Skip to main content
Log in

Conditional QTL mapping for plant height with respect to the length of the spike and internode in two mapping populations of wheat

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Plant height (PH) in wheat is a complex trait; its components include spike length (SL) and internode lengths. To precisely analyze the factors affecting PH, two F8:9 recombinant inbred line (RIL) populations comprising 485 and 229 lines were generated. Crosses were performed between Weimai 8 and Jimai 20 (WJ) and between Weimai 8 and Yannong 19 (WY). Possible genetic relationships between PH and PH components (PHC) were evaluated at the quantitative trait locus (QTL) level. PH and PHC (including SL and internode lengths from the first to the fourth counted from the top, abbreviated as FIITL, SITL, TITL, and FOITL, respectively) were measured in four environments. Individual and the pooled values from four trials were used in the present analysis. A QTL for PH was mapped using data on PH and on PH conditioned by PHC using IciMapping V2.2. All 21 chromosomes in wheat were shown to harbor factors affecting PH in two populations, by both conditional and unconditional QTL mapping methods. At least 11 pairwise congruent QTL were identified in the two populations. In total, ten unconditional QTL and five conditional QTL that could be detected in the conditional analysis only have been verified in no less than three trials in WJ and WY. In addition, three QTL on the short arms of chromosomes 4B, 4D, and 7B were mapped to positions similar to those of the semi-dwarfing genes Rht-B1, Rht-D1 and Rht13, respectively. Conditional QTL mapping analysis in WJ and WY proved that, at the QTL level, SL contributed the least to PH, followed by FIITL; TITL had the strongest influence on PH, followed by SITL and FOITL. The results above indicated that the conditional QTL mapping method can be used to evaluate possible genetic relationships between PH and PHC, and it can efficiently and precisely reveal counteracting QTL, which will enhance the understanding of the genetic basis of PH in wheat. The combination of two related populations with a large/moderate population size made the results authentic and accurate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

PH:

Plant height

PHC:

Plant height components

SL:

Spike length

FIITL:

The first internode length from the top

SITL:

The second internode length from the top

TITL:

The third internode length from the top

FOITL:

The fourth internode length from the top

WJ:

Recombinant inbred line population derived from the cross between Weimai 8 and Jimai 20

WY:

Recombinant inbred line population derived from the cross between Weimai 8 and Yannong 19

References

  • Beavis WB (1998) QTL analyses: power, precision, and accuracy. In: Patterson AH (ed) Molecular dissection of complex traits. CRC Press, Boca Raton

    Google Scholar 

  • Börner A, Schumann E, Fürste A, Cöster H, Leithold B, Röder MS, Weber WE (2002) Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 105:921–936

    Article  PubMed  Google Scholar 

  • Buckler ES, Holland JB, Acharya CB, Brown PJ, Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz JC, Goodman MM, Harjes C, Guill K, Kroom DE, Larsson S, Lepak NK, Li HH, Mitchell SE, Pressoin G, Peiffer JA, Rosas MO, Rocheford TR, Romay MC, Romero S, Salvo S, Villeda HS, Sliva HSD, Sun Q, Tian F, Upadyayula N, Ware D, Yates H, Yu J, Zhang Z, Kresovich S, McMullen MD (2009) The genetic architecture of maize flowering time. Science 325:714–718

    Article  PubMed  CAS  Google Scholar 

  • Cadalen T, Sourdille P, Charmet G, Tixier MH, Gay G, Boeuf C, Bernard S, Leroy P, Bernard M (1998) Molecular markers linked to genes affecting plant height in wheat using a double haploid population. Theor Appl Genet 96:933–940

    Article  CAS  Google Scholar 

  • Chu CG, Xu SS, Friesen TL, Faris JD (2008) Whole genome mapping in a wheat doubled haploid population using SSRs and TRAPs and the identification of QTL for agronomic traits. Mol Breed 22:251–266

    Article  CAS  Google Scholar 

  • Doerge RW (2002) Multifactorial genetics: mapping and analysis of quantitative trait loci in experimental populations. Nat Rev 3:43–52

    CAS  Google Scholar 

  • Dunn GJ, Briggs KG (1989) Variation in culm anatomy among barley genotypes differing in lodging resistance. Can J Bot 67:1838–1843

