Skip to main content
Log in

Discovery and genetic mapping of single nucleotide polymorphisms in candidate genes for pathogen defence response in perennial ryegrass (Lolium perenne L.)

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Susceptibility to foliar pathogens commonly causes significant reductions in productivity of the important temperate forage perennial ryegrass. Breeding for durable disease resistance involves not only the deployment of major genes but also the additive effects of minor genes. An approach based on in vitro single nucleotide polymorphism (SNP) discovery in candidate defence response (DR) genes has been used to develop potential diagnostic genetic markers. SNPs were predicted, validated and mapped for representatives of the pathogenesis-related (PR) protein-encoding and reactive oxygen species (ROS)-generating gene classes. The F1(NA6 × AU6) two-way pseudo-test cross population was used for SNP genetic mapping and detection of quantitative trait loci (QTLs) in response to a crown rust field infection. Novel resistance QTLs were coincident with mapped DR gene SNPs. QTLs on LG3 and LG7 also coincided with both herbage quality QTLs and candidate genes for lignin biosynthesis. Multiple DR gene SNP loci additionally co-located with QTLs for grey leaf spot, bacterial wilt and crown rust resistance from other published studies. Further functional validation of DR gene SNP loci using methods such as fine-mapping and association genetics will improve the efficiency of parental selection based on superior allele content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altschul SF, Tl Madden, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Andersen JR, Lubberstedt T (2003) Functional markers in plants. Trends Plant Sci 8:554–560

    Article  PubMed  CAS  Google Scholar 

  • Anguelova-Merhar VS, Van Der Westhuizen AJ, Pretorius ZA (2001) β-1, 3-glucanase and chitinase activities and the resistance response of wheat to leaf rust. Phytopathology 149:381–384

    Article  CAS  Google Scholar 

  • Anikster Y, Wahl I (1979) Coevolution of the rust fungi on Gramineae and Liliaceae and their hosts. Ann Rev Phytopathol 17:367–403

    Article  Google Scholar 

  • Basten CJ, Weir BS, Zeng Z-B (1994) Zmap-a QTL cartographer. In: Smith C, Gavora JS, Chesnais BBJ, Fairfull W, Gibson JP, Kennedy BW, Burnside EB (eds) Proceedings of the 5th world congress on genetics applied to livestock production: Computing Strategies and Software, vol 22, Guelph, pp 65–66

  • Bateman A, Birney E, Cerruti L, Durbin R, Etwiller L, Eddy SR, Griffiths-Jones S, Howe KL, Marshall M, Sonnhammer ELL (2002) The Pfam protein families database. Nucleic Acids Res 30:276–280

    Article  PubMed  CAS  Google Scholar 

  • Bloch C Jr, Patel C, Baud SU, Zvelebil F, Carr MD (1998) NMR structure of an anti-fungal g-thionin protein SIa1, similarity to scorpion toxins. Proteins 32:334–349

    Article  PubMed  CAS  Google Scholar 

  • Bohlmann H, Apel K (1987) Isolation and characterization of cDNAs coding for leaf-specific thionins closely related to the endosperm-specific hordothionin of barley (Hordeum vulgare L.). Mol Gen Genet 207:446–454

    Article  CAS  Google Scholar 

  • Burdon JJ (1987) Disease and plant population biology. Cambridge University Press, London

    Google Scholar 

  • Chandrashekar A, Satyanarayana KV (2006) Disease and pest resistance in grains of sorghum and millets. J Cereal Sci 44:287–304

    Article  Google Scholar 

  • Cho YG, Ishii T, Temnykh S, Chen X, Lipovich L, McCouch SR, Park WD, Ayres N, Cartinhour S (2000) Diversity of microsatelites derived from genomic libraries and Genbank sequences in rice (Oryza sativa L.). Theor Appl Genet 100:713–722

    Article  CAS  Google Scholar 

  • Christian RA, Liu Y, Shen QJ (2007) The WRKY gene family in rice (Oryza sativa). J Integr Plant Biol 49:827–842

    Article  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed  CAS  Google Scholar 

  • Cogan NOI, Smith KF, Yamada T, Francki MG, Vecchies AC, Jones ES, Spangenberg G, Forster JW (2005) QTL analysis and comparative genomics of herbage quality traits in perennial ryegrass (Lolium perenne L.). Theor Appl Genet 110:364–380

