Skip to main content
Log in

Identification of QTLs for morphological traits influencing waterlogging tolerance in perennial ryegrass (Lolium perenne L.)

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Perennial ryegrass is a globally cultivated obligate outbreeding diploid species (2n = 2x = 14) which is subjected to periods of waterlogging stress due to flood irrigation during winter and the lead-up to summer. Reduction of oxygen supply to root systems due to waterlogging produces consequent deleterious effects on plant performance. Framework genetic maps for a large-scale genetic mapping family [F 1(NA x  × AU6)] were constructed containing 91 simple sequence repeat and 24 single nucleotide polymorphism genetic markers. Genetic trait dissection using both control and waterlogging treatments was performed in the glasshouse, a total of 143 maximally recombinant genotypes being selected from the overall sib-ship and replicated threefold in the trial. Analysis was performed for nine quantitative morphological traits measured 8 weeks after stress treatments were applied. A total of 37 quantitative trait loci (QTLs) were identified; 19 on the NA x parental genetic map, and 18 on the AU6 parental genetic map. Regions of particular interest were identified on linkage groups (LGs) 4 and 3 of the respective maps, which have been targeted for further analysis by selection of critical recombinants. This first study of genetic control of waterlogging tolerance in ryegrasses has important implications for breeding improvement of abiotic stress adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abberton MT, MacDuff JH, Marshall AH, Humphreys MW (2008) The genetic improvement of forage grasses and legumes to enhance adaptation of grasslands to climate change. Food and Agriculture Organization of the United Nations

  • Adams WA, Akhtar N (1994) The possible consequences for herbage growth of waterlogging compacted pasture soils. Plant Soil 162:1–17

    Article  CAS  Google Scholar 

  • Anderson MW, Cunningham PJ, Reed KFM (1999) Perennial grasses of Mediterranean origin offer advantages for central western Victorian sheep pasture. J Experiment Agric 39:275–284

    Article  Google Scholar 

  • Arntz AM, Delph LF (2001) Pattern and process: evidence for the evolution of photosynthetic traits in natural populations. Oecologia 127:455–467

    Article  Google Scholar 

  • Asíns MJ (2002) Present and future of quantitative trait locus analysis in plant breeding. Plant Breed 121:281–291

    Article  Google Scholar 

  • Barchi L, Bonnet J, Boudet C, Signoret P, Nagy I, Lanteri S, Palloix A, Lefebvre V (2007) A high-resolution, intraspecfic linkage map of pepper (Capsicum annuum L.) and selection of reduced recombinant inbred line subsets for fast mapping. Genome 50:51–60

    Article  CAS  PubMed  Google Scholar 

  • Barchi L, Lefebvre V, Sage-Palloix A-M, Lanteri S, Palloix A (2009) QTL analysis of plant development and fruit traits in pepper and performance of selective phenotyping. Theor Appl Genet 118:1157–1171

    Article  CAS  PubMed  Google Scholar 

  • Barnes RF, Nelson CJ, Moore KJ, Collins M (2007) Forages: the science for grassland agriculture, 6th edn. Blackwell Publishing, Oxford

    Google Scholar 

  • Bert PF, Charmet G, Sourdille P, Hayward MD, Balfourier F (1999) A high-density molecular map for ryegrass (Lolium perenne) using AFLP markers. Theor Appl Genet 99:445–452

    Article  CAS  Google Scholar 

  • Birolleau-Touchard C, Hanocq E, Bouchez A, Bauland C, Dourlen I, Seret J-P, Rabier D, Hervet S, Allienne J-F, Lucas P, Jaminon O, Etienne R, Baudhuin G, Giauffret B (2007) The use of MapPop1.0 for choosing a QTL mapping sample from an advanced backcross population. Theor Appl Genet 114:1019–1028

    Article  CAS  PubMed  Google Scholar 

  • Bonos SA, Rush D, Hignight K, Meyer WA (2004) Selection for deep root production in tall fescue and perennial ryegrass. Crop Sci 44:1770–1775

    Article  Google Scholar 

  • Börner A, Schumann E, Fürste A, Cöster H, Leithold B, Röder M, Weber W (2002) Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 105:921–936

    Article  PubMed  Google Scholar 

  • Breese EL (1983) Exploitation of the genetic resources through breeding: Lolium species. In: McIvor JG, Bray RA (eds) Genetic resources of forage plants, pp 275–288

  • Brown DG, Vision TJ (1999) MapPop version 0.9alpha 0.9alpha edn. Mathworks, Inc., Natick, MA, United States