    Article  Google Scholar 

  • Ellis MH, Rebetzke GJ, Azanza F, Richards RA, Spielmeyer W (2005) Molecular mapping of gibberellin-responsive dwarfing genes in bread wheat. Theor Appl Genet 111:423–430

    Article  PubMed  CAS  Google Scholar 

  • Gao LF, Jing RL, Huo NX, Li Y, Li XP, Zhou RH, Chang XP, Tang JF, Ma ZY, Jia JZ (2004) One hundred and one new microsatellite loci derived from ESTs (EST-SSR) in bread wheat. Theor Appl Genet 108:1392–1400

    Article  PubMed  CAS  Google Scholar 

  • Guo LB, Xing YZ, Mei HW, Xu CG, Shi CH, Wu P, Luo LJ (2005) Dissection of component QTL expression in yield formation in rice. Plant Breed 124:127–132

    Article  CAS  Google Scholar 

  • Hao YF, Liu AF, Wang YH, Feng DS, Gao JR, Li XF, Liu SB, Wang HG (2008) Pm23: a new allele of Pm4 located on chromosome 2AL in wheat. Theor Appl Genet 117:1205–1212

    Article  PubMed  CAS  Google Scholar 

  • Huang XQ, Cöster H, Ganal MW, Röder MS (2003) Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theor Appl Genet 106:1379–1389

    PubMed  CAS  Google Scholar 

  • Huang XQ, Kempf H, Ganal MW, Röder MS (2004) Advanced backcross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and a synthetic wheat (Triticum aestivum L.). Theor Appl Genet 109:933–943

    Article  PubMed  CAS  Google Scholar 

  • Huang XQ, Cloutier S, Lycar L, Radovanovic N, Humphreys DG, Noll JS, Somers DJ, Brown PD (2006) Molecular detection of QTLs for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.). Theor Appl Genet 113:753–766

    Article  PubMed  CAS  Google Scholar 

  • Kato K, Miura H, Sawada S (1999) QTL mapping of genes controlling ear emergence time and plant height on chromosome 5A of wheat. Theor Appl Genet 98:472–477

    Article  CAS  Google Scholar 

  • Keller M, Karutz Ch, Schmid JE, Stamp P, Winzeler M, Keller B, Messmer MM (1999) Quantitative trait loci for lodging resistance in a segregating wheat × spelt population. Theor Appl Genet 98:1171–1182

    Article  CAS  Google Scholar 

  • Klahr A, Zimmermann G, Wenzel G, Mohler V (2007) Effects of environment, disease progress, plant height and heading date on the detection of QTLs for resistance to Fusarium head blight in an European winter wheat cross. Euphytica 154:17–28

    Article  CAS  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Kumar N, Kulwal PL, Balyan HS, Gupta PK (2007) QTL mapping for yield and yield contributing traits in two mapping populations of bread wheat. Mol Breed 19:163–177

    Article  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    PubMed  CAS  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newberg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Law CN, Snape JW, Worland AJ (1973) The genetical relationship between height and yield in wheat. Heredity 40:133–151

    Article  Google Scholar 

  • Li HH, Ye GY, Wang JK (2007a) A modified algorithm for the improvement of composite interval mapping. Genetics 175:361–374

    Article  PubMed  Google Scholar 

  • Li SS, Jia JZ, Wei XY, Zhang XC, Li LZ, Chen HM, Fan YD, Sun HY, Zhao XH, Lei TD, Xu YF, Jiang FS, Wang HG, Li LH (2007b) A intervarietal genetic map and QTL analysis for yield traits in wheat. Mol Breed 20:167–178

    Article  Google Scholar 

  • Liang D, Tang JW, Peña RJ, Singh R, He XY, Shen XY, Yao DN, Xia XH, He ZH (2010) Characterization of CIMMYT bread wheats for highand low-molecular weight glutenin subunits and other quality-related genes with SDS-PAGE, RP-HPLC and molecular markers. Euphytica 172:235–250

    Article  CAS  Google Scholar 

  • Liu ZH, Anderson JA, Hu J, Friesen TL, Rasmussen JB, Faris JD (2005) A wheat intervarietal genetic linkage map based on microsatellite and target region amplified polymorphism markers and its utility for detecting quantitative trait loci. Theor Appl Genet 111:782–794

