Skip to main content
Log in

Genetic mapping of the apospory-specific genomic region in Pennisetum squamulatum using retrotransposon-based molecular markers

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Pennisetum squamulatum reproduces by apomixis, a type of asexual reproduction through seeds. Apomixis in P. squamulatum is transmitted as a dominant Mendelian trait, and a genomic region, the apospory-specific genomic region (ASGR), is sufficient for inheritance of the trait. The ASGR is physically large (>50 Mb), highly heterochromatic, hemizygous, and recombinationally suppressed. These characteristics have hindered high-resolution genetic mapping and map-based cloning of apomixis genes. In this study, the long terminal repeat (LTR) regions of ASGR-abundant retrotransposons in the genome of P. squamulatum and ASGR-linked bacterial artificial chromosome clones were identified and sequenced for designing LTR-specific primers. Two hundred and ninety single-dose sequence specific amplified polymorphism (SSAP) markers were generated from 38 primer combinations. The SSAP markers combined with two previous ASGR-mapped markers were used for genetic linkage analysis and construction of a genetic map resulting in the formation of 27 linkage groups at LOD 10, one of which contained >60% of the SSAP markers. After removing identical markers (identical band scoring) on the largest linkage group, 46 markers were finally used for genetic mapping at LOD 10. The markers distributed across 10 different loci covering 19 cM; however, 45 markers were distributed within 9 cM. Six markers were recovered and sequenced. Five markers were successfully converted into sequence characterized amplified regions (SCARs). Segregation of SCAR markers was not always consistent with the SSAP markers of origin suggesting a greater level of error in the SSAP map resulting in an inflated map distance for the ASGR. One SCAR marker (Pst 56-1205-400) detected expression of an ASGR retrotransposon in root, anther, leaf and ovary of P. squamulatum, although sequencing of the RT-PCR product failed to find a functional open reading frame for the transcript.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acquadro A, Portis E, Moglia A, Magurno F, Lanteri S (2006) Retrotransposon-based S-SAP as a platform for the analysis of genetic variation and linkage in globe artichoke. Genome 49:1149–1159

    Article  PubMed  CAS  Google Scholar 

  • Ainouche ML, Baumel A, Salmon A, Yannic G (2003) Hybridization, polyploidy and speciation in Spartina (Poaceae). New Phytol 161:165–172

    Article  CAS  Google Scholar 

  • Akiyama Y, Conner JA, Goel S, Morishige DT, Mullet JE, Hanna WW, Ozias-Akins P (2004) High-resolution physical mapping in Pennisetum squamulatum reveals extensive chromosomal heteromorphism of the genomic region associated with apomixis. Plant Physiol 134:1733–1741

    Article  PubMed  CAS  Google Scholar 

  • Akiyama Y, Hanna WW, Ozias-Akins P (2005) High-resolution physical mapping reveals that the apospory-specific genomic region (ASGR) in Cenchrus ciliaris is located on a heterochromatic and hemizygous region of a single chromosome. Theor Appl Genet 111:1042–1051

    Article  PubMed  CAS  Google Scholar 

  • Albertini E, Porceddu A, Ferranti F, Reale L, Barcaccia G, Romano B, Falcinelli M (2001) Apospory and parthenogenesis may be uncoupled in Poa pratensis: a cytological investigation. Sex Plant Reprod 14:213–217

    Article  Google Scholar 

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Asker SE, Jerling L (1992) Apomixis in plants. CRC Press, Boca Raton, pp 5–19

    Google Scholar 

  • Avramova ZV (2002) Heterochromatin in animals and plants. Similarities and differences. Plant Physiol 129:40–49

    Article  PubMed  CAS  Google Scholar 

  • Berenyi M, Gichuki T, Schmidt J, Burg K (2002) Ty1-copia retrotransposon-based S-SAP (sequence-specific amplified polymorphism) for genetic analysis of sweetpotato. Theor Appl Genet 105:862–869

    Article  PubMed  CAS  Google Scholar 

  • Bicknell RA, Koltunow AM (2004) Understanding apomixis: recent advances and remaining conundrums. Plant Cell 16(Suppl):S228–S245

    Article  PubMed  CAS  Google Scholar 

  • Bonin A, Bellemain E, Bronken Eidesen P, Pompanon F, Brochmann C, Taberlet P (2004) How to track and assess genotyping errors in population genetics studies. Mol Ecol 13:3261–3273