  • Buck-Sorlin GH (2002) The search for QTL in barley (Hordeum vulgare L.) using a new mapping population. Cell Mol Biol Lett 7:523–535

    CAS  PubMed  Google Scholar 

  • Cannell RQ, Belford RK, Gales K, Thomson RJ, Webster CP (1984) Effects of waterlogging and drought on winter wheat and winter barley grown on a clay and a sandy loam soil. Plant Soil 80:53–66

    Article  Google Scholar 

  • Charmet G (2000) Power and accuracy of QTL detection: simulation studies on one-QTL models. Agronomie 20:309–323

    Google Scholar 

  • Cogan NOI, Vecchies AC, Yamada T, Dobrowolski MP, Smith KF, Forster JW (2005) QTL analysis of mineral content in perennial ryegrass (Lolium perenne L.). In: Humphreys MO (ed) Molecular breeding for the genetic improvement of forage crops and turf. Wageningen Academic Publishers, Wageningen, p 153

    Google Scholar 

  • Cogan NOI, Ponting RC, Vecchies AC, Drayton MC, George J, Dracatos PM, Dobrowolski MP, Sawbridge TI, Smith KF, Spangenberg GC, Forster JW (2006) Gene-associated single nucleotide polymorphism discovery in perennial ryegrass (Lolium perenne L.). Mol Genet Genome 276:101–112

    Article  CAS  Google Scholar 

  • Cogan N, Dobrowolski M, Smith K, Forster J (2007) Selective phenotyping in perennial ryegrass (Lolium perenne L.) for increased power in complex trait-dissection. Mol Breed Forage Turf, Japan, p 41

  • Crush J, Ouyand L, Nichols S (2010) Loss of weight in ryegrass and clover roots preserved in ethanol prior to image analysis for root traits. Acta Physiol Plant 32:605–606

    Article  Google Scholar 

  • Cunningham PJ, Blumenthal MJ, Anderson MW, Prakash KS, Leonforte A (1994) Perennial ryegrass improvement in Australia. N Z J Agric Res 37:295–310

    Article  Google Scholar 

  • Doganlar S, Frary A, Ku H-M, Tanksley SD (2002) Mapping quantitative trait loci in inbred backcross lines of Lycopersicon pimpinellifolium (LA1589). Genome 45:1189–1202

    Article  CAS  PubMed  Google Scholar 

  • Donohue GI, Greene RSB, Willoughby P, Wilson IB (1985) The effect of waterlogging on flood irrigated perennial ryegrass. In: Muirhead WA, Humphreys E (eds) Root zone limitations to crop production on clay soils. CSIRO, Griffith, pp 85–92

    Google Scholar 

  • Dracatos PM, Cogan NOI, Dobrowolski MP, Sawbridge TI, Spangenberg GC, Smith KF, Forster JW (2008) Discovery and genetic mapping of single nucleotide polymorphisms in candidate genes for pathogen defence response in perennial ryegrass (Lolium perenne L.). Theor Appl Genet 117:203–219

    Article  CAS  PubMed  Google Scholar 

  • Dracatos PM, Cogan NOI, Sawbridge TI, Gendall AR, Smith KF, Spangenberg GC, Forster JW (2009) Molecular characterisation and genetic mapping of candidate genes for qualitative disease resistance in perennial ryegrass (Lolium perenne L.). BMC Plant Biol 9:62

    Article  PubMed  Google Scholar 

  • Dunbabin JS, Hume IH, Ireson ME (1997) Effects of irrigation frequency and transient waterlogging on the production of a perennial ryegrass and white clover pasture. Aust J Experiment Agric 37:165–171

    Article  Google Scholar 

  • Faville M, Vecchies AC, Schreiber M, Drayton MC, Hughes LJ, Jones ES, Guthridge KM, Smith KF, Sawbridge T, Spangenberg GC, Bryan GT, Forster JW (2004) Functionally-associated molecular genetic marker map construction in perennial ryegrass (Lolium perenne L.). Theor Appl Genet 110:12–32

    Article  CAS  PubMed  Google Scholar 

  • Faville MJ, Crush JR, Easton HS (2006) At the root of it all: a QTL analysis of root distribution in perennial ryegrass. In: Mercer CF (ed) New Zealand grassland association. Research and practice series no. 12, pp 67–70

  • Forster JW, Cogan NOI, Dobrowolski MP, Francki MG, Spangenberg GC, Smith KF (2008) Functionally associated molecular genetic markers for temperate pasture plant improvement. In: Henry RJ (ed) Plant genotyping II—SNP technology. CAB International, Oxfordshire, pp 154–186