    Article  PubMed  CAS  Google Scholar 

  • Liu GF, Yang J, Xu HM, Hayat Y, Zhu J (2008a) Genetic analysis of grain yield conditioned on its component traits in rice (Oryza sativa L.). Aust J Agric Res 59:189–195

    Article  CAS  Google Scholar 

  • Liu SX, Chao SM, Anderson JA (2008b) New DNA markers for high molecular weight glutenin subunits in wheat. Theor Appl Genet 118:177–183

    Article  PubMed  CAS  Google Scholar 

  • Ma ZQ, Zhao DM, Zhang CQ, Zhang ZZ, Xue SL, Lin F, Kong ZX, Tian DG, Luo QY (2007) Molecular genetic analysis of five spike-related traits in wheat using RIL and immortalized F2 populations. Mol Genet Genomics 277:31–42

    Article  PubMed  CAS  Google Scholar 

  • Mackay TFC (2001) The genetic architecture of quantitative traits. Annu Rev Genet 35:303–339

    Article  PubMed  CAS  Google Scholar 

  • Mao SL, Wei YM, Cao WG, Lan XJ, Yu M, Chen ZM, Chen GY, Zheng YL (2010) Confirmation of the relationship between plant height and Fusarium head blight resistance in wheat (Triticum aestivum L.) by QTL meta-analysis. Euphytica 174:343–356

    Article  Google Scholar 

  • Marza F, Bai GH, Carver BF, Zhou WC (2006) Quantitative trait loci for yield and related traits in the wheat population Ning7840 × Clark. Theor Appl Genet 112:688–698

    Article  PubMed  CAS  Google Scholar 

  • McCartney CA, Somers DJ, Humphreys DG, Lukow O, Ames N, Noll J, Cloutier S, McCallum BD (2005) Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452 × ‘AC Domain’. Genome 48:870–883

    Article  PubMed  CAS  Google Scholar 

  • Mullan DJ, Platteter A, Teakle NL, Appels R, Colmer TD, Anderson JM, Francki MG (2005) EST-derived SSR markers from defined regions of the wheat genome to identify Lophopyrum elongatum specific loci. Genome 48:811–822

    Article  PubMed  CAS  Google Scholar 

  • Nagaoka T, Ogihara Y (1997) Applicability of inter-simple sequence repeat polymorphisms in wheat for use as DNA markers in comparison to RFLP and RAPD markers. Theor Appl Genet 94:597–602

    Article  CAS  Google Scholar 

  • Peng JH, Lapitan NLV (2005) Characterization of EST-derived microsatellites in the wheat genome and development of eSSR markers. Funct Integr Genomics 5:80–96

    Article  PubMed  CAS  Google Scholar 

  • Peter H (2003) The genes of the green revolution. Trends Genet 19:5–9

    Article  Google Scholar 

  • Pinthus MJ (1973) Lodging in wheat, barley and oats: the phenomenon, its causes and preventative measures. Adv Agron 25:209–263

    Article  CAS  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier M-H, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Schön CC, Utz HF, Groh S, Truberg B, Openshaw S, Melchinger AE (2004) Quantitative trait locus mapping based on resampling in a vast maize testcross experiment and its relevance to quantitative genetics for complex traits. Genetics 167:485–498

    Article  PubMed  Google Scholar 

  • Singh NK, Shepherd KW (1991) A simplified SDS-PAGE procedure for separation LMW subunits of glutenin. J Cereal Sci 14:203–208

    Article  Google Scholar 

  • Snape JW, Law CN, Worland AJ (1977) Whole-chromosome analysis of height in wheat. Heredity 38:25–36

    Article  Google Scholar 

  • Sourdille P, Cadalen T, Guyomarc’h H, Snape JW, Perretant MR, Charmet G, Boeuf C, Bernard S, Bernard M (2003) An update of the Courtot × Chinese Spring intervarietal molecular marker linkage map for the QTL detection of agronomic traits in wheat. Theor Appl Genet 106:530–538

    PubMed  CAS  Google Scholar 

  • Stanca AM, Jenkins G, Hanson PR (1979) Varietal responses in spring barley to natural and artificial lodging and to a growth regulator. J Agric Sci (Cambridge) 93:440–456

