Skip to main content
Log in

Development and assessment of Diversity Arrays Technology for high-throughput DNA analyses in Musa

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Diversity Arrays Technology (DArT) is a DNA hybridisation-based molecular marker technique that can detect simultaneously variation at numerous genomic loci without sequence information. This efficiency makes it a potential tool for a quick and powerful assessment of the structure of germplasm collections. This article demonstrates the usefulness of DArT markers for genetic diversity analyses of Musa spp. genotypes. We developed four complexity reduction methods to generate DArT genomic representations and we tested their performance using 48 reference Musa genotypes. For these four complexity reduction methods, DArT markers displayed high polymorphism information content. We selected the two methods which generated the most polymorphic genomic representations (PstI/BstNI 16.8%, PstI/TaqI 16.1%) to analyze a panel of 168 Musa genotypes from two of the most important field collections of Musa in the world: Cirad (Neufchateau, Guadeloupe), and IITA (Ibadan, Nigeria). Since most edible cultivars are derived from two wild species, Musa acuminata (A genome) and Musa balbisiana (B genome), the study is restricted mostly to accessions of these two species and those derived from them. The genomic origin of the markers can help resolving the pedigree of valuable genotypes of unknown origin. A total of 836 markers were identified and used for genotyping. Ten percent of them were specific to the A genome and enabled targeting this genome portion in relatedness analysis among diverse ploidy constitutions. DArT markers revealed genetic relationships among Musa genotype consistent with those provided by the other markers technologies, but at a significantly higher resolution and speed and reduced cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akbari M, Wenzl P, Vanessa C, Carling J, Xia L, Yang S, Uszynski G, Mohler V, Lehmensiek A, Kuchel H, Hayden MJ, Howes N, Sharp P, Rathmell B, Vaughan P, Huttner E, Kilian A (2006) Diversity Arrays Technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet 113:1409–1420

    Article  PubMed  CAS  Google Scholar 

  • Amorim EP, Vilarinhos AD, Cohen KO, Amorim VBO, Santos-Serejo JA, Silva SO, Pestana KN, Santos VJ, Paes NS, Monte DC, Rei RV (2009) Genetic diversity of carotenoid-rich bananas evaluated by Diversity Arrays Technology (DArT). Genet Mol Biol 32:96–103

    Article  CAS  Google Scholar 

  • Anderson JA, Churchill GA, Autrique JE, Tanskley SD, Sorrells ME (1993) Optimizing parental selection for genetic linkage maps. Genome 396:181–186

    Article  Google Scholar 

  • Carreel F, Fauré S, Gonzalez de Leon D, Lagoda PLJ, Perrier X, Bakry F, Tezenas du Montcel H, Lanaud C, Horry JP (1994) Evaluation de la diversité génétique chez les bananiers diploïdes (Musa sp). Genet Sel Evol 26(Suppl):125s–136s

    Article  Google Scholar 

  • Carreel F, Gonzalez de Leon D, Lagoda P, Lanaud C, Jenny C, Horry J, Tezenas du Montcel H (2002) Ascertaining maternal and paternal lineage within Musa by chloroplast and mitochondrial DNA RFLP analyses. Genome 45:679–692

    Article  PubMed  CAS  Google Scholar 

  • Creste S, Tulmann Neto A, de Oliveira Silva S, Figueira A (2003) Genetic characterization of banana cultivars (Musa spp.) from Brazil using microsatellite markers. Euphytica 132:259 258

    Article  CAS  Google Scholar 

  • Creste S, Tulmann Neto A, Vencovsky R, de Oliveira Silva S, Figueira A (2004) Genetic diversity of Musa diploid and triploid accessions from the Brazilian banana breeding program estimated by microsatellite markers. Genet Res Crop Evol 51:723–733

    Article  CAS  Google Scholar 

  • Crouch JH, Crouch HK, Constandt H, Van Gysel A, Breyne P, Van Montagu M, Jarret RL, Ortiz R (1999) Comparison of PCR-based molecular marker analyses of Musa breeding populations. Mol Breeding 5:233–244

    Article  CAS  Google Scholar 

  • D’Hont A, Paget-Goy A, Escoute J, Carreel F (2000) The interspecific genome structure of cultivated banana, Musa spp. revealed by genomic DNA in situ hybridization. Theor Appl Genet 100:177–183

    Article  Google Scholar 

  • Fauré S, Noyer JL, Horry JP, Bakry F, Lanaud C, Gońzalez de León D (1993) A molecular marker-based linkage map of diploid bananas (Musa acuminata). Theor Appl Genet 87:517–526

    Article  Google Scholar 

  • Gawel NJ, Jarret RL, Whittemore AP (1992) Restriction fragment length polymorphism (RFLP)-based phylogenetic analysis of Musa. Theor Appl Genet 84:286–290