    Chapter  Google Scholar 

  • Gambrell RP, Delaune RD, Patrick J, William H (1991) Redox processes in soil following oxygen depletion. In: Jackson MB, Davies DD, Lambers H (eds) Plant life under oxygen deprivation. SPB Academic Publishing, The Netherlands, pp 101–117

    Google Scholar 

  • Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics 137:1121–1137

    CAS  PubMed  Google Scholar 

  • Grieve AM, Dunford E, Marston D, Martin RE, Slavich P (1986) Effects of waterlogging and soil salinity on irrigated agriculture in the Murray valley: a review. Aust J Exp Agric 26:761–777

    Article  Google Scholar 

  • Guthridge KM (2004) Molecular marker analysis of perennial ryegrass (Lolium perenne L.): genetic diversity analysis, linkage map construction, and quantitative trait loci mapping. Ph.D. Thesis, Department of Botany, La Trobe University, Bundoora, Australia, pp 260

  • Guthridge KM, McFarlane NM, Ciavarella TA, Batley J, Jones ES, Smith KF, Forster JW (2003) Molecular marker-based analysis of morphological traits in perennial ryegrass (Lolium perenne L.). Development and application of molecular technologies in forage and turf improvement. In: Abstracts of Molecular breeding of forage and turf: 3rd international symposium 2003, Dallas, Texas, p 58

  • Hai L, Guo H, Xiao S, Jiang G, Zhang X, Yan C, Xin Z, Jia J (2005) Quantitative trait loci (QTL) of stem strength and related traits in a doubled-haploid population of wheat (Triticum aestivum L.). Euphytica 141:1–9

    Article  CAS  Google Scholar 

  • Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69:315–324

    CAS  PubMed  Google Scholar 

  • Hand ML, Ponting RC, Drayton MC, Lawless KA, Cogan NOI, Brummer EC, Swabridge TI, Spangenberg GC, Smith KF, Forster JW (2008) Identification of homologous, homoeologous and paralogous sequence variants in an outbreeding allopolyploid species based on comparison with progenitor taxa. Mol Genet Genomics 280:293–304

    Google Scholar 

  • Humphreys MW (1989) The controlled introgression of Festuca arundinacea genes into Lolium multiflorum. Euphytica 42:105–116

    Article  Google Scholar 

  • Jin C, Lan H, Attie AD, Churchill GA, Bulutuglo D, Yandell BS (2004) Selective phenotyping for increased efficiency in genetic mapping studies. Genetics 168:2285–2293

    Article  CAS  PubMed  Google Scholar 

  • Jones ES, Dupal MP, Dumsday JL, Hughes LJ, Forster JW (2002a) An SSR-based genetic linkage map for perennial ryegrass (Lolium perenne L.). Theor Appl Genet 105:577–584

    Article  CAS  PubMed  Google Scholar 

  • Jones ES, Mahoney NL, Hayward MD, Armstead IP, Gilbert Jones J, Humphreys MO, King IP, Kishida T, Yamada T, Balfourier F, Charmet G, Forster JW (2002b) An enhanced molecular marker based genetic map of perennial ryegrass (Lolium perenne) reveals comparative relationships with other Poaceae genomes. Genome 45:282–295

    Article  CAS  PubMed  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    CAS  PubMed  Google Scholar 

  • Lander ES, Green P, Abramanson J, Barlow A, Daly MJ, Lincoln SE, Newberg L (1987) Mapmaker: an interactive computer package for constructing primary linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  CAS  PubMed  Google Scholar 

  • Li H, Vaillancourt R, Mendham N, Zhou M (2008) Comparative mapping of quantitative trait loci associated with waterlogging tolerance in barley (Hordium vulgare L.). BMC Genomics 9:401–412

    Article  PubMed  Google Scholar 

  • Macleod CJA, Binley A, Clark LJ, Hawkins SL, Humphreys MW, Turner LB, Whalley WR, Haygarth PM (2007) Genetically modified hydrographs: what can grass genetics do for temperate catchment hydrology? Hydrol Process 21:2217–2221

    Article  Google Scholar 

  • Malik I, Colmer TD, Lambers H, Schortemeyer M (2001) Changes in physiological and morphological traits of roots and shoots of wheat in response to different depths of waterlogging. Aust J Plant Physiol 28:1121–1131

    Google Scholar 

  • Mano Y, Masanori M, Fujimori M, Takamizo T, Kindiger B (2005) Indentification of QTL controlling adventitious root formation during flooding conditions in teosinte (Zea mays spp. huehuetenangensis) seedlings. Euphytica 142:33–42

    Article  Google Scholar 

  • McCouch SR, Cho YG, Yano M, Paul E, Blinstrub M (1997) Report on QTL nomenclature. Rice Genet Newsl 14:11–13

