relationships in wheat (Triticum aestivum L). Funct Integr Genomics 4:12–25

    Article  PubMed  CAS  Google Scholar 

  • Sourdille P, Tavaud M, Charmet G, Bernard M (2001) Transferability of wheat microsatellites to diploid triticeae species carrying the A, B and D genomes. Theor Appl Genet 103:346–352

    Article  CAS  Google Scholar 

  • Taenzler B, Esposti RF, Vaccino P, Brandolini A, Effgen S, Heun M, Schafer-pregl R, Borghi B, Salamini F (2002) Molecular linkage map of einkorn wheat: mapping of storage-protein and soft-glume genes and bread-making quality QTLs. Genet Res Camb 80:131–143

    CAS  Google Scholar 

  • The TT (1976) Variability and inheritance studies in Triticum monococcum for reaction to Puccinia graminis f. sp. tritici and Puccinia recondita. ZPflanz Züchtung 76:287–298

    Google Scholar 

  • Torada A, Koike M, Mochida K, Ogihara Y (2006) SSR-based linkage map with new markers using an intraspecific population of common wheat. Theor Appl Genet 112:1042–1051

    Article  PubMed  CAS  Google Scholar 

  • Tsujimoto H, Tsunewaki K (1988) Gametocidal genes in wheat and its relatives III. Chromosome location and effects of two Aegilops speltoides-derived gametocidal genes in common wheat. Genome 30:239–244

    Article  Google Scholar 

  • Valarik M, Linkiewicz AM, Dubcovsky J (2006) A microcolinearity study at the earliness per se gene Eps-A m 1 region reveals an ancient duplication that preceded the wheat-rice divergence. Theor Appl Genet 112:945–957

    Article  PubMed  CAS  Google Scholar 

  • Vasu K, Sood S, Dhaliwal HS, Chhuneja P, Gill BS (2007) Identification and amapping of tiller inhibition gene (tin3) in wheat. Theor Appl Genet 114:285–294

    Google Scholar 

  • Vasu K, Harjit-Singh, Chhuneja P, Singh S, Dhaliwal HS (2000) Molecular tagging of Karnal bunt resistance genes of Triticum monococcum transferred to Triticum aestivum L. Crop Improv 27:33–42

    Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  PubMed  CAS  Google Scholar 

  • Wicker T, Yahiaoui N, Guyot R, Schlagenhauf E, Liu Z, Dubcovsky J, Keller B (2003) Rapid genome divergence at orthologous low molecular weight glutenin loci of the A and Am genomes of wheat. Plant Cell 15:1186–1197

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Zhu L, Xiao J, Huang N, McCouch SR (1997) Chromosomal regions associated with segregation distortion of molecular markers in F2, backcross, doubled haploid, and recombinant inbred populations in rice (Oryza sativa L.). Mol Gen Genet 253:535–545

    Article  PubMed  CAS  Google Scholar 

  • Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen JL, Echenique V, Dubcovsky J (2004) The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303:1640–1644

    Article  PubMed  CAS  Google Scholar 

  • Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J (2003) Positional cloning of wheat vernalization gene VRN1. Proc Natl Acad Sci USA 100:6263–6268

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was carried under Indo–Swiss collaboration in Biotechnology and the financial support provided by Department of Biotechnology (DBT), Ministry of Science and Technology, Government of India and Swiss agency for development and cooperation (SDC), Switzerland is gratefully acknowledged. Authors also express their gratitude to Dr. Marion Roder, IPK, Gatersleben for providing sequences of unpublished GWM primer. We sincerely acknowledge the anonymous reviewer who took a lot of pains in pointing out even minor mistakes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuldeep Singh.

Additional information

Communicated by A. Graner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, K., Ghai, M., Garg, M. et al. An integrated molecular linkage map of diploid wheat based on a Triticum boeoticum × T. monococcum RIL population. Theor Appl Genet 115, 301–312 (2007). https://doi.org/10.1007/s00122-007-0543-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-007-0543-z

Keywords

Navigation