    Article  Google Scholar 

  • Godwin ID, Aitken EAB, Smith LW (1997) Application of inter simple sequence repeat (ISSR) markers to plant genetics. Electrophoresis 18:1524–1528

    Article  PubMed  CAS  Google Scholar 

  • Grapin A, Noyer JL, Carreel F, Dambler D, Baurens FC, Lanaud C, Lagoda PJL (1998) Diploid Musa acuminata genetic diversity assayed with sequence tagged microsatellite sites. Electrophoresis 19:1374–1380

    Article  PubMed  CAS  Google Scholar 

  • Horry J, Jay M (1988) Distribution of anthocyanins in wild and cultivated banana varieties. Phytochemistry 27:2667–2672

    Article  CAS  Google Scholar 

  • Howell EC, Newbury HJ, Swennen RL, Withers LA, Ford-Lloyd BV (1994) The use of RAPD for identifying and classifying Musa germplasm. Genome 37:328–332

    Article  PubMed  CAS  Google Scholar 

  • Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity Arrays: a solid-state technology for sequence information independent genotyping. Nucleic Acids Res 29:e25

    Article  PubMed  CAS  Google Scholar 

  • Jarret RL, Gawel NJ, Whittemore A, Sharrock S (1992) RFLP-based phylogeny of Musa species in Papua New Guinea. Theor Appl Genet 84:579–584

    Article  Google Scholar 

  • Jenny C, Carreel F, Kodjo T, Perrier X, Dubois C, Horry JP, Tézenas du Montcel H (2002) Banana. In: Hamon P, Seguin M, Perrier X, Glaszmann JC (eds) Genetic diversity of cultivated tropical plants. Science Publishers Inc USA and CIRAD France, pp 99–124

  • Lanaud C, Tezenas du Montcel H, Jolivot MP, Glaszmann JC, Gonzalez De Leon D (1992) Variation of ribosomal gene spacer length among wild and cultivated banana. Heredity 68:147–156

    Article  CAS  Google Scholar 

  • Lescot M, Piffanelli P, Ciampi AY, Ruiz M, Blanc G, Leebens-Mack J, da Silva FR, Santos CMR, D’Hont A, Garsmeur O, Vilarinhos AD, Kanamori H, Matsumoto T, Ronning CM, Cheung F, Haas BJ, Althoff R, Arbogast T, Hine E, Pappas GJ, Sasaki T, Souza MT, Miller RG, Glaszmann JC, Town CD (2008) Insights into the Musa genome: syntenic relationships to rice and between Musa species. BMC Genomics 9:58

    Article  PubMed  CAS  Google Scholar 

  • Lezar S, Myburg AA, Berger DK, Wingfield MJ, Wingfield BD (2004) Assessment of microarray-based DNA fingerprinting in Eucalyptus grandis. Theor Appl Genet 109:1329–1336

    Article  PubMed  CAS  Google Scholar 

  • Mace ES, Xia L, Jordan DR, Halloran K, Parh DK, Huttner E, Wenzl P, Kilian A (2008) DArT markers: diversity analyses and mapping in Sorghum bicolor. BMC Genomics 9:26

    Article  PubMed  CAS  Google Scholar 

  • Nair AS, Teo CH, Schwarzacher T, Heslop-Harisson JS (2005) Genome classification of banana cultivars from South India using IRAP markers. Euphytica 114:285–290

    Article  CAS  Google Scholar 

  • Noyer JL, Causse S, Tomekpe K, Bouet A, Baurens FC (2004) A new image of plantain diversity assessed by SSR, AFLP and MSAP markers. Genetica 124:61–69

    Article  CAS  Google Scholar 

  • Perrier X, Flori A, Bonnot F (2003) Data analysis methods. In: Hamon P, Seguin M, Perrier X, Glaszmann JC (eds) Genetic diversity of cultivated tropical plants. Science Publishers Inc USA and CIRAD France, pp 43–76

  • Perrier X, Bakry F, Carreel F, Jenny C, Horry JP, Lebot V, Hippolyte I (in press) Combining biological approaches to highlight the evolution towards edible bananas Sixth World Archaeological Congress Dublin. Ethnobotany Research and Application

  • Pillay M, Ogundiwin E, Nwakanma DC, Ude G, Tenkouano A (2001) Analysis of genetic diversity and relationships in East African banana germplasm. Theor Appl Genet 102:965–970

    Article  CAS  Google Scholar 

  • Raboin LM, Carreel F, Noyer JL, Baurens FC, Horry JP, Bakry F, Tezenas du Montcel H, Ganry J, Lanaud C, Lagoda PJL (2005) Diploid ancestors of triploid export banana cultivars: molecular identification of 2n restitution gamete donors and n gamete donors. Mol Breed 16:333–341

    Article  CAS  Google Scholar 

  • Risterucci AM, Grivet L, N’Goran JAK, Pieretti I, Flament MH, Lanaud C (2000) A high density linkage map of Theobroma cacao L. Theor Appl Genet 101:948–955