    Article  PubMed  CAS  Google Scholar 

  • Bouck A, Peeler R, Arnold ML, Wessler SR (2005) Genetic mapping of species boundaries in Louisiana irises using IRRE retrotransposon display markers. Genetics 171:1289–1303

    Article  PubMed  CAS  Google Scholar 

  • Bousios A, Saldana-Oyarzabal I, Valenzuela-Zapata AG, Wood C, Pearce SR (2007) Isolation and characterization of Ty1-copia retrotransposon sequences in the blue agave (Agave tequilana Weber var. azul) and their development as SSAP markers for phylogenetic analysis. Plant Sci 172:291–298

    Article  CAS  Google Scholar 

  • Boyko E, Kalendar R, Korzun V, Fellers J, Korol A, Schulman AH, Gill BS (2002) A high-density cytogenetic map of the Aegilops tauschii genome incorporating retrotransposons and defense-related genes: insights into cereal chromosome structure and function. Plant Mol Biol 48:767–790

    Article  PubMed  CAS  Google Scholar 

  • Carman JG (1997) Asynchronous expression of duplicate genes in angiosperms may cause apomixis, bispory, tetraspory, and polyembryony. Biol J Linn Soc 61:51–94

    Article  Google Scholar 

  • Catanach AS, Erasmuson SK, Podivinsky E, Jordan BR, Bicknell R (2006) Deletion mapping of genetic regions associated with apomixis in Hieracium. Proc Natl Acad Sci USA 103:18650–18655

    Article  PubMed  CAS  Google Scholar 

  • Conner JA, Goel S, Gunawan G, Cordonnier-Pratt M, Johnson VE, Liang C, Wang H, Pratt LH, Mullet JE, DeBarry J, Yang L, Bennetzen JL, Klein PE, Ozias-Akins P (2008) Sequence analysis of BAC clones from the apospory-specific genomic region (ASGR) of Pennisetum and Cenchrus. Plant Physiol 147:1–16

    Article  CAS  Google Scholar 

  • Dooner HK, He L (2008) Maize genome structure variation: interplay between retrotransposon polymorphisms and genic recombination. Plant Cell 20:249–258

    Article  PubMed  CAS  Google Scholar 

  • Dujardin M, Hanna W (1989) Crossability of pearl millet with wild Pennisetum species. Crop Sci 29:77–80

    Google Scholar 

  • Ellis TH, Poyser SJ, Knox MR, Vershinin AV, Ambrose MJ (1998) Polymorphism of insertion sites of Ty1-copia class retrotransposons and its use for linkage and diversity analysis in pea. Mol Gen Genet 260:9–19

    PubMed  CAS  Google Scholar 

  • Flavell AJ, Dunbar E, Anderson R, Pearce SR, Hartley R, Kumar A (1992) Ty1-copia group retrotransposons are ubiquitous and heterogeneous in higher plants. Nucleic Acids Res 20:3639–3644

    Article  PubMed  CAS  Google Scholar 

  • Flavell AJ, Pearce SR, Heslop-Harrison JS, Kumar A (1997) The evolution of Ty1-copia group retrotransposons in eukaryote genomes. Genetica 100:185–195

    Article  PubMed  CAS  Google Scholar 

  • Goel S, Chen Z, Conner JA, Akiyama Y, Hanna WW, Ozias-Akins P (2003) Delineation by fluorescence in situ hybridization of a single hemizygous chromosomal region associated with aposporous embryo sac formation in Pennisetum squamulatum and Cenchrus ciliaris. Genetics 163:1069–1082

    PubMed  CAS  Google Scholar 

  • Goel S, Chen Z, Akiyama Y, Conner JA, Basu M, Gualtieri G, Hanna WW, Ozias-Akins P (2006) Comparative physical mapping of the apospory-specific genomic region in two apomictic grasses: Pennisetum squamulatum and Cenchrus ciliaris. Genetics 173:389–400

    Article  PubMed  CAS  Google Scholar 

  • Grimanelli D, Leblanc O, De Leon DG, Savidan Y (1995) Apomixis expression in maize-Tripsacum hybrid derivatives and the implications regarding its control and potential for manipulation. Apomixis Newsl 8:35–37

    Google Scholar 

  • Grimanelli D, Leblanc O, Espinosa E, Perotti E, De Leon DG, Savidan Y (1998) Mapping diplosporous apomixis in tetraploid Tripsacum: one gene or several genes? Heredity 80:33–39