  • McFarlane NM, Ciavarella TA, Smith KF (2003) The effects if waterlogging on growth, photosynthesis and biomass allocation in perennial ryegrass (Lolium perenne L.) genotypes with contrasting root development. J Agric Sci 141:241–248

    Article  Google Scholar 

  • Michael A, Ward M, Ward G (2006) Managing wet soils: renovation of damaged pastures and soils. Agriculture notes, Department of Primary Industries

  • Nguyen T, Klueva N, Chamareck V, Aarti A, Magpantay G, Millena ACM, Pathan MS, Nguyen HT (2004) Saturation mapping of QTL regions and identification of putative candidate genes for drought tolerance in rice. Mol Genet Genome 272:35–46

    CAS  Google Scholar 

  • Nie ZN, Ward GN, Michael AT (2001) Impact of pugging by dairy cows on pastures and indicators of pugging damage to pasture soil in south-western Victoria. Aust J Agric Res 52:37–43

    Article  Google Scholar 

  • Nyquist WE (1991) Estimation of heritability and prediction of selection respose in plant populations. Crit Rev Plant Sci 10:235–322

    Article  Google Scholar 

  • Payne RW, Murray DA, Harding SA, Baird DB, Souter DM (2007) Genstat for windows (10th edition) introduction. VSN International, Hemel Hempstead

    Google Scholar 

  • Pearson J, Havill DC (1988) The effect of hypoxia and sulphide on culture-grown wetland and non-wetland plants. J Exp Bot 39:363–374

    Article  CAS  Google Scholar 

  • Price AH, Tomos AD (1997) Genetic dissection of root growth in rice (Oryza sativa L.). II: mapping quantitative trait loci using molecular markers. Theor Appl Genet 95:143–152

    Article  CAS  Google Scholar 

  • Qiu F, Zheng Y, Zhang Z, Xu S (2007) Mapping of QTL associated with waterlogging tolerance during the seedling stage in maize. Ann Bot 99:1067–1081

    Article  PubMed  Google Scholar 

  • Russell EW (1973) The chemistry of waterlogged soils. In: Soil conditions and plant growth, 10th edn. William Clowes and Sons, London, pp 670–695

  • Schön CC, Utz HF, Groh S, Truberg B, Openshaw S, Melchinger AE (2004) Quantitative trait locus mapping based on resampling in a vast maize testcross expreiment and its relevance to quantitative genetics for complex traits. Genetics 167:485–498

    Article  PubMed  Google Scholar 

  • Sewell MM, Bassoni DL, Megraw RA, Wheeler NC, Neale DB (2000) Identification of QTLs influencing wood property traits in loblolly pine (Pinus taeda L.). I. Physical wood properties. Theor Appl Genet 101:1273–1281

    Article  CAS  Google Scholar 

  • Sewell MM, Davis MF, Tuskan GA, Wheeler NC, Elam CC, Bassoni DL, Neale DB (2002) Identification of QTLs influencing wood property traits in loblolly pine (Pinus taeda L.). II. Chemical wood properties. Theor Appl Genet 104:214–222

    Article  CAS  PubMed  Google Scholar 

  • Smith KF, Simpson RJ, Oram RN, Lowe KF, Kelly KB, Evans PM, Humphreys MO (1998) Seasonal variationin the yield and nutritive value of perennial ryegrass (Lolium perenne L.) cultivars with high or normal herbage water-soluble carbohydrate concentrations grown in three contrasting Australian dairy environments. Aust J Exp Agric 38:821–830

    Article  Google Scholar 

  • Smith KF, Simpson RJ, Culvenor RA, Humphreys MO, Prud’homme MP, Oram RN (2001) The effects of ploidy and a phenotype conferring a high water-soluble carbohydrate concentration on carbohydrate accumulation, nutritive value and morphology of perennial ryegrass (Lolium perenne L.). J Agric Sci 136:65–74

    Article  CAS  Google Scholar 

  • Smith KF, Culvenor RA, Humphreys MO, Simpson RJ (2002) Growth and carbon partitioning in perennial rygrass (Lolium perenne L.) cultivars selected for high water-soluble carbohydrate concentrations. J Agric Sci 138:375–385

    Google Scholar 

  • Thom ER, Burggraaf VT, Watts RJ, Hooper RJ (2003) Relationship of tillering and morphological characteristics of two perennial ryegrass lines to “pulling” when grazed by dairy cows. N Z J Agric Res 46:15–25

