Skip to main content
Log in

A wheat intervarietal genetic linkage map based on microsatellite and target region amplified polymorphism markers and its utility for detecting quantitative trait loci

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Efficient user-friendly methods for mapping plant genomes are highly desirable for the identification of quantitative trait loci (QTLs), genotypic profiling, genomic studies, and marker-assisted selection. SSR (microsatellite) markers are user-friendly and efficient in detecting polymorphism, but they detect few loci. Target region amplification polymorphism (TRAP) is a relatively new PCR-based technique that detects a large number of loci from a single reaction without extensive pre-PCR processing of samples. In the investigation reported here, we used both SSRs and TRAPs to generate over 700 markers for the construction of a genetic linkage map in a hard red spring wheat intervarietal recombinant inbred population. A framework map consisting of 352 markers accounted for 3,045 cM with an average density of one marker per 8.7 cM. On average, SSRs detected 1.9 polymorphic loci per reaction, while TRAPs detected 24. Both marker systems were suitable for assigning linkage groups to chromosomes using wheat aneuploid stocks. We demonstrated the utility of the maps by identifying major QTLs for days to heading and reduced plant height on chromosomes 5A and 4B, respectively. Our results indicate that TRAPs are highly efficient for genetic mapping in wheat. The maps developed will be useful for the identification of quality and disease resistance QTLs that segregate in this population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson JA, Churchill GA, Autrique JE, Tanksley SD, Sorrells ME (1993) Optimizing parental selection for genetic linkage maps. Genome 36:181–186

    Google Scholar 

  • Beckman JS, Weber JL (1992) Survey of human and rat microsatellites. Genomics 12:627–631

    Google Scholar 

  • Bered F, Barbosa-Neto JF, de Carvalho FIF (2002) Genetic variability in common wheat germplasm based on coefficient of parentage. Genet Mol Biol 25:211–215

    Google Scholar 

  • Börner A, Plaschke J, Korzun V, Worland AJ (1996) The relationship between the dwarfing genes of wheat and rye. Euphytica 89:69–75

    Google Scholar 

  • Börner A, Schumann E, Fürste A, Cöster H, Leithold B, Röder MS, Weber E (2002) Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L). Theor Appl Genet 105:921–936

    Google Scholar 

  • Bryan GJ, Collins AJ, Stephenson P, Orry A, Smith JB, Gale MD (1997) Isolation and characterisation of microsatellites from hexaploid bread wheat. Theor Appl Genet 94:557–563

    Google Scholar 

  • Cadalen T, Boeuf C, Bernard S, Bernard M (1997) An intervarietal molecular marker map in Triticum aestivum L em Thell and comparison with a map from a wide cross. Theor Appl Genet 94:367–377

    Google Scholar 

  • Cadalen T, Sourdille P, Charmet G, Tixier MH, Gay G, Boeuf C, Bernard S, Leroy P, Bernard M (1998) Molecular markers linked to genes affecting plant height in wheat using a doubled-haploid population. Theor Appl Genet 96:933–940

    Google Scholar 

  • Chao S, Sharp P, Worland AJ, Warham EJ, Koebner RMD, Gale MD (1989) RFLP-based genetic maps of wheat homoeologous group-7 chromosomes. Theor Appl Genet 78:495–504

    Google Scholar 

  • Devos KM, Atkinson MD, Chinoy CN, Liu CJ, Gale MD (1992) RFLP-based genetic map of the homoeologous group-3 chromosomes of wheat and rye. Theor Appl Genet 83:931–939

    Google Scholar 

  • Devos KM, Millan T, Gale MD (1993) Comparative RFLP maps of the homoeologous group-2 chromosomes of wheat, rye and barley. Theor Appl Genet 85:784–792

    Google Scholar 

  • Elouafi I, Nachit MM (2004) A genetic linkage map of the Durum× Triticum dicoccoides backcross population based on SSRs and AFLP markers, and QTL analysis for milling traits. Theor Appl Genet 108:401–413

    Google Scholar 

  • Faris JD, Gill BS (2002) Genomic targeting and high-resolution mapping of the domestication gene Q in wheat. Genome 45:706–718

    Google Scholar 

  • Faris JD, Anderson JA, Francl LJ, Jordahl JG (1996) Chromosomal location of a gene conditioning insensitivity in wheat to a necrosis-inducing culture filtrate from Pyrenophora tritici-repentis. Phytopathology 86:459–463

    Google Scholar 

  • Faris JD, Haen KM, Gill BS (2000) Saturation mapping of a gene-rich recombination hot spot region in wheat. Genetics 154:823–835

    Google Scholar 

  • Gill KS, Lubbers EL, Gill BS, Raupp WJ, Cox TS (1991) A genetic linkage map of Triticum tauschii (DD) and its relationship to the D genome of bread wheat (AABBDD). Genome 34:362–374

    Google Scholar 

  • Groos C, Gay G, Perretant MR, Gervais L, Bernard M, Dedryver F, Charmet G (2002) Study of the relationship between pre-harvest sprouting and grain color by quantitative trait loci analysis in a white-red grain bread-wheat cross. Theor Appl Genet 104:39–47

