Skip to main content
Log in

Construction of dense linkage maps “on the fly” using early generation wheat breeding populations

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

In plant species, construction of framework linkage maps to facilitate quantitative trait loci mapping and molecular breeding has been confined to experimental mapping populations. However, development and evaluation of these populations is detached from breeding efforts for cultivar development. In this study, we demonstrate that dense and reliable linkage maps can be constructed using extant breeding populations derived from a large number of crosses, thus eliminating the need for extraneous population development. Using 565 segregating F1 progeny from 28 four-way cross breeding populations, a linkage map of the hexaploid wheat genome consisting of 3,785 single nucleotide polymorphism (SNP) loci and 22 simple sequence repeat loci was developed. Map estimation was facilitated by application of mapping algorithms for general pedigrees implemented in the software package CRI-MAP. The developed linkage maps showed high rank-order concordance with a SNP consensus map developed from seven mapping studies. Therefore, the linkage mapping methodology presented here represents a resource efficient approach for plant breeding programs that enables development of dense linkage maps “on the fly” to support molecular breeding efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang S, Uszynski G, Mohler V, Lehmensiek A, Kuchel H, Hayden MJ, Howes N, Sharp P, Vaughan P, Rathmell B, Hettner E, Kilian A (2006) Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet 113(8):1409–1420

    Article  PubMed  CAS  Google Scholar 

  • Akhunov E, Chao S, Catana V, See D, Brown-Guedira G, Akhunova A, Dubcovsky J, Cavanagh C, Hayden M (2011) New tools for wheat genetics and breeding: genome-wide analysis of SNP variation. In: McIntosh R (ed) Proceedings of the BGRI 2011 tech. work. Borlaug Global Rust Initiative, St. Paul, MN, pp 92–97

  • Allen AM, Barker GLA, Berry ST, Coghill JA, Gwilliam R, Kirby S, Robinson P, Brenchley RC, D’Amore R, McKenzie N, Waite D, Hall A, Bevan M, Hall N, Edwards KJ (2011) Transcript-specific, single-nucleotide polymorphism discovery and linkage analysis in hexaploid bread wheat (Triticum aestivum L.). Plant Biotechnol J 9(9):1086–1099

    Article  PubMed  CAS  Google Scholar 

  • Bandillo N, Raghavan C, Muyco P, Sevilla MAL, Lobina IT, Dilla-Ermita CJ, Tung C-W, McCouch S, Thomson M, Mauleon R, Singh RK, Gregorio G, Rodoña E, Leung H (2013) Multi-parent advanced generation inter-cross (MAGIC) populations in rice: progress and potential for genetics research and breeding. Rice 6:11

    Article  PubMed  Google Scholar 

  • Beavis WD (1998) QTL analyses: power, precision, and accuracy. In: Paterson AH (ed) Molecular dissection of complex trait. CRC Press, Boca Raton, pp 145–162

    Google Scholar 

  • Bowers JE, Bachlava E, Brunick RL, Rieseberg LH, Knapp SJ, Burke JM (2012) Development of a 10,000 locus genetic map of the sunflower genome based on multiple crosses. G3 2(7):721–729

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cavanagh C, Morell M, Mackay I, Powell W (2008) From mutations to MAGIC: resources for gene discovery, validation and delivery in crop plants. Curr Opin Plant Biol 11(2):215–221

    Article  PubMed  Google Scholar 

  • Cavanagh CR, Chao S, Wang S, Huang BE, Stephen S, Kianian S, Forrest K, Saintenac C, Brown-Guedira GL, Akhunova A, See D, Bai G, Pumphrey M, Tomar L, Wong D, Kong S, Reynolds M, Lopez da Silva M, Bockelman H, Talber L, Anderson J, Dreisigacker S, Baenziger S, Carter A, Korzun V, Morrell PL, Dubcovsky J, Morell M, Sorrells ME, Hayden MJ, Akhunov E (2013) Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci USA 110(20):8057–8062

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cheema J, Dicks J (2009) Computational approaches and software tools for genetic linkage map estimation in plants. Brief Bioinform 10(6):595–608

    Article  PubMed  CAS  Google Scholar 

  • Collard B, Mace E, McPhail M et al (2009) How accurate are the marker orders in crop linkage maps generated from large marker datasets? Crop Pasure Sci 52:362–372