    Article  Google Scholar 

  • Thomas WTB, Powell W, Waugh R, Chalmers KJ, Barua UM, Jack P, Lea V, Forster BP, Swanston JS, Ellis RP, Hanson PR, Lance RCM (1995) Detection of quantitative trait loci for agronomic, yield, grain and disease characters in spring barley (Hordeum vulgare L.). Theor Appl Genet 91:1037–1047

    Article  CAS  Google Scholar 

  • Tiedje JM, Sexstone AJ, Parkin AJ, Revsbech NP, Shelton DR (1984) Anaerobic process in soil. Plant Soil 76:197–212

    Article  CAS  Google Scholar 

  • Tisdale SL, Nelson WL (1975) Soil fertility and fertilizers, 3rd edn. Collier MacMillan, New York

    Google Scholar 

  • Vision TJ, Brown DG, Shmoys DB, Durrett RT, Tanksley SD (2000) Selective mapping: a strategy for optimizing the construction of high-density linkage maps. Genetics 155:407–420

    CAS  PubMed  Google Scholar 

  • Wang S, Basten CJ, Zeng Z-B (2007) Statistical genetics and bioinformatics

  • Wang J, Drayton MC, George J, Cogan NOI, Baillie RC, Hand ML, Kearney GA, Erb S, Wilkinson T, Bannan NR, Forster JW, Smith KF (2010) Identification of genetic factors influencing salt stress tolerance in white clover (Trifolium repens L.) by QTL analysis. Theor Appl Genet 120:607–617

    Article  CAS  PubMed  Google Scholar 

  • Wilkins PW, Humphreys MO (2003) Progress in breeding perennial forage grasses for temperate agriculture. J Agric Sci 140:129–150

    Article  CAS  Google Scholar 

  • Xue D-W, Zhou M-X, Zhang X-Q, Chen S, Wei K, Zeng F-R, Mao Y, Wu F-B, Zhang G-P (2010) Identification of QTLs for yield and yield components of barley under different growth conditions. J Zhejiang Univ Sci B 11:169–176

    Article  CAS  PubMed  Google Scholar 

  • Yamada T, Jones ES, Cogan NOI, Vecchies AC, Nomura T, Hisano H, Shimamoto Y, Smith KF, Hayward MD, Forster JW (2004) QTL analysis of morphological, developmental, and winter hardiness-associated traits in perennial ryegrass. Crop Sci 44:925–935

    Article  CAS  Google Scholar 

  • Zeng Z-B (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    CAS  PubMed  Google Scholar 

  • Zheng HG, Babu Md RC, Panthan MS, Ali L, Huang N, Courtois B, Nguyen HT (2000) Quantitative trait loci for root-penetration ability and root thickness in rice: comparison of genetic backgrounds. Genome 43:53–61

    Article  CAS  PubMed  Google Scholar 

  • Zheng BS, Yang L, Zhang WP, Mao CZ, Wu YR, Yi KK, Liu FY, Wu P (2003) Mapping QTLs and candidate genes for rice root traits under different water-supply conditions and comparative analysis across three populations. Theor Appl Genet 107:1505–1515

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by funding from the Victorian Department of Primary Industries, Dairy Australia Ltd., the Geoffrey Gardiner Dairy Foundation, Meat and Livestock Australia Ltd. and the Molecular Plant Breeding Cooperative Research Centre (MPB CRC). The authors thank Prof. German Spangenberg for careful critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John W. Forster.

Additional information

Communicated by P. Langridge.

Electronic supplementary material

Below is the link to the electronic supplementary material.

122_2010_1473_MOESM1_ESM.ppt

S1 Frequency distributions of the 569 individuals used for the framework genetic map construction (blue), depicting the number of recombination events occurring in the large-scale mapping population. Purple bars represent the 143 individuals that were chosen using MapPop and the number or recombination events that observed (PPT 82 kb)

122_2010_1473_MOESM2_ESM.doc

S2 Correlation coefficients between morphological phenotypic traits measured in this study. Values below the central diagonal axis relate to correlations under control conditions, and values above relate to waterlogging conditions (DOC 34 kb)

122_2010_1473_MOESM3_ESM.ppt

S3 Frequency distributions of all morphological phenotypic traits measured in this experiment. Both control and waterlogging distributions are located on the same graph for that trait. Mean AU6 parental values are indicated by arrows (PPT 287 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pearson, A., Cogan, N.O.I., Baillie, R.C. et al. Identification of QTLs for morphological traits influencing waterlogging tolerance in perennial ryegrass (Lolium perenne L.). Theor Appl Genet 122, 609–622 (2011). https://doi.org/10.1007/s00122-010-1473-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-010-1473-8

Keywords

Navigation