Skip to main content
Log in

Analysis of recombination rate in female and male gametogenesis in pearl millet (Pennisetum glaucum) using RFLP markers

  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Sex as a factor affecting recovered recombination in plant gametes was investigated in pearl millet, Pennisetum glaucum, by using reciprocal three-way crosses [(AxB)xCvCx(A x B)]. The two populations were mapped at 42 loci pre-selected to cover the majority of the genome. No differences in recombination distances were observed at the whole-genome level and only a few individual linkage intervals were found to differ, all in favour of increased recombination through the male. Distorted segregations found in the three-way crosses provide evidence of post-gametic selection for particular gene(s) or chromosome regions. The significance of these results for the design of pearl millet breeding programmes and inheritance experiments, as well as for other experimental strategies, is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker BS, Carpenter ATC, Esposito MS, Esposito RE, Sandler L (1976) The genetic control of meiosis. Annu Rev Genet 10:53–134

    Google Scholar 

  • De Vicente MC, Tanksley SD (1991) Genome-wide reduction in recombination of backcross progeny derived from male versus female gametes in an interspecific cross of tomato. Theor Appl Genet 83:173–178

    Google Scholar 

  • Devos KM, Millan T, Gale MD (1993) Comparative RFLP maps of the homoeologous group-2 chromosomes of wheat, rye and barley. Theor Appl Genet 85:7843–7902

    Google Scholar 

  • Donis-Keller H, Green P, Helms C, Cartinhour S, Weiffenbach B, Stephens K, Keith TP, Bowden DW, Smith DR, Lander ES, Botstein D, Akots G, Rediker KS, Gravious T, Brown V, Rising MB, Parker C, Powers JA, Watt DE Kauffman ER, Bricker A, Phipps P, Muller-Ahle H, Fulton TM, Ng S, Schumm JW, Braman JC, Knowlton RG, Barker DE, Crooks SM, Lincoln SE, Daly MJ, Abrahamson J (1987) A genetic linkage group map of human genome. Cell 51:319–337

    Google Scholar 

  • Hanna WW (1990) Long-term storage of Pennisetum glaucum (L.) R. Br. pollen. Theor Appl Genet 79:605–608

    Google Scholar 

  • Heun M, Kennedy AE, Anderson JA, Lapitan NLV, Sorrells ME, Tanksley SD (1991) Construction of a restriction fragment length polymorphism map for barley (Hordeum vulgare). Genome 34:437–447

    Google Scholar 

  • Kleinhofs A, Kilian A, Saghai Maroof MA, Biyashev RM, Hayes P, Chen FQ, Lapitan N, Fenwick A, Blake TK, Kanazin V, Ananiev E, Dahleen L, Kudrna D, Bollinger J, Knapp SJ, Liu B, Sorrells M, Heun M, Framckowiak JD, Hoffman D, Skadsen R, Steffenson BJ (1993) A molecular, isozyme and morphological map of the barley (Hordeum vulgare) genome. Theor Appl Genet 86:705–712

    CAS  Google Scholar 

  • Lander E, Green P, Abrahamson J, Barlow A, Daley M, Lincoln S, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    CAS  PubMed  Google Scholar 

  • Liu CJ, Witcombe JR, Pittaway TS, Nash M, Busso CS, Gale MD (1994) An RFLP-based genetic map of pearl millet (Pennisetum glaucum). Theor Appl Genet 89:481–487

    CAS  Google Scholar 

  • Maeda T (1939) Chiasma studies in the silk worm, Bombyx mori L. Jpn J Genet 15:118–127

    Google Scholar 

  • Reeves RH (1990) Sex, strain, and species differences affect recombination across an evolutionarily conserved segment of mouse chromosome 16. Genomics 8:141–148

    Google Scholar 

  • Robert T, Sarr A, Pernes J (1989) Sélections sur la phase haploïde chez le Mil [Pennisetum typhoides (Burm.) Stapf et Hubb.]: effet de la température. Genome 32:946–952

    Google Scholar 

  • Robert T, Lespinasse R, Pernes J Sarr A (1991) Gametophytic competition as influencing gene flow between wild and cultivated forms of pearl millet (Pennisetum typhoides). Genome 34: 195–200

    Google Scholar 

  • Robertson DS (1984) Different frequency in the recovery of cross over products from male and female gametes of plants hypoploid for B-A translocations in maize. Genetics 107:117–130

    Google Scholar 

  • Sarr A, Pernes J (1988) Analyses multivariése de descendances de rétrocroisements et mise en évidence de distorsions de ségrégation de caractères quantitatifs chez le mil [Pennisetum typhoides (Burm.) Stapf et Hubb.]. Genome 30:411–422

    Google Scholar 

  • Sarr A, Sandmeier M, Pernes J (1988) Gametophytic competition in pearl millet, Pennisetum typhoides (Stapf et Hubb.). Genome 30:924–929

    Google Scholar 

  • Sedcole TR (1977) Number of plants necessary to recover a trait. Crop Sci 17:667–668

    Google Scholar 

  • Zhuchenko AA, Korol AB, Vizir IY, Bocharnikova NI, Zamorzaeva NI (1989) Sex differences in crossover frequency for tomato and thale cress (Arabidopsis thaliana). Sov Genet 24:1104–1110

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by P. L. Pfahler

Rights and permissions

Reprints and permissions

About this article

Cite this article

Busso, C.S., Liu, C.J., Hash, C.T. et al. Analysis of recombination rate in female and male gametogenesis in pearl millet (Pennisetum glaucum) using RFLP markers. Theoret. Appl. Genetics 90, 242–246 (1995). https://doi.org/10.1007/BF00222208

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00222208

Key words

Navigation