Skip to main content
Log in

High-resolution physical mapping reveals that the apospory-specific genomic region (ASGR) in Cenchrus ciliaris is located on a heterochromatic and hemizygous region of a single chromosome

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

An apomictic mode of reproduction known as apospory is displayed by most buffelgrass (Cenchrus ciliaris) genotypes, but rare sexual individuals have been identified. Previously, intraspecific crosses between sexual and aposporous genotypes allowed linkage to be discovered between the aposporous mode of reproduction and nine molecular markers that had been isolated from an aposporous relative, Pennisetum squamulatum. This region was described as the apospory-specific genomic region (ASGR). We now show an ideogram of the chromosome complement for aposporous tetraploid buffelgrass accession B-12-9 including the ASGR-carrier chromosome. The ASGR-carrier chromosome has a region of hemizygosity, as determined by in situ hybridization of BAC clones and unique morphological characteristics when compared with other chromosomes in the genome. In spite of its unique morphology, the ASGR-carrier chromosome could be identified as one of the chromosomes of a meiosis I quadrivalent. A similar partially hemizygous segment was also detected in the ASGR-carrier chromosome of the aposporous buffelgrass genotype, Higgins, but not in the sexual accession B-2S. Two non-recombining BACs linked to apospory were physically mapped on a highly condensed chromatin region of the short arm of B-12-9, and the distance between the BACs was estimated to be ∼11 Mbp, a distance similar to what previously has been shown in P. squamulatum. The short arm of the ASGR-carrier chromosome was highly condensed at pachytene and extended only 1.7–2.7 fold that of mitotic chromosomes. Low recombination in the ASGR may partially be due to its localization in heterochromatin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akiyama Y, Conner JA, Goel S, Morishige DT, Mullet JE, Hanna WW, Ozias-Akins P (2004) High-resolution physical mapping in Pennisetum squamulatum reveals extensive chromosomal heteromorphism of the genomic region associated with apomixis. Plant Physiol 134:1733–1741

    Article  PubMed  CAS  Google Scholar 

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218

    Article  CAS  Google Scholar 

  • Bashaw EC (1962) Apomixis and sexuality in buffelgrass. Crop Sci 2:412–415

    Article  Google Scholar 

  • Cold Spring Harbor Laboratory, Washington University Genome Sequencing Center and PE Biosystems Arabidopsis Sequencing Consortium (2000) The complete sequence of a heterochromatic island from a higher eukaryote. Cell 100:377–386

    Google Scholar 

  • Dujardin M, Hanna WW (1989) Developing apomictic pearl millet–characterization of a BC3 plant. J Genet Breed 43:145–151

    Google Scholar 

  • Fu H, Zheng Z, Dooner HK (2002) Recombination rates between adjacent genic and retrotransposon regions in maize vary by 2 orders of magnitude. Proc Natl Acad Sci USA 99:1082–1087

    PubMed  ADS  CAS  Google Scholar 

  • Fukui K (1996) Plant chromosome at mitosis. In: Fukui K, Nakayama S (eds) Plant chromosomes laboratory methods. CRC Press, Boca Ration, FL, pp 1–17

    Google Scholar 

  • Goel S, Chen Z, Conner JA, Akiyama Y, Hanna WW, Ozias-Akins P (2003) Delineation by fluorescence in situ hybridization of a single hemizygous chromosomal region associated with aposporous embryo sac formation in Pennisetum squamulatum and Cenchrus ciliaris. Genetics 163:1069–1082

    PubMed  CAS  Google Scholar 

  • Grimanelli D, Leblanc O, Espinosa E, Perotti E, Gonzalex de Leon D, Savidan Y (1998) Mapping diplosporous apomioxis in tetraploid Tripsacum: one gene or several genes? Heredity 80:33–39

    PubMed  Google Scholar 

  • Grimanelli D, Leblanc O, Perotti E, Grossniklaus U (2001) Developmental genetics of gametophytic apomixis. Trends Genet 17:597–604

    Article  PubMed  CAS  Google Scholar 

  • Gustine DL, Sherwood RT, Huff DR (1997) Apospory-linked molecular markers in buffelgrass. Crop Sci 37:947–951

