Skip to main content
Log in

Validation of the high-throughput marker technology DArT using the model plant Arabidopsis thaliana

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Diversity Arrays Technology (DArT) is a microarray-based DNA marker technique for genome-wide discovery and genotyping of genetic variation. DArT allows simultaneous scoring of hundreds of restriction site based polymorphisms between genotypes and does not require DNA sequence information or site-specific oligonucleotides. This paper demonstrates the potential of DArT for genetic mapping by validating the quality and molecular basis of the markers, using the model plant Arabidopsis thaliana. Restriction fragments from a genomic representation of the ecotype Landsberg erecta (Ler) were amplified by PCR, individualized by cloning and spotted onto glass slides. The arrays were then hybridized with labeled genomic representations of the ecotypes Columbia (Col) and Ler and of individuals from an F2 population obtained from a Col × Ler cross. The scoring of markers with specialized software was highly reproducible and 107 markers could unambiguously be ordered on a genetic linkage map. The marker order on the genetic linkage map coincided with the order on the DNA sequence map. Sequencing of the Ler markers and alignment with the available Col genome sequence confirmed that the polymorphism in DArT markers is largely a result of restriction site polymorphisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Google Scholar 

  • Bhatt AM, Lister C, Crawford N, Dean C (1998) The transposition frequency of Tag1 elements is increased in transgenic Arabidopsis lines. Plant Cell 10:427–434

    Google Scholar 

  • Borevitz JO, Liang D, Plouffe D, Chang H-S, Zhu T, Weigel D, Berry CC, Winzeler E, Chory J (2003) Large-scale identification of single-feature polymorphisms in complex genomes. Genome Res 13:513–523

    Google Scholar 

  • Broude NE, Zhang L, Woodward K, Englert D, Cantor CR (2000) Multiplex allele-specific target amplification based on PCR suppression. Proc Natl Acad Sci USA 98:206–211

    Google Scholar 

  • Buetow KH (1991) Influence of aberrant observations on high-resolution linkage analysis outcomes. Am J Hum Genet 5:985–994

    Google Scholar 

  • Cervera MT, Ruiz-Garcia L, Martinez-Zarpater JM (2002) Analysis of DNA methylation in Arabidopsis thaliana based on methylation-sensitive AFLP markers. Mol Gen Genomics 268:543–552

    Google Scholar 

  • Chee M, Yang R, Hubbell E, Berno A, Huang XC, Stern D, Winkler J, Lockhart DJ, Morris MS, Fodor SPA (1996) Accessing genetic information with high-density DNA arrays. Science 274:610–614

    Google Scholar 

  • Cutler DJ, Zwick ME, Carrasquillo MM, Yohn CT, Tobin KP, Kashuk C, Mathews DJ, Shah NA, Eichler EE, Warrington JA, Chakravarti A (2001) High-throughput variation detection and genotyping using microarrays. Genome Res 11:1913–1925

    Google Scholar 

  • Flavell AJ, Bolshakov VN, Booth A, Jing R, Russell J, Ellis TH, Isaac P (2003) A microarray-based high throughput molecular marker genotyping method: the tagged microarray marker (TAM) approach. Nucleic Acids Res 31:e115

    Google Scholar 

  • Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity Arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res 29:e25

    Google Scholar 

  • Jander G, Norris SR, Rounsley SD, Bush DF, Levin IM, Last RL (2002) Arabidopsis map-based cloning in the post-genome era. Plant Physiol 129:440–450

    Google Scholar 

  • Jenkins S, Gibson N (2002) High-throughput SNP genotyping. Comp Funct Genom 3:57–66

    Google Scholar 

  • Ji M, Hou P, Li S, He N, Lu Z (2004) Microarray-based method for genotyping of functional single nucleotide polymorphisms using dual-color fluorescence hybridization. Mutat Res 548:97–105

    Google Scholar 

  • Knox MR, Ellis TH (2001) Stability and inheritance of methylation states at PstI sites in Pisum. Mol Gen Genom 265:497–507

    Google Scholar 

  • Kwok PY (2000) High-throughput genotyping assay approaches. Pharmacogenomics 1:95–100

    Google Scholar 

  • Li TX, Wang J, Bai Y, Sun X, Lu Z (2004) A novel method for screening species-specific gDNA probes for species identification. Nucleic Acids Res 32:e45

    Google Scholar 

  • Lincoln SE, Lander ES (1992) Systematic detection of errors in genetic linkage data. Genomics 3:604–610

    Google Scholar 

  • Luikart G, England PR, Tallmon D, Jordan S, Taberlet P (2003) The power and promise of population genomics: from genotyping to genome typing. Nature Genet 4:981–994

    Google Scholar 

  • Lukowitz W, Gillmor CS, Scheible WR (2000) Positional cloning in Arabidopsis why it feels good to have a genome initiative working for you. Plant Physiol 132:795–805