    Article  PubMed  CAS  Google Scholar 

  • Cogan NOI, Ponting RC, Vecchies AC, Drayton MC, George J, Dracatos PM, Dobrowolski MP, Sawbridge T, Smith KF, Spangenberg G, Forster JW (2006) Gene-associated single nucleotide polymorphism discovery in perennial ryegrass (Lolium perenne L.). Mol Gen Genomics 276:101–112

    Article  CAS  Google Scholar 

  • Collins N, Park R, Spielmeyer W, Ellis J, Pryor AJ (2001) Resistance gene analogs in barley and their relationship to rust resistance genes. Genome 44:375–381

    Article  PubMed  CAS  Google Scholar 

  • Curley J, Sim SC, Warneky S, Leong SB, Jung G. (2005) QTL mapping of resistance to grey leaf spot in ryegrass (Lolium perenne L.). Theor Appl Genet 111:1107–1117

    Article  PubMed  CAS  Google Scholar 

  • De Bolle MF, David KM, Rees SB, Vanderleydon J, Cammue BP, Broekaert WF (1993) Cloning and characterisation of a cDNA encoding an antimicrobial chitin-binding protein from amaranth, Amaranthus caudatus. Plant Mol Biol 22:1187–1190

    Article  PubMed  Google Scholar 

  • Delgado NJ, Casler MD, Grau CR, Jung GH (2002) Reactions of smooth bromegrass clones with divergent lignin or etherified ferulic acid concentration to three fungal pathogens. Crop Sci 42:1824–1831

    Google Scholar 

  • Devos KM (2005) Updating the ‘Crop Circle’. Curr Opin Plant Biol 8:155–162

    Article  PubMed  CAS  Google Scholar 

  • Dobrowoski MP, Forster JW (2006) Linkage disequilibrium-based association mapping in forage species. In: Oraguzie NC, Rikkerink E, Gardiner SE, De Silva NH (eds) Association mapping in plants. Springer, New York, pp 197–209

    Google Scholar 

  • Doerge RW, Churchill GA (1996) Permutation tests for multiple loci affecting a quantitative character. Genetics 142:285–294

    PubMed  CAS  Google Scholar 

  • Dumsday JL, Smith KF, Forster JW, Jones ES (2003) SSR-based genetic linkage analysis of resistance to crown rust (Puccinia coronata f. sp lolii) in perennial ryegrass (Lolium perenne). Plant Pathol 52:628–637

    Article  Google Scholar 

  • Ellis J, Dodds P, Pryor T (2000) Structure, function and evolution of plant disease resistance genes. Curr Opin Plant Biol 3:278–284

    Article  PubMed  CAS  Google Scholar 

  • Erwin TA, Jewell EG, Love CG, Lim GAC, Li X, Chapman R, Batley J, Stajich JE, Mongin E, Stupka ER, Spangenberg G, Edwards D (2007) BASC: an integrated bioinformatics system for Brassica research. Nucleic Acids Res 35:870–873

    Article  Google Scholar 

  • Eulgem T, Rushton PJ, Schmelzer E, Hahlbrock K, Somssich IE (1999) Early nuclear events in plant defence signalling: rapid gene activation by WRKY transcription factors. EMBO J 18:4689–4699

    Article  PubMed  CAS  Google Scholar 

  • Faris JD, Li WL, Liu DJ, Chen PD, Gill BS (1999) Candidate gene analysis of quantitative disease resistance in wheat. Theor Appl Genet 98:219–225

    Article  CAS  Google Scholar 

  • Faville MJ, Vecchies AC, Schreiber M, Drayton MC, Hughes LJ, Jones ES, Guthridge KM, Smith KF, Sawbridge T, Spangenberg GC, Bryan GT, Forster JW (2004) Functionally associated molecular genetic marker map construction in perennial ryegrass (Lolium perenne L.). Theor Appl Genet 110:12–32

    Article  PubMed  CAS  Google Scholar 

  • Ferreira ME, Rimmer SR, Williams PH, Osborn TC (1995) Mapping loci controlling Brassica napus resistance to Leptosphaeria maculans under different screening conditions. Phytopathology 85:213–217

