Skip to main content
Log in

Retrotransposon characterisation and fingerprinting of apple clones by S-SAP markers

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Retrotransposons have been found to comprise the most common class of transposable elements in eukaryotes and to occur in high copy number in plant genomes. Several of these elements have been sequenced and were found to display a high degree of heterogeneity and insertional polymorphism, both within and between species. The dispersion, ubiquity and prevalence of retrotransposons in plant genomes provide an excellent basis for the development of marker systems and, hence, may be good molecular candidates in distinguishing among apple clones, when they represent bud mutations of the original variety, considering that the random amplified polymorphic DNA (RAPD), amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) used thus far in fingerprinting analyses have failed to meet discrimination expectations. The technique called sequence-specific amplified polymorphism (S-SAP), which makes it possible to identify dominant markers for the detection of variation in the DNA flanking the retrotransposon insertion site, was used in the present study to distinguish several clones of the cultivars ‘Gala’ and ‘Braeburn’ in apple fingerprinting. Moreover, our results suggest that the bud mutations, which have generated new patented varieties of ‘Gala’ and ‘Braeburn’, appear to derive from retrotransposon insertion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Asíns MJ, Monforte AJ, Mestre PF, Carbonell EA (1999) Citrus and Prunus copia-like retrotransposons. Theor Appl Genet 99:503–510

    Article  Google Scholar 

  • Bretó MP, Ruiz C, Pina JA, Asíns MJ (2001) The diversification of Citrus clementina Hort. ex Tan., a vegetatively propagated crop species. Mol Phylogenet Evol 21:285–293

    Article  PubMed  CAS  Google Scholar 

  • Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26:297–302

    Article  Google Scholar 

  • Dickinson JP, White AG (1986) Red colour distribution in the skin of Gala apple and some of its sports. NZ J Agric Res 29:695–698

    Google Scholar 

  • Flavell AJ, Dunbar E, Anderson R, Pearce SR, Hartley R, Kumar A (1992) Ty1-copia group retrotransposons are ubiquitous and heterogeneous in higher plants. Nucleic Acids Res 20:3639–3644

    Article  PubMed  CAS  Google Scholar 

  • Hokanson SC, Szewc-McFadden AK, Lamboy WF, McFerson JR (1998) Microsatellite (SSR) markers reveal genetic identities, genetic diversity and relationships in a Malus × domestica Borkh. core subset collection. Theor Appl Genet 97:671–683

    Article  CAS  Google Scholar 

  • Kobayashi S, Goto-Yamamoto N, Hirochika H (2004) Retrotransposon-induced mutations in grape skin color. Science 304:982

    Article  PubMed  Google Scholar 

  • Kumar A, Bennetzen JL (1999) Plant retrotransposons. Annu Rev Genet 33:479–532

    Article  PubMed  CAS  Google Scholar 

  • Leigh F, Kalendar R, Lea V, Lee D, Donini P, Schulman AH (2003) Comparison of the utility of barley retrotransposon families for genetic analysis by molecular marker techniques. Mol Gen Genomics 269:464–474

    Article  CAS  Google Scholar 

  • Liebhard R, Gianfranceschi L, Koller B, Ryder CD, Tarchini R, Van de Weg E, Gessler C (2002) Development and characterisation of 140 new microsatellites in apple (Malus × domestica Borkh.). Mol Breed 10:217–241

    Article  CAS  Google Scholar 

  • Maliepaard C, Alston FH, van Arkel G, Brown LM, Chevreau E, Dunemann F, Evans KM, Gardiner S, Guilford P, van Heusden AW, Janse J, Laurens F, Lynn JR, Manganaris AG, den Nijs APM, Periam N, Rillerink E, Roche P, Ryder C, Sansavini S, Schmidt H, Tartarini S, Verhaegh JJ, Vrielink van Ginkel M, King GJ (1998) Aligning male and female linkage maps of apple using multi-allelic markers. Theor Appl Genet 97:60–63

    Article  CAS  Google Scholar 

  • Mendel K (1981) Bud mutations in citrus and their potential commercial value. Proc Int Soc Citricult 1:86–89

    Google Scholar 

  • Mulcahy DL, Cresti M, Sansavini S, Douglas GC, Linskens HF, Bergamini A, Mulcahy G, Vignani R, Pancaldi M (1993) The use of random amplified polymorphic DNAs to fingerprint apple genotypes. Sci Horticult 54:89–96

    Article  CAS  Google Scholar 

  • Sansavini S, Buscaroli C, Stainer R (1999) Instabilità dei mutanti del melo cv Gala. Frutticoltura 10:63–72

    Google Scholar 

  • Tahara M, Aoki T, Suzuka S, Yamashita H, Tanaka M, Matsunaga S, Kokumai S (2004) Isolation of an active element from a high-copy-number family of retrotransposons in the sweet potato genome. Mol Gen Genomics 272:116–127

    Article  CAS  Google Scholar 

  • Vinatzer BA, Patocchi A, Tartarini S, Gianfranceschi L, Sansavini S, Gessler C (2004) Isolation of two microsatellite markers from BAC clones of the Vf scab resistance region and molecular characterization of scab resistant accessions in Malus germplasm. Plant Breed 123:321–326

    Article  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Van der Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Xiong LZ, Xu CG, Saghai Maroof MA, Qifa Zhang (1999) Patterns of cytosine methylation in an elite rice hybrid and its parental lines, detected by a methylation-sensitive amplification polymorphism technique. Mol Gen Genet 261:439–446

    Article  PubMed  CAS  Google Scholar 

  • Waugh R, McLean K, Flavell AJ, Pearce SR, Kumar A, Thomas BB, Powell W (1997) Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol Gen Genet 253:687–694

    Article  PubMed  CAS  Google Scholar 

  • White AG (1991) The Gala apple. Fruit Var J 45:2–3

    Google Scholar 

  • Wünsch A, Hormaza JI (2002) Cultivar identification and genetic fingerprinting of temperate fruit tree species using DNA markers. Euphytica 125:59–67

    Article  Google Scholar 

  • Yamamoto F, Yamamoto M (2004) A DNA microarray-based methylation-sensitive (MS)-AFLP hybridization method for genetic and epigenetic analyses. Mol Gen Genomics 271:678–686

    Article  CAS  Google Scholar 

  • Yao J, Dong Y, Morris BA (2001) Parthenocarpic apple fruit production conferred by transposon insertion mutations in a MADS-box transcription factor. Proc Natl Acad Sci USA 98:1306–1311

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. D. Lee, Dr. E. Chiapparino and Dr A. Acquadro for their suggestions during the work done at NIAB, Cambridge (UK). This research was supported with funds from the Emilia-Romagna Regional Government and CAV (Emilia Romagna, Italy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Venturi.

Additional information

Communicated by H. Nybom

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venturi, S., Dondini, L., Donini, P. et al. Retrotransposon characterisation and fingerprinting of apple clones by S-SAP markers. Theor Appl Genet 112, 440–444 (2006). https://doi.org/10.1007/s00122-005-0143-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-005-0143-8

Keywords

Navigation