    Article  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Semagn K, Bjornstad A, Skinnes H, Maroy AG, Tarkegne Y, William M (2006) Distribution of DArT, AFLP, and SSR markers in a genetic linkage map of a doubled-haploid hexaploid wheat population. Genome 49:545–555

    Article  PubMed  CAS  Google Scholar 

  • Shepherd K (1999) Cytogenetics of the genus Musa. Ipgri-Inibap, Rome

    Google Scholar 

  • Simmonds NW (1962) The evolution of the bananas. Longmans, London

    Google Scholar 

  • Simmonds NW (1995) Bananas Musa (Musaceae). In: Smartt J, Simmonds NW (eds) Evolution of crop plants. Longman Scientific and Technical, London, pp 370–375

    Google Scholar 

  • Sokal RR, Michener CD (1958) A statistical method for evaluating systematic relationships. Univ Kansas Sci Bull 28:1409–1438

    Google Scholar 

  • Storey J, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Nat Acad Sci USA 100:9440–9945

    Article  PubMed  CAS  Google Scholar 

  • Tenkouano A, Crouch JH, Crouch HK, Vuylsteke D, Ortiz R (1999) Comparison of DNA marker and pedigree-based methods of genetic analysis of plantain and banana (Musa spp.) clones. I. Estimation of genetic relationships. Theor Appl Genet 98:62–68

    Article  CAS  Google Scholar 

  • Teo CH, Tan SH, Ho CH, Faridah QZ, Othman YR, Heslop-Harrison JS, Kalendar R, Schulman AH (2005) Genome constitution and classification using retrotransposon based markers in the orphan crop banana. J Plant Biol 48:96–105

    Article  CAS  Google Scholar 

  • Ude G, Pillay M, Ogundiwin E, Tenkouano A (2003) Genetic diversity in an African plantain core collection using AFLP and RAPD markers. Theor Appl Genet 107:248–255

    Article  PubMed  CAS  Google Scholar 

  • Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A (2004) Diversity Arrays Technology (DArT) for whole-genome profiling of barley. Proc Nat Acad Sci USA 101:9915–9920

    Article  PubMed  CAS  Google Scholar 

  • Wenzl P, Li H, Carling J, Zhou M, Raman H, Paul E, Hearnden P, Maier C, Xia L, Caig V, Ovesna J, Cakir M, Poulsen D, Wang J, Raman R, Smith KP, Muehlbauer GJ, Chalmers KJ, Kleinhofs A, Huttner E, Kilian A (2006) A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and phenotypic traits. BMC Genomics 7:206

    Article  PubMed  CAS  Google Scholar 

  • White J, Law JR, Mackay I, Chalmers KJ, Smith JSC, Kilian A, Powell W (2008) The genetic diversity of UK, US and Australian cultivars of Triticum aestivum measured by DArT markers and considered by genome. Theo Appl Genet 116:439–453

    Article  CAS  Google Scholar 

  • Wittenberg A, van der Lee T, Cayla C, Kilian A, Visser R, Schouten H (2005) Quality assessment of the Diversity Array Technology (DArT) using the model plant Arabidopsis thaliana. Mol Gen Genomics 274:30–39

    Article  CAS  Google Scholar 

  • Wong C, Kiew R, Loh JP, Gan LH, Lee SK, Ohn S, Lum S, Gan YY (2001) Genetic diversity of the wild banana Musa acuminata Colla in Malaysia as evidenced by AFLP. Ann Bot 88:1017–1025

    Article  CAS  Google Scholar 

  • Wong C, Kiew R, Argent G, Set O, Lee SK, Ohn S, Gan YY (2002) Assessment of the validity of section in Musa (Musaceae) using AFLP. Ann Bot 90:231–238

    Article  PubMed  CAS  Google Scholar 

  • Xia L, Peng K, Yang S, Wenzl P, de Vicente MC, Fregene M, Kilian A (2005) DArT for high-throughput genotyping of cassava (Manihot esculenta) and its wild relatives. Theor Appl Genet 110:1092–1098

    Article  PubMed  CAS  Google Scholar 

  • Yang S, Pang W, Ash G, Harper J, Carling J, Wenzl P, Huttner E, Zong X, Kilian A (2006) Low level of genetic diversity in cultivated Pigeonpea compared to its relatives is revealed by diversity arrays technology. Theor Appl Genet 113:585–595

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank the Generation Challenge Programme for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ange-Marie Risterucci.

Additional information

Communicated by H. Nybom.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 224 kb)

Below is the link to the electronic supplementary material.

Supplementary material 2 (PDF 90 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Risterucci, AM., Hippolyte, I., Perrier, X. et al. Development and assessment of Diversity Arrays Technology for high-throughput DNA analyses in Musa . Theor Appl Genet 119, 1093–1103 (2009). https://doi.org/10.1007/s00122-009-1111-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-009-1111-5

Keywords

Navigation