    Article  CAS  Google Scholar 

  • Fulkerson WJ, Slack K, Lowe KF (1994) Variation in the response of Lolium genotypes to defoliation. Aust J Agric Res 45:1309–1317

    Article  Google Scholar 

  • Fulton TM, Chunwongse J, Tanksley SD (1995) Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol Biol Rep 13:207–209

    Article  CAS  Google Scholar 

  • Gale MD, Devos KM (1998) Comparative genetics in the grasses. Proc Natl Acad Sci USA 95:1971–1974

    Article  PubMed  CAS  Google Scholar 

  • Geffroy V, Sévignac M, De Oliveira J, Fouilloux G, Skroch P, Thoquet P, Gepts P, Langin T, Dron M (2000) Inheritance of partial resistance against Colletotrichum lindemuthianum in Phaseolus vulgaris and co-localization of quantitative trait loci with genes involved in specific resistance. Mol Plant Microbe Interact 13:287–296

    Article  PubMed  CAS  Google Scholar 

  • Giese H, Holm-Jensen AG, Jensen HP, Jensen J (1993) Localization of the Laevigatum powdery midew resistance gene to barley chromosome 2 by the use of RFLP markers. Theor Appl Genet 85:897–900

    Article  CAS  Google Scholar 

  • Gupta PK, Rustgi S (2004) Molecular markers from the transcribed/expressed region of the genome in higher plants. Funct Integr Genom 4:139–162

    CAS  Google Scholar 

  • Heath R, Huxley H, Stone B, Spangenberg G (1998) cDNA cloning and differential expression of three caffeic acid O-methyltransferase homologues from perennial ryegrass (Lolium perenne L.). J Plant Physiol 153:649–657

    CAS  Google Scholar 

  • Hejgaard J, Jacobsen S, Bjorn SE, Kraph KM (1992) Antifungal activity of chitin-binding PR-4 type proteins from barley grain and stressed leaf. FEBS Lett 307:389–392

    Article  PubMed  CAS  Google Scholar 

  • Hernández I, Portieles R, Chacón O, Borrás-Hidalgo O (2005) Proteins and peptides for the control of phytopathogenic fungi. Biotecnol Aplicada 22:256–260

    Google Scholar 

  • Huang L, Brooks SA, Wantong L, Fellers JP, Trick HN, Gill BS (2003) Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics 164:655–664

    PubMed  CAS  Google Scholar 

  • Jones ES, Dupal MP, Kölliker R, Drayton MC, Forster JW (2001) Development and characterisation of simple sequence repeat (SSR) markers for perennial ryegrass (Lolium perenne L.). Theor Appl Genet 102:405–415

    Article  CAS  Google Scholar 

  • Jones ES, Mahoney NL, Hayward MD, Armstead I, Gilbert Jones J, Humphreys MO, King IP, Kishida T, Yamada T, Balfourier F, Charmet G, Forster JW (2002a) An enhanced molecular marker based genetic map of perennial ryegrass (Lolium perenne) reveals comparative relationships with other Poaceae genomes. Genome 45:282–295

    Article  PubMed  CAS  Google Scholar 

  • Jones ES, Dupal MP, Dumsday JL, Hughes LJ, Forster JW (2002b) An SSR-based genetic linkage map for perennial ryegrass (Lolium perenne L.). Theor Appl Genet 105:577–584

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki T, Koita H, Nakatsubo T, Hasegawa K, Wakabayashi K, Takahashi H, Umemuram K, Umezawa T, Shimamoto K (2006) Cinnamoyl-CoA reductase, a key enzyme in lignin biosynthesis, is an effector of small GTPase Rac in defense signaling in rice. Proc Natl Acad Sci USA 103:230–235

    Article  PubMed  CAS  Google Scholar 

  • Kimbeng CA (1999) Genetic basis of crown rust resistance in perennial ryegrass, breeding strategies, and genetic variation among pathogen populations: a review. Aust J Exp Agric 39:361–378

    Article  Google Scholar 

  • Koiwa H, Kato H, Nakatsu T, Oda J, Yamada Y, Sato F (1997) Purification and characterisation of tobacco pathogenesis-related protein PR–5d, an antifungal thaumatin-like protein. Plant Cell Phys 38:783–791