    Article  PubMed  Google Scholar 

  • Grimanelli D, Leblanc O, Perotti E, Grossniklaus U (2001) Developmental genetics of gametophytic apomixis. Trends Genet 17:597–604

    Article  PubMed  CAS  Google Scholar 

  • Grossniklaus U, Nogler GA, van Dijk PJ (2001) How to avoid sex: the genetic control of gametophytic apomixis. Plant Cell 13:1491–1498

    Article  PubMed  CAS  Google Scholar 

  • Jessup RW, Burson BL, Burow GB, Wang YW, Chang C, Li Z, Paterson AH, Hussey MA (2002) Disomic inheritance, suppressed recombination, and allelic interactions govern apospory in buffelgrass as revealed by genome mapping. Crop Sci 42:1688–1694

    Article  CAS  Google Scholar 

  • Koltunow AM, Bicknell RA, Chaudhury AM (1995) Apomixis: molecular strategies for the generation of genetically identical seeds without fertilization. Plant Physiol 108:1345–1352

    PubMed  CAS  Google Scholar 

  • Kumar A, Bennetzen JL (1999) Plant retrotransposons. Annu Rev Genet 33:479–532

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Hirochika H (2001) Applications of retrotransposons as genetic tools in plant biology. Trends Plant Sci 6:127–134

    Article  PubMed  CAS  Google Scholar 

  • Labombarda P, Busti A, Caceres ME, Pupilli F, Arcioni S (2002) An AFLP marker tightly linked to apomixis reveals hemizygosity in a portion of the apomixis-controlling locus in Paspalum simplex. Genome 45:513–519

    Article  PubMed  CAS  Google Scholar 

  • Lightbourn GJ, Jelesko JG, Veilleux RE (2007) Retrotransposon-based markers from potato monoploids used in somatic hybridization. Genome 50:492–501

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Wang Y, Shen Y, Guo W, Hao S, Liu B (2004) Extensive alterations in DNA methylation and transcription in rice caused by introgression from Zizania latifolia. Plant Mol Biol 54:571–582

    Article  PubMed  CAS  Google Scholar 

  • Lou Q, Chen J (2007) Ty1-copia retrotransposon-based SSAP marker development and its potential in the genetic study of cucurbits. Genome 50:802–810

    Article  PubMed  CAS  Google Scholar 

  • Madsen LH, Fukai E, Radutoiu S, Yost CK, Sandal N, Schauser L, Stougaard J (2005) LORE1, an active low-copy-number TY3-gypsy retrotransposon family in the model legume Lotus japonicus. Plant J 44:372–381

    Article  PubMed  CAS  Google Scholar 

  • Manninen O, Kalendar R, Robinson J, Schulman AH (2000) Application of BARE-1 retrotransposon markers to the mapping of a major resistance gene for net blotch in barley. Mol Gen Genet 264:325–334

    Article  PubMed  CAS  Google Scholar 

  • Meeûs T, Prugnolle F, Agnew P (2007) Asexual reproduction: genetics and evolutionary aspects. Cell Mol Life Sci 64:1355–1367

    Article  PubMed  CAS  Google Scholar 

  • Nogler GA (1984) Gametophytic apomixis. In: Johri BM (ed) Embryology of angiosperms. Springer, Berlin, pp 475–518

    Google Scholar 

  • Noyes RD, Rieseberg LH (2000) Two independent loci control agamospermy (apomixis) in the triploid flowering plant Erigeron annuus. Genetics 155:379–390

    PubMed  CAS  Google Scholar 

  • Ozias-Akins P (2006) Apomixis: developmental characteristics and genetics. Crit Rev Plant Sci 25:199–214

    Article  Google Scholar 

  • Ozias-Akins P, Lubbers EL, Hanna WW, McNay JW (1993) Transmission of the apomictic mode of reproduction in Pennisetum: Co-inheritance of the trait and molecular markers. Theor Appl Genet 85:632–638

    Article  Google Scholar 

  • Ozias-Akins P, Roche D, Hanna WW (1998) Tight clustering and hemizygosity of apomixis-linked molecular markers in Pennisetum squamulatum implies genetic control of apospory by a divergent locus that may have no allelic form in sexual genotypes. Proc Natl Acad Sci USA 95:5127–5132