    Article  CAS  Google Scholar 

  • Ingham LD, Hanna WW, Baier JW, Hannah LC (1993) Origin of the main class of repetitive DNA within selected Pennisetum species. Mol Gen Genet 238:350–356

    Article  PubMed  CAS  Google Scholar 

  • Islam-Faridi MN, Childs KL, Klein PE, Hodnett G, Menz MA, Klein RR, Rooney WL, Mullet JE, Stelly DM, Price HJ (2002) A molecular cytogenetic map of sorghum chromosome 1. Fluorescence in situ hybridization analysis with mapped bacterial artificial chromosomes. Genetics 161:345–353

    CAS  Google Scholar 

  • Jessup RW, Burson BL, Burow O, Wang YW, Chang C, Li Z, Paterson AH, Hussey MA (2002) Disomic inheritance, suppressed recombination, and allelic interactions govern apospory in buffelgrass as revealed by genome mapping. Crop Sci 42:1688–1694

    Article  CAS  Google Scholar 

  • Jessup RW, Burson BL, Burow O, Wang YW, Chang C, Li Z, Paterson AH, Hussey MA (2003) Segmental allotetraploidy and allelic interactions in buffelgrass (Pennisetum ciliare (L.) Link syn. Cenchrus ciliaris L.) as revealed by genome mapping. Genome 46:304–313

    Article  PubMed  CAS  Google Scholar 

  • de Jong JH, Fransz P, Zabel P (1999) High resolution FISH in plants–techniques and applications. Trends Plant Sci 4:258–263

    Article  PubMed  Google Scholar 

  • Kamm A, Schmidt T, Heslop-Harrison JS (1994) Molecular and physical organization of highly repetitive, undermethylated DNA from Pennisetum glaucum. Mol Gen Genet 244:420–425

    Article  PubMed  CAS  Google Scholar 

  • Kato S, Fukui K (1998) Condensation pattern (CP) analysis of plant chromosomes by an improved chromosome image analysing system, CHIAS III. Chromosome Res 6:473–479

    Article  PubMed  CAS  Google Scholar 

  • Koltunow A (1993) Apomixis: embryo sacs and embryos formed without meiosis or fertilization in ovules. Plant Cell 5:1425–1437

    Article  PubMed  Google Scholar 

  • Künzel G, Korzun L, Meister A (2000) Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics 154:397–412

    PubMed  Google Scholar 

  • Kurata N, Nonomura K, Harushima Y (2002) Rice genome organization: the centromere and genome interactions. Ann Bot 90:427–435

    Article  PubMed  CAS  Google Scholar 

  • Labombarda P, Busti A, Caceres ME, Pupilli F, Arcioni S (2002) An AFLP marker tightly linked to apomixis reveals hemizygosity in a portion of the apomixis-controlling locus in Paspalum simplex. Genome 45:513–519

    Article  PubMed  CAS  Google Scholar 

  • Liu YG, Nagaki K, Fujita M, Kawaura K, Uozumi M, Ogihara Y (2000) Development of an efficient maintenance and screening system for large-insert genomic DNA libraries of hexaploid wheat in a transformation-competent artificial chromosome (TAC) vector. Plant J 23:687–695

    Article  PubMed  CAS  Google Scholar 

  • Mroczek RJ, Dawe RK (2003) Distribution of retroelements in centromeres and neocentromeres of maize. Genetics 165:809–819

    PubMed  CAS  Google Scholar 

  • Nogler GA (1984) Gametophytic apomixis. In: Johri BM (ed) Embryology of angiosperms. Spring-Verlag, Berlin, Germany, pp 448–452

    Google Scholar 

  • Ohmido N, Kijima K, Akiyama Y, de Jong JH, Fukui K (2000) Quantification of total genomic DNA and selected repetitive sequences reveals concurrent changes in different DNA families in indica and japonica rice. Mol Gen Genet 263:388–394

    Article  PubMed  CAS  Google Scholar 

  • Ozias-Akins P, Roche D, Hanna WW (1998) Tight clustering and hemizygosity of apomixis-linked molecular markers in Pennisetum squamulatum implies genetic control of apospory by a divergent locus that may have no allelic form in sexual genotypes. Proc Natl Acad Sci USA 95:5127–5132