    Google Scholar 

  • Meinke DW, Cherry JM, Dean C, Rounsley SD, Koorneef M (1998) Arabidopsis thaliana: a model plant for genome analysis. Science 282:662–681

    Google Scholar 

  • Messeguer R, Ganal MW, Steffens JC, Tanksley SD (1991) Characterization of the level, target sites and inheritance of cytosine methylation in tomato nuclear DNA. Plant Mol Biol 16:753–770

    Google Scholar 

  • Pastinen T, Raitio M, Lindroos K, Tainola P, Peltonen L, Syvanen AC (2000) A system for specific, high throughput genotyping by allele-specific primer extension on microarrays. Genome Res 10:1031–1042

    Google Scholar 

  • Pereira A, Aarts MGM (1998) Transposon tagging with the En-I system. In: Martinez-Zapater J, Salinas J (eds) Arabidopsis protocols. Humana Press, Totowa, NJ, pp 329–338

    Google Scholar 

  • Peters JL, Cnudde F, Gerats T (2003) Forward genetics and map-based cloning approaches. Trends Plant Sci 8:484–491

    Google Scholar 

  • Rhee SY et al (2003) The Arabidopsis Information Resource (TAIR): a model organism database providing a centralized, curated gateway to Arabidopsis biology, research materials and community. Nucleic Acids Res 31:224–228

    Google Scholar 

  • Sachidanandam R et al (2001) A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409:928–933

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NewYork

    Google Scholar 

  • Schmid KJ, Rosleff Sörensen T, Stracke R, Törjék O, Altmann T, Mitchell-Olds T, Weisshaar B (2003) Large-scale identification and analysis of genome-wide single-nucleotide polymorphisms for mapping in Arabidopsis thaliana. Genome Res 13:1250–1257

    Google Scholar 

  • Siebert PD, Chenchik A, Kellogg DE, Lukyanov KA, Lukyanov SA (1995) An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids Res 23:1087–1088

    Google Scholar 

  • Syvanen AC (1999) From gels to chips: ‘minisequencing’ primer extension for analysis of point mutations and single nucleotide polymorphisms. Hum Mutat 13:1–10

    Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Google Scholar 

  • Törjék O, Berger D, Meyer RC, Müssig C, Schmid KJ, Sörensen TR, Weisshaar B, Mitchell-Olds T, Altman T (2003) Establishment of a high-efficiency SNP-based framework marker set for Arabidopsis. Plant J 36:122–140

    Google Scholar 

  • Van Eijk MJT, Broekhof JLN, van der Poel HJA, Hogers RCJ, Schneiders H, Kamerbeek J, Verstege E, van Aart JW, Geerlings H, Buntjer JB, van Oeveren AJ, Vos P (2003) SNPWave: a flexible multiplexed SNP genotyping technology. Nucleic Acids Res 32:e47

    Google Scholar 

  • Van der Linden CG, Wouters DCAE, Mihalka V, Kochieva EZ, Smulders MJM, Vosman B (2004) Efficient targeting of plant disease resistance loci using NBS profiling. Theor Appl Genet 109:384–393

    Google Scholar 

  • Van der Wurff AWG, Chan YL, van Straalen NM, Schouten J (2000) TE-AFLP: combining rapidity and robustness in DNA fingerprinting. Nucleic Acids Res 28:e105

    Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuipers M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Google Scholar 

  • Voytas DF, Konieczny A, Cummings MP, Ausubel FM (1990) The structure, distribution and evolution of the Ta1 retrotransposable element family of Arabidopsis thaliana. Genetics 126:713–721

    Google Scholar 

  • Wang DG et al (1998) Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science 280:1077–1082

    Google Scholar 

  • Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A (2004) Diversity Arrays Technology (DArT) for whole-genome profiling of barley. Proc Natl Acad Sci USA 101:9915–9920

    Google Scholar 

  • Winzeler EA, Castillio-Davis CI, Oshiro G, Liang D, Richards DR, Zhou Y, Hartl DL (2003) Genetic diversity in yeast assessed with whole-genome oligonucleotide arrays. Genetics 163:79–89

    Google Scholar 

Download references

Acknowledgements

We thank Andy Pereira for providing seeds from the A. thaliana ecotypes Ler, Col and from the F2 population used for mapping. We also thank our colleagues Gerard van der Linden, Mark Kemper, Mark Fiers and Hong Tran (Plant Research International) and Eric Huttner (DArT Pty./Ltd.) for constructive discussions during the course of this work and of manuscript preparation. This project was supported by a travel grant from the Netherlands Organization for Scientific Research (NWO)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henk J. Schouten.

Electronic supplementary material

Electronic supplementary material

(PDF 465 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wittenberg, A.H.J., Lee, T.v.d., Cayla, C. et al. Validation of the high-throughput marker technology DArT using the model plant Arabidopsis thaliana. Mol Genet Genomics 274, 30–39 (2005). https://doi.org/10.1007/s00438-005-1145-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-005-1145-6

Keywords

Navigation