    Google Scholar 

  • Gupta PK, Varshney RK, Sharma PC, Pamesh B (1999) Molecular markers and their applications in wheat breeding. Plant Breed 118:369–390

    Google Scholar 

  • Gupta PK, Balyan HS, Edwards KJ, Isaac P, Korzun V, Roder M, Gautier MF, Joudrier P, Schlatter R, Dubcovsky J, De La Pena C, Khairallah M, Penner G, Hayden J, Sharp P, Keller B, Wang C, Hardouin P, Jack P, Leroy P (2002) Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat. Theor Appl Genet 105:413–422

    Google Scholar 

  • Haen KM, Lu H, Friesen TL, Faris JD (2004) Genomic targeting and high-resolution mapping of the Tsn1 gene in wheat. Crop Sci 44:951–962

    Google Scholar 

  • Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69:315–324

    Google Scholar 

  • Hu J, Vick BA (2003) TRAP (target region amplification polymorphism), a novel marker technique for plant genotyping. Plant Mol Biol Rep 21:289–294

    Google Scholar 

  • Kato K, Miura H, Sawada S (1999) QTL mapping of genes controlling ear emergence time and plant height on chromosome 5A of wheat. Theor Appl Genet 98:472–477

    Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newberg L (1987) mapmaker: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Google Scholar 

  • Law CN (1966) The location of genetic factors affecting a quantitative character in wheat. Genetics 53:487–498

    Google Scholar 

  • Law CN, Snape JW, Worland AJ (1973) The genetical relationship between height and yield in wheat. Heredity 40:133–151

    Google Scholar 

  • Liu Y, Tsunewaki K (1991) Restriction fragment length polymorphism (RFLP) in wheat. II. Linkage maps of the RFLP sites in common wheat. Jpn J Genet 66:617–633

    Google Scholar 

  • Ma ZQ, Röder MS, Sorrells ME (1996) Frequencies and sequence characteristics of di-, tri-, and tetra-nucleotide microsatellites in wheat. Genome 39:123–130

    Google Scholar 

  • Manly KK Jr, Cudmore HH, Meer JM (2001) map manager qtx, cross platform software for genetic mapping. Mamm Genome 12:930–932

    Google Scholar 

  • Marino CL, Nelson JC, Lu YH, Sorrells ME, Lopes CR, Hart GE (1996) Molecular genetic linkage maps of the group 6 chromosomes of hexaploid wheat (Triticum aestivum L. em. Thell). Genome 39:359–366

    Google Scholar 

  • McVittie JA, Gale MD, Marshall GA, Westcott B (1978) The intrachromosomal mapping of the Norin 10 and Tom Thumb dwarfing gene. Heredity 40:67–70

    Google Scholar 

  • Messmer MM, Keller M, Zanetti S, Keller B (1999) Genetic linkage map of a wheat-spelt cross. Theor Appl Genet 98:1163–1170

    Google Scholar 

  • Miller TE, Reader SM (1982) A major deletion of part of chromosome 5A of Triticum aestivum. Wheat Inf Serv 88:10–12

    Google Scholar 

  • Nelson JC (1997) qgene: software for marker-based genomic analysis and breeding. Mol Breed 3:239–245

    Google Scholar 

  • Nelson JC, Sorrells ME, Van Deynze AE, Lu YH, Atkinson M, Bernard M, Leroy P, Faris JD, Anderson JA (1995a) Molecular mapping of wheat. Major genes and rearrangements in homoeologous groups 4, 5, and 7. Genetics 141:721–731

    Google Scholar 

  • Nelson JC, Van Deynze AE, Autrique E, Sorrells ME, Lu YH, Merlino M, Atkinson M, Leroy P (1995b) Molecular mapping of wheat. Homoeologous group 2. Genome 38:516–524

    Google Scholar 

  • Nelson JC, Van Deynze AE, Autrique E, Sorrells ME, Lu YH, Negre S, Bernard M, Leroy P (1995c) Molecular mapping in wheat. Homoeologous group 3. Genome 38:525–533

    Google Scholar 

  • Paillard S, Schnurbusch T, Winzeler M, Messmer M, Sourdille P, Abderhalden O, Keller B, Schachermayr G (2003) An integrative genetic linkage map of winter wheat (Triticum aestivum L.). Theor Appl Genet 107:1235–1242

    Google Scholar 

  • Pestsova E, Ganal MW, Röder MS (2000) Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome 43:689–697

    Google Scholar 

  • Plaschke J, Ganal M, Röder MS (1995) Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor Appl Genet 91:1001–1007

    Google Scholar 

  • Quarrie SA, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, Steele N, Pljevljakusiæ D, Waterman E, Weyen J, Schondelmaier J, Habash DZ, Farmer P, Saker L, Clarkson DT, Abugalieva A, Yessimbekova M, Turuspekov Y, Abugalieva S, Tuberosa R, Sanguineti M-C, Hollington PA, Aragués R, Royo A, Dodig D (2005) A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet 110:865–880