    Article  PubMed  CAS  Google Scholar 

  • Ozias-Akins P, Akiyama Y, Hanna WW (2003) Molecular characterization of the genomic region linked with apomixis in Pennisetum/Cenchrus. Funct Integr Genomics 3:94–104

    Article  PubMed  CAS  Google Scholar 

  • Panstruga R, Buschges R, Piffanelli P, Schulze-Lefert P (1998) A contiguous 60 kb genomic stretch from barley reveals molecular evidence for gene islands in a monocot genome. Nucleic Acids Res 26:1056–1062

    Article  PubMed  CAS  Google Scholar 

  • Pearce SR, Stuart-Rogers C, Knox MR, Kumar A, Ellis TH, Flavell AJ (1999) Rapid isolation of plant Ty1-copia group retrotransposon LTR sequences for molecular marker studies. Plant J 19:711–717

    Article  PubMed  CAS  Google Scholar 

  • Pearce SR, Knox M, Ellis TH, Flavell AJ, Kumar A (2000) Pea Ty1-copia group retrotransposons: transpositional activity and use as markers to study genetic diversity in Pisum. Mol Gen Genet 263:898–907

    Article  PubMed  CAS  Google Scholar 

  • Pompanon F, Bonin A, Bellemain E, Taberlet P (2005) Genotyping errors: causes, consequences and solutions. Nat Rev Genet 6:847–859

    Article  PubMed  CAS  Google Scholar 

  • Porceddu A, Albertini E, Barcaccia G, Falcinelli M (2002a) Linkage mapping in apomictic and sexual Kentucky bluegrass (Poa pratensis L.) genotypes using a two-way pseudotestcross strategy based on AFLP and SAMPL markers. Theor Appl Genet 104:273–280

    Article  PubMed  CAS  Google Scholar 

  • Porceddu A, Albertini E, Barcaccia G, Marconi G, Bertoli FB, Veronesi F (2002b) Development of S-SAP markers based on an LTR-like sequence from Medicago sativa L. Mol Genet Genomics 267:107–114

    Article  PubMed  CAS  Google Scholar 

  • Queen RA, Gribbon BM, James C, Jack P, Flavell AJ (2004) Retrotransposon-based molecular markers for linkage and genetic diversity analysis in wheat. Mol Genet Genomics 271:91–97

    Article  PubMed  CAS  Google Scholar 

  • Remington DL, Whetten RW, Liu BH, O’Malley DM (1999) Construction of an AFLP genetic map with nearly complete genome coverage in Pinus taeda. Theor Appl Genet 98:1279–1292

    Article  PubMed  CAS  Google Scholar 

  • Roche D, Conner J, Budiman A, Frisch D, Wing R, Hanna W, Ozias-Akins P (2002) Construction of BAC libraries from two apomictic grasses to study the microcolinearity of their apospory-specific genomic regions. Theor Appl Genet 104:804–812

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning, 3rd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sant VJ, Sainani MN, Sami-Subbu R, Ranjekar PK, Gupta VS (2000) Ty1-copia retrotransposon-like elements in chickpea genome: their identification, distribution and use for diversity analysis. Gene 257:157–166

    Article  PubMed  CAS  Google Scholar 

  • Sanz AM, Gonzalez SG, Syed NH, Suso MJ, Saldana CC, Flavell AJ (2007) Genetic diversity analysis in Vicia species using retrotransposon-based SSAP markers. Mol Genet Genomics 278:433–441

    Article  PubMed  CAS  Google Scholar 

  • Schneider A, Walker SA, Poyser S, Sagan M, Ellis TH, Downie JA (1999) Genetic mapping and functional analysis of a nodulation-defective mutant (sym19) of pea (Pisum sativum L.). Mol Gen Genet 262:1–11

    Article  PubMed  CAS  Google Scholar 

  • Schulman AH, Flavell AJ, Ellis ΤΗN (2004) The application of LTR retrotransposons as molecular markers in plants. In: Miller WJ, Capy P (eds) Mobile genetic elements: protocols and genomic applications. Humana Press, Totowa, pp 145–173

    Chapter  Google Scholar 

  • Scott RJ (2007) Polyspermy in apomictic Crataegus: yes and no. New Phytol 173:227–229

    Article  PubMed  Google Scholar 

  • Spillane C, Steimer A, Grossniklaus U (2001) Apomixis in agriculture: the quest for clonal seeds. Sex Plant Reprod 14:179–187