    CAS  Google Scholar 

  • Kruger WM, Szabo LJ, Zehen RJ (2003) Transcription of the defense response genes chitinase IIb, PAL and peroxidase is induced by the barley powdery mildew fungus and is only indirectly modulated by R genes. Phys Mol Plant Path 63:167–178

    Article  CAS  Google Scholar 

  • Kuraparthy V, Chhuneja P, Dhaliwal HS, Kaur S, Bowden RL, Gill BS (2007) Characterization and mapping of cryptic alien introgression from Aegilops geniculata with new leaf rust and stripe rust resistance genes Lr57 and Yr40 in wheat. Theor Appl Genet 114:1379–1389

    Article  PubMed  CAS  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    PubMed  CAS  Google Scholar 

  • Leonards-Schippers C, Gieffers W, Schafer-Pregl R, Ritter E, Knapp SJ, Salamini F, Gebhardt C (1994) Quantitative resistance to Phytophthora infestans in potato—a case study for QTL mapping in an allogamous plant species. Genetics 137:67–77

    PubMed  CAS  Google Scholar 

  • Li WL, Faris JD, Chittoor JM, Leach JE, Hulbert SH, Liu DJ, Chen PD, Gill BS (1999) Genomic mapping of defense response genes in wheat. Theor Appl Genet 98:226–233

    Article  CAS  Google Scholar 

  • Ling HQ, Zhu Y, Keller B (2003) High resolution mapping of the leaf rust disease resistance gene Lr1 in wheat and characterization of BAC clones from the Lr1 locus. Theor Appl Genet 106:875–882

    PubMed  CAS  Google Scholar 

  • Love CG, Robinson AJ, Lim GAC, Hopkins CJ, Batley J, Barker G, Spangenberg GC, Edwards D (2005) Brassica ASTRA: an integrated database for Brassica genomic research. Nucleic Acids Res 33:656–659

    Article  CAS  Google Scholar 

  • Lynch D, Lidgett A, McInnes R, Huxley H, Jones E, Mahoney N, Spangenberg G (2002) Isolation and characterisation of three cinnamyl alcohol dehydrogenase homologue cDNAs from perennial ryegrass (Lolium perenne L.). J Plant Physiol 159:653–660

    Article  CAS  Google Scholar 

  • Mackay TFC (2001) The genetic architecture of quantitative traits. Ann Rev Genet 35:303–309

    Article  PubMed  CAS  Google Scholar 

  • McDonald BA, Linde C (2002) Pathogen population genetics, evolutionary potential, and durable resistance. Ann Rev Phytopath 40:349–379

    Article  CAS  Google Scholar 

  • Messmer M, Seyfarth R, Keller R, Schachermayr G, Winzeler M, Zanetti S, Feuillet S, Keller B (2000) Genetic analysis of durable leaf rust resistance in winter wheat. Theor Appl Genet 100:419–431

    Article  CAS  Google Scholar 

  • Molina A, Gorlach J, Volrath S, Ryals J (1999) Wheat genes encoding two types of PR-1 proteins are pathogen inducible, but do not respond to activators of systemic acquired resistance. Mol Plant Microbe Interact 12:53–58

    Article  PubMed  CAS  Google Scholar 

  • Morel J-B, Dangl JL (1997) The hypersensitive response and the induction of cell death in plants. Cell Death Diff 4:671–683

    Article  CAS  Google Scholar 

  • Moerschbacher BM, Noll U, Gorrichon L, Reisener HJ (1990) Specific inhibition of lignification breaks hypersensitivity resistance of wheat stem rust. Plant Physiol 93:465–470

    Article  PubMed  CAS  Google Scholar 

  • Muylle H, Baert J, Van Bockstaele E, Pertijs J, Roldan-Ruiz I (2005) Four QTLs determine crown rust (Puccinia coronata f. sp. lolii) resistance in a perennial ryegrass (Lolium perenne) population. Heredity 95:348–357

    Article  PubMed  CAS  Google Scholar 

  • Nodari RO, Tsai SM, Guzman P, Gilbertson RL, Gepts P (1993) Toward an integrated linkage map of common bean. III. Mapping genetic factors controlling host–bacteria interactions. Genetics 134:341–350