    Google Scholar 

  • Röder MS, Plaschke J, König SU, Börner A, Sorrells ME, Ganal MW (1995) Abundance, variability and chromosomal location of microsatellites in wheat. Mol Gen Genet 246:327–333

    Google Scholar 

  • Röder MS, Korzun V, Gill BS, Ganal MW (1998a) The physical mapping of microsatellite markers in wheat. Genome 41:278–283

    Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier M-H, Leroy P, Ganal MW (1998b) A microsatellite map of wheat. Genetics 149:2007–2023

    Google Scholar 

  • Rozen S, Skaletsky HJ (2000) primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386

    Google Scholar 

  • Sears ER (1954) The aneuploids of common wheat. Mo Agric Exp Sta Res Bull 572:1–59

    Google Scholar 

  • Sears ER (1966) Nullisomic–tetrasomic combinations in hexaploid wheat. In: Riley R, Lewis KR (eds) Chromosome manipulation and plant genetics. Oliver and Boyd, Edinburgh, pp 29–45

    Google Scholar 

  • Sears ER, Sears LMS (1978) The telocentric chromosomes of common wheat. In: Ramanujam S (ed) Proc 5th Int Wheat Genet Symp. Indian Society of Genetics and Plant Breeding, Indian Agricultural Research Institute, New Delhi, India, pp389–401

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Google Scholar 

  • Song QJ, Fickus EW, Cregan PB (2002) Characterization of trinucleotide SSR motifs in wheat. Theor Appl Genet 104:286–293

    Google Scholar 

  • Song QJ, Shi JR, Singh S, Fickus EW, Costa JM, Lewis J, Gill BS, Ward R, Cregan PB (2005) Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet 110:550–560

    Google Scholar 

  • Sourdille P, Cadalen T, Guyomarc’h H, Snape JW, Perretant MR, Charmet G, Boeuf C, Bernard S, Bernard M (2003) An update of the Courtot-Chinese Spring intervarietal molecular marker linkage map for the QTL detection of agronomic traits in wheat. Theor Appl Genet 106:530–538

    Google Scholar 

  • Sourdille P, Singh S, Cadalen T, Brown-Guedira GL, Gay G, Qi L, Gill BS, Dufour P, Murigneux A, Bernard M (2004) Microsatellite-based deletion bin system for the establishment of genetic–physical map relationships in wheat (Triticum aestivum L.). Funct Int Genomics 4:12–25

    Google Scholar 

  • Sutka J, Kovacs G (1987) Chromosomal location of dwarfing gene Rht12 in wheat. Euphytica 36:521–523

    Google Scholar 

  • Van Deynze AE, Dubcovsky J, Gill KS, Nelson JC, Sorrells ME, Dvorak J, Gill BS, Lagudah ES, McCouch SR, Appels R (1995) Molecular-genetic maps for group 1 chromosomes of Triticeae species and their relation to chromosomes in rice and oat. Genome 38:45–59

    Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Google Scholar 

  • Wang Z, Weber JL, Zhong G, Tanksley SD (1994) Survey of plant short tandem repeats. Theor Appl Genet 88:1–6

    Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535

    Google Scholar 

  • Worland AJ, Korzun V, Röder MS, Ganal MW, Law CN (1998) Genetic analysis of the dwarfing gene Rht8 in wheat. Part II. The distribution and adaptive significance of allelic variants at the Rht8 locus of wheat as revealed by microsatellite screening. Theor Appl Genet 96:1110–1120

    Google Scholar 

  • Xie DX, Devos KM, Moore G, Gale MD (1993) RFLP-based genetic maps of the homoeologous group-5 chromosomes of bread wheat (Triticum aestivum L.). Theor Appl Genet 87:70–74

    Google Scholar 

  • Xu SS, Hu J, Faris JD (2003) Molecular characterization of Langdon durum-Triticum dicoccoides chromosome substitution lines using TRAP (target region amplification polymorphism) markers. In: Proc 10th Int Wheat Genet Symp, vol 1. Istituto Sperimentale per la Cerealicoltura, Rome, Italy, pp 91–94

Download references

Acknowledgements

We thank Erik Doehler and Zengcui Zhang for technical assistance. With the exception of W01 and W05, Dr. Steven S. Xu designed and provided all of the fixed primers. The original Grandin/BR34 cross was made by Dr. Carlos Riede. We thank Drs. Steven Xu and Lili Qi for helpful comments on this manuscript. This research was supported by USDA-ARS CRIS 5442-22000-030-00D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. Faris.

Additional information

Communicated by P. Langridge

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z.H., Anderson, J.A., Hu, J. et al. A wheat intervarietal genetic linkage map based on microsatellite and target region amplified polymorphism markers and its utility for detecting quantitative trait loci. Theor Appl Genet 111, 782–794 (2005). https://doi.org/10.1007/s00122-005-2064-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-005-2064-y

Keywords

Navigation