    Article  Google Scholar 

  • Spillane C, Curtis MD, Grossniklaus U (2004) Apomixis technology development—virgin births in farmers’ fields? Nat Biotechnol 22:687–691

    Article  PubMed  CAS  Google Scholar 

  • Suoniemi A, Tanskanen J, Schulman AH (1998) Gypsy-like retrotransposons are widespread in the plant kingdom. Plant J 13:699–705

    Article  PubMed  CAS  Google Scholar 

  • Syed NH, Sureshsundar S, Wilkinson MJ, Bhau BS, Cavalcanti JJ, Flavell AJ (2005) Ty1-copia retrotransposon-based SSAP marker development in cashew (Anacardium occidentale L.). Theor Appl Genet 110:1195–1202

    Article  PubMed  CAS  Google Scholar 

  • Syed NH, Sorensen AP, Antonise R, van de Wiel C, van der Linden CG, vant Westende W, Hooftman DA, den Nijs HC, Flavell AJ (2006) A detailed linkage map of lettuce based on SSAP, AFLP and NBS markers. Theor Appl Genet 112:517–527

    Article  PubMed  CAS  Google Scholar 

  • Tam SM, Mhiri C, Vogelaar A, Kerkveld M, Pearce SR, Grandbastien MA (2005) Comparative analyses of genetic diversities within tomato and pepper collections detected by retrotransposon-based SSAP, AFLP and SSR. Theor Appl Genet 110:819–831

    Article  PubMed  CAS  Google Scholar 

  • The Rice Chromosome 10 Sequencing Consortium (2003) In-depth view of structure, activity, and evolution of rice chromosome 10. Science 300:1566–1569

    Article  CAS  Google Scholar 

  • van Dijk PJ, van Damme J (2000) Apomixis technology and the paradox of sex. Trends Plant Sci 5:81–84

    Article  PubMed  Google Scholar 

  • van Dijk PJ, Tas IC, Falque M, Bakx-Schotman T (1999) Crosses between sexual and apomictic dandelions (Taraxacum). II. The breakdown of apomixis. Heredity 83:715–721

    Article  PubMed  Google Scholar 

  • Van Ooijen JW, Voorrips RE (2001) JoinMap® 3.0, Software for the calculation of genetic linkage maps, 3rd edn. Plant Research International, Wageningen

    Google Scholar 

  • Venturi S, Dondini L, Donini P, Sansavini S (2006) Retrotransposon characterisation and fingerprinting of apple clones by S-SAP markers. Theor Appl Genet 112:440–444

    Article  PubMed  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Voytas DF, Cummings MP, Koniczny A, Ausubel FM, Rodermel SR (1992) Copia-like retrotransposons are ubiquitous among plants. Proc Natl Acad Sci USA 89:7124–7128

    Article  PubMed  CAS  Google Scholar 

  • Waugh R, McLean K, Flavell AJ, Pearce SR, Kumar A, Thomas BB, Powell W (1997) Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol Gen Genet 253:687–694

    Article  PubMed  CAS  Google Scholar 

  • Wu KK, Burnquist W, Sorrells ME, Tew TL, Moore PH, Tanksley SD (1992) The detection and estimation of linkage in polyploids using single-dose restriction fragments. Theor Appl Genet 83:294–300

    Article  Google Scholar 

  • Young BA, Sherwood RT, Bashaw EC (1979) Cleared-pistil and thick-sectioning techniques for detecting aposporous apomixis in grasses. Can J Bot 57:1668–1672

    Article  Google Scholar 

  • Yu GX, Wise RP (2000) An anchored AFLP- and retrotransposon-based map of diploid Avena. Genome 43:736–749

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Wayne Hanna for providing plant materials and Dr. Ye Chu, Jackie Merriman, Evelyn P. Morgan and Yajuan Zeng for technical help. This work was supported by the National Science Foundation (award no. 0115911).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peggy Ozias-Akins.

Additional information

Communicated by D. Hoisington.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huo, H., Conner, J.A. & Ozias-Akins, P. Genetic mapping of the apospory-specific genomic region in Pennisetum squamulatum using retrotransposon-based molecular markers. Theor Appl Genet 119, 199–212 (2009). https://doi.org/10.1007/s00122-009-1029-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-009-1029-y

Keywords

Navigation