    Article  PubMed  ADS  CAS  Google Scholar 

  • Ozias-Akins P, Akiyama Y, Hanna WW (2003) Molecular characterization of the genomic region linked with apomixis in Pennisetum/Cenchrus. Funct Integr Gen 3:94–104

    Article  CAS  Google Scholar 

  • Roche D, Cong P, Chen Z, Hanna WW, Gustine DL, Sherwood RT, Ozias-Akins P (1999) Short communication: an apospory-specific genomic region is conserved between buffelgrass (Cenchrus ciliaris L.) and Pennisetum squamulatum fresen. Plant J 19:203–208

    Article  PubMed  CAS  Google Scholar 

  • Roche D, Conner JA, Budiman MA, Frisch D, Wing R, Hanna WW, Ozias-Akins P (2002) Construction of BAC libraries from two apomictic grasses to study the microcolinearity of their apospory-specific genomic regions. Theor Appl Genet 104:804–812

    PubMed  CAS  Google Scholar 

  • Sherwood RT, Berg CC, Young BA (1994) Inheritance of apospory in buffelgrass. Crop Sci 34:1490–1494

    Article  Google Scholar 

  • Tanksley SD, Ganal MW, Prince JP, de Vicente MC, Bonierbale MW, Broun P, Fulton TM, Giovannoni JJ, Grandillo S, Martin GB, Messeguer R, Miller JC, Miller L, Paterson AH, Pineda O, Roder MS, Wing RA, Wu W, Young ND (1992) High density molecular linkage maps of the tomato and potato genomes. Genetics 132:1141–1160

    PubMed  CAS  Google Scholar 

  • Visser NC, Spies JJ, Venter HJT (1998a) Aneuploidy in Cenchrus ciliaris (Poaseae, Panicoideae, Paniceae): truth or fiction?. S Afr J Bot 64:337–345

    Google Scholar 

  • Visser NC, Spies JJ, Venter HJT (1998b) Meiotic chromosome behaviour in Cenchrus ciliaris (Poaceae: Panicoideae). Bothalia 28:83–90

    Google Scholar 

  • Yao H, Zhou Q, Li J, Smith H, Yandeau M, Nikolau BJ, Schnable PS (2002) Molecular characterization of meiotic recombination across the 140-kb multigenic a1-sh2 interval of maize. Proc Natl Acad Sci USA 99:6157–6162

    Article  PubMed  ADS  CAS  Google Scholar 

  • Zhong XB, de Jong, JH, Zabel P (1996) Preparation of tomato meiotic pachytene and mitotic metaphase chromosomes suitable for fluorescence in situ hybridization (FISH). Chromosome Res 4:24–28

    PubMed  CAS  Google Scholar 

  • Zhong CX, Marshall JB, Topp C, Mroczek R, Kato A, Nagaki K, Birchler JA, Jiang J, Dawe RK (2002) Centromeric retroelements and satellites interact with maize kinetochore protein CENH3. Plant Cell 14:2825–2836

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for the technical assistance of Anne Bell, Evelyn Perry, Gunawati Gunawan, and Jacolyn Merriman. We appreciate Drs. Joann A. Conner and Shailendra Goel for helpful discussion and comments. We thank Dr. Nobuko Ohmido for providing 5S rDNA plasmid and Prof. Kiichi Fukui and Mr. Seiji Kato for technical advice to make the quantitative ideogram. This work was supported by the USDA National Research Initiative (award no. 02-35301-12283) and the National Science Foundation (award no. 0115911).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peggy Ozias-Akins.

Additional information

Communicated by J. S. Heslop-Harrison

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akiyama, Y., Hanna, W.W. & Ozias-Akins, P. High-resolution physical mapping reveals that the apospory-specific genomic region (ASGR) in Cenchrus ciliaris is located on a heterochromatic and hemizygous region of a single chromosome. Theor Appl Genet 111, 1042–1051 (2005). https://doi.org/10.1007/s00122-005-0020-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-005-0020-5

Keywords

Navigation