    PubMed  CAS  Google Scholar 

  • Peumans WJ, Van Damme EJM (1995) Lectins as plant defense proteins. Plant Physiol 109:347–352

    Article  PubMed  CAS  Google Scholar 

  • Ponting RC, Drayton MC, Cogan NOI, Dobrowolski MP, Smith KF, Spangenberg G (2007) SNP discovery, validation, haplotype structure and linkage disequilibrium in full-length herbage nutritive quality genes of perennial ryegrass (Lolium perenne L.). Mol Gen Genom 278:585–597

    Article  CAS  Google Scholar 

  • Potter LR (1987) Effect of crown rust on regrowth, competitive ability and nutritional quality of perennial and Italian ryegrass. Plant Pathol 36:455–461

    Article  Google Scholar 

  • Potter LR, Cagas B, Paul VH, Birckenstaedt E (1990) Pathogenicity of some European collections of crown rust (Puccinia coronata Corda) on cultivars of perennial ryegrass. Phytopathology 130:119–126

    Article  Google Scholar 

  • Price T (1987) Ryegrass rust in Victoria. Plant Protect Quart 2:189

    Google Scholar 

  • Qi L, Echalier B, Friebe B, Gill BS (2003) Molecular characterisation of a set of wheat deletion stocks for use in chromosome bin mapping of ESTs. Funct Integr Genomics 3:39–55

    PubMed  CAS  Google Scholar 

  • Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner HY, Hunt MD (1996) Systemic acquired resistance. Plant Cell 8:1809–1819

    Article  PubMed  CAS  Google Scholar 

  • Sacco F, Suárez EY, Naranjo T (1996) Mapping of the leaf rust resistance gene Lr3 on chromosome 6B of Sinvalocho MA wheat. Genome 41:686–690

    Article  Google Scholar 

  • Sasaki K, Iwai T, Hiraga S, Kuroda K, Seo S, Mitsuhara I, Iwano M, Ito H, Matsui H, Ohashi Y (2004) Ten rice peroxidases redundantly respond to multiple stresses including infection with rice blast fungus. Plant Cell Phys 45:1442–1452

    Article  CAS  Google Scholar 

  • Sawbridge T, Ong E, Binnion C, Emmerling M, McInnes R, Meath K, Nguyen N, Nunan K, O’Neill M, O’Toole F, Rhodes C, Simmonds J, Tian P, Wearne K, Webster T, Winkworth A, Spangenberg G (2003) Generation and analysis of expressed sequence tags in perennial ryegrass (Lolium perenne L.). Plant Sci 165:1089–1100

    Article  CAS  Google Scholar 

  • Schejbel B, Jensen LB, Xing Y, Lübberstedt T (2007) QTL analysis of crown rust resistance in perennial ryegrass under conditions of natural and artificial infection. Plant Breed 126:347–352

    Article  Google Scholar 

  • Seevers PM, Daly JM, Catedral FF (1971) The role of peroxidase isozymes in resistance to wheat stem rust disease. Plant Physiol 48:353–360

    PubMed  CAS  Google Scholar 

  • Sim S, Chang T, Curley J, Warnke SE, Barker RE, Jung G (2005) Chromosomal rearrangements differentiating the ryegrass genome from the Triticeae, oat, and rice genomes using common heterologous RFLP probes. Theor Appl Genet 110:1011–1019

    Article  PubMed  CAS  Google Scholar 

  • Sim S, Diesburg K, Casler M, Jung G (2007) Mapping and comparative analysis of QTL for crown rust resistance in an Italian × perennial ryegrass population. Phytopathology 97:767–776

    Article  CAS  PubMed  Google Scholar 

  • Shinozuka H, Cogan NOI, Smith KF, Spangenberg GC, Forster JW (2008) Fine-structure genetic and physical mapping around the self-incompatibility loci of perennial ryegrass (Lolium perenne L.). Plant and Animal Genome XVI, San Diego, p 626

  • Smith K, Vierheller TL, Thorne CA (1989) Properties and functions of glutathione reductase in plants. Phys Plant 77:449–456

    Article  CAS  Google Scholar 

  • Sorrells ME, Wilson WA (1997) Direct classification and selection of superior alleles for crop improvement. Crop Sci 37:691–697