    Article  Google Scholar 

  • Suenaga K, Khairallah M, William HM, Hoisington DA (2005) A new intervarietal linkage map and its application for quantitative trait locus analysis of “gigas” features in bread wheat. Genome 48:65–75

    Article  PubMed  CAS  Google Scholar 

  • Tavakoli H, Mohtasebi SS, Jafari A (2009) Effects of moisture content, internode position and loading rate on the bending characteristics of barley straw. Res Agric Eng 55(2):45–51

    Google Scholar 

  • Vales MI, Schön CC, Capettini F, Chen XM, Corey AE, Mather DE, Mundt CC, Richardson KL, Sandoval-Islas JS, Utz HF, Hayes PM (2005) Effect of population size on the estimation of QTL: a test using resistance to barley stripe rust. Theor Appl Genet 111:1260–1270

    Article  PubMed  CAS  Google Scholar 

  • Wang RX, Hai L, Zhang XY, You GX, Yan CS, Xiao SH (2009) QTL mapping for grain filling rate and yield-related traits in RILs of the Chinese winter wheat population Heshangmai × Yu8679. Theor Appl Genet 118:313–325

    Article  PubMed  CAS  Google Scholar 

  • Wang ZH, Wu XS, Ren Q, Chang XP, Li RZ, Jing RL (2010) QTL mapping for developmental behavior of plant height in wheat (Triticum aestivum L.). Euphytica 174:447–458

    Article  Google Scholar 

  • Wen YX, Zhu J (2005) Multivariable conditional analysis for complex trait and its components. Acta Genet Sin 32:289–296

    PubMed  Google Scholar 

  • Worland AJ, Korzun V, Röder MS, Ganal MW, Law CN (1998) Genetic analysis of the dwarfing gene Rht8 in wheat. Part II. The distribution and adaptive significance of allelic variants at the Rht8 locus of wheat as revealed by microsatellite screening. Theor Appl Genet 96:1110–1120

    Article  CAS  Google Scholar 

  • Wu XS, Wang ZH, Chang XP, Jing RL (2010) Genetic dissection of the developmental behaviours of plant height in wheat under diverse water regimes. J Exp Bot 61:2923–2937

    Article  PubMed  CAS  Google Scholar 

  • Zhang KP, Tian JC, Zhao L, Wang SS (2008) Mapping QTLs with epistatic effects and QTL × environment interactions for plant height using a doubled haploid population in cultivated wheat. J Genet Genomics 35:119–127

    Article  PubMed  CAS  Google Scholar 

  • Zhao JY, Becker HC, Zhang DQ, Zhang YF, Ecke WG (2006) Conditional QTL mapping of oil content in rapeseed with respect to protein content and traits related to plant development and grain yield. Theor Appl Genet 113:33–38

    Article  PubMed  CAS  Google Scholar 

  • Zhao CH, Cui F, Zong H, Wang YH, Bao YG, Hao YF, Du B, Wang HG (2009) Transmission of the chromosome 1R in winter wheat germplasm Aimengniu and its derivatives revealed by molecular markers. Agric Sci China 8(6):652–657

    CAS  Google Scholar 

  • Zhu J (1992) Mixed model approaches for estimating genetic variance and covariance. J Biomath 7:1–11

    Google Scholar 

  • Zhu J (1995) Analysis of conditional genetic effects and variance components in developmental genetics. Genetics 141:1633–1639

    PubMed  CAS  Google Scholar 

  • Zou F, Gelfond JAL, Airey DC, Lu L, Manly KF, Williams RW, Hreadgill DW (2005) Quantitative trait locus analysis using recombinant inbred intercross (RIX): theoretical and empirical onsiderations. Genetics 170:1299–1311

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Basic Research Program of China (973 Program, 2006CB101700). The author thanks Dr. Jun Zhu, Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310029, People’s Republic of China, for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honggang Wang.

Additional information

Communicated by M. Sorrells.

F. Cui, J. Li, A. Ding, and C. Zhao contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, F., Li, J., Ding, A. et al. Conditional QTL mapping for plant height with respect to the length of the spike and internode in two mapping populations of wheat. Theor Appl Genet 122, 1517–1536 (2011). https://doi.org/10.1007/s00122-011-1551-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-011-1551-6

Keywords

Navigation