    Google Scholar 

  • Studer B, Boller B, Herrmann D, Bauer E, Posselt UK, Widmer F, Kölliker R. (2006) Genetic mapping reveals a single major QTL for bacterial wilt resistance in Italian ryegrass (Lolium multiflorum Lam.). Theor Appl Genet 113:661–671

    Article  PubMed  CAS  Google Scholar 

  • Studer B, Boller B, Bauer E, Posselt U, Widmer F, Kölliker R (2007) Consistent detection of QTLs for crown rust resistance in Italian ryegrass (Lolium multiflorum Lam.) across environments and phenotyping methods. Theor Appl Genet 115:9–17

    Article  PubMed  Google Scholar 

  • Tas BM, Taweel HZ, Smit HJ, Elgersma A, Dijkstra J, Tamminga S (2004) Intake and milk production of cows grazing perennial ryegrass cultivars with different crown rust resistance. Grassland Science in Europe. Land use systems in grassland dominated regions, vol 9. In: Proceedings of the 20th general meeting of the European Grassland Federation, Luzern, Switzerland. pp 107–116

  • Thorogood D, Paget M, Humphreys M, Turner L, Armstead I, Roderick H (2001) QTL analysis of crown rust resistance in perennial ryegrass—implications for breeding. Inter Turfgr Soc Res J 9:218–223

    Google Scholar 

  • Torres MA, Dangl JL, Jones JDG (2002) Arabidopsis gp91phox homologues AtrbohD and reactive oxygen intermediates in the plant defence response. Proc Natl Acad Sci USA 99:517–522

    Article  PubMed  CAS  Google Scholar 

  • Torres MA, Jones J, Dangl JL (2005) Pathogen-induced, NADPH oxidase-derived reactive oxygen intermediates suppress spread of cell death in Arabidopsis thaliana. Nat Genet 37:1130–1134

    Article  PubMed  CAS  Google Scholar 

  • Vanderplank JE (1984) Disease resistance in plants, 2nd edn. Academic Press, London

    Google Scholar 

  • Wisser RJ, Sun Q, Hulbert SH, Kresovich S, Nelson RJ (2005) Identification and characterisation of regions of the rice genome associated with broad-spectrum, quantitative disease resistance. Genetics 169:2277–2203

    Article  PubMed  CAS  Google Scholar 

  • Xing Y, Frei U, Schejbel B, Asp T, Lübberstedt T (2007) Nucleotide diversity and linkage disequilibrium in 11 expressed resistance genes in Lolium perenne. BMC Plant Biol 7:43

    Article  PubMed  CAS  Google Scholar 

  • Zhu YL, Song QJ, Hyten DL, Van Tassell CP, Matukumalli LK, Grimm DR, Hyatt SM, Fickus EW, Young ND, Cregan PB (2003) Single nucleotide polymorphisms in soybean. Genetics 163:1123–1134

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by funding from the Victorian Department of Primary Industries, Dairy Australia Ltd., the Geoffrey Gardiner Dairy Foundation, Meat and Livestock Australia Ltd. and the Molecular Plant Breeding Cooperative Research Centre (MPB CRC). The authors thank Dr. Charles Brummer (University of Georgia, USA) and Prof. Michael Hayward (Rhydgoch Genetics, Aberystwyth, UK) for careful critical reading of the manuscript and Dr Guoyou Ye for assistance with statistical and QTL analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. W. Forster.

Additional information

Communicated by T. Lübberstedt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

122_2008_766_MOESM1_ESM.doc

ESM 1 Summary details for bioinformatic analysis of perennial ryegrass candidate DR EST sequences against both mapped and unmapped T. aestivum ESTs in wEST SQL, including functional information pertaining to wheat genes

ESM 2 Comparative sequence alignment (based on BLASTN) between putatively orthologous wheat and perennial ryegrass DR gene ESTs corresponding to the (a) catalase (b) oxalate oxidase and (c) peroxidase gene classes (DOC 106 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dracatos, P.M., Cogan, N.O.I., Dobrowolski, M.P. et al. Discovery and genetic mapping of single nucleotide polymorphisms in candidate genes for pathogen defence response in perennial ryegrass (Lolium perenne L.). Theor Appl Genet 117, 203–219 (2008). https://doi.org/10.1007/s00122-008-0766-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-008-0766-7

Keywords

Navigation