    Article  Google Scholar 

  • Crepieux S, Lebreton C, Servin B, Charmet G (2004) Quantitative trait loci (QTL) detection in multicross inbred designs: recovering QTL identical-by-descent status information from marker data. Genetics 168(3):1737–1749

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Crepieux S, Lebreton C, Flament P, Charmet G (2005) Application of a new IBD-based QTL mapping method to common wheat breeding population: analysis of kernel hardness and dough strength. Theor Appl Genet 111(7):1409–1419

    Article  PubMed  Google Scholar 

  • Deschamps S, Llaca V, May GD (2012) Genotyping-by-sequencing in plants. Biology (Basel) 1(3):460–483

    Google Scholar 

  • Doerge RW (2002) Mapping and analysis of quantitative trait loci in experimental populations. Nat Rev Genet 3(1):43–52

    Article  PubMed  CAS  Google Scholar 

  • Goldstein DR, Zhao H, Speed TP (1997) The effects of genotyping errors and interference on estimation of genetic distance. Hum Hered 47:86–100

    Article  PubMed  CAS  Google Scholar 

  • Green P, Falls K, Crooks S (1990) Documentation for CRI-MAP, version 2.4. www.animalgenome.org. (Accessed 7 Jan 2014)

  • Holland JB (2007) Genetic architecture of complex traits in plants. Curr Opin Plant Biol 10(2):156–161

    Article  PubMed  CAS  Google Scholar 

  • Huang BE, George AW, Forrest KL, Kilian A, Hayden MJ, Morell MK, Cavanagh CR (2012) A multiparent advanced generation inter-cross population for genetic analysis in wheat. Plant Biotechnol J 10(7):826–839

    Article  PubMed  CAS  Google Scholar 

  • Jansen RC, Jannink JL, Beavis WD (2003) Mapping quantitative trait loci in plant breeding populations: use of parental haplotype sharing. Crop Sci 43(3):829–834

    Article  CAS  Google Scholar 

  • Karakousis A, Langridge P (2003) A high-throughput plant DNA extraction method for marker analysis. Plant Mol Biol Rep 21(1):95

    Article  Google Scholar 

  • Kilian A, Huttner E, Wenzl P, Jaccoud D, Carling J, Caig V, Evers M, Heller-Uszynska K, Uszynski G, Cayla C, Patarapuwadol S, Xia L, Yang S, Thomson B (2003) The fast and the cheap: SNP and DArT-based whole genome profiling for crop improvement. In: Proceedings of the international congress in wake double helix from green revolution to gene revolution, Avenue Media, Bologna, Italy, pp 443–461

  • Lander ES, Green P (1987) Construction of multilocus genetic linkage maps in humans. Proc Natl Acad Sci USA 84(8):2363–2367

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Morrell PL, Buckler ES, Ross-Ibarra J (2012) Crop genomics: advances and applications. Nat Rev Genet 13(2):85–96

    CAS  Google Scholar 

  • Qin H, Guo W, Zhang Y-M, Zhang T (2008) QTL mapping of yield and fiber traits based on a four-way cross population in Gossypium hirsutum L. Theor Appl Genet 117(6):883–894

    Article  PubMed  Google Scholar 

  • Rakshit S, Rakshit A, Patil JV (2012) Multiparent intercross populations in analysis of quantitative traits. J Genet 91(1):111–117

    Article  PubMed  Google Scholar 

  • Rosyara UR, Gonzalez-Hernandez JL, Glover KD, Gedye KR, Stein JM (2009) Family-based mapping of quantitative trait loci in plant breeding populations with resistance to Fusarium head blight in wheat as an illustration. Theor Appl Genet 118(8):1617–1631

    Article  PubMed  CAS  Google Scholar 

  • Trebbi D, Maccaferri M, Giuliani S, Sorensen A, Sanguineti MC, Massi A, Tuberosa R (2008) Development of a multi-parental (four-way cross) mapping population for multi-allelic QTL analysis in durum wheat. In: Appels R, Eastwood R, Lagudah E et al (eds) 11th proceedings of the international wheat genetics symposium. Sydney University Press, Brisbane, pp 14–15

    Google Scholar 

  • van Ooijen JW (2006) JoinMap® 4.0: software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen

    Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93(1):77–78

    Article  PubMed  CAS  Google Scholar 

  • Weaver R, Helms C, Mishra SK, Donis-Keller H (1992) Software for analysis and manipulation of genetic linkage data. Am J Hum Genet 50(6):1267–1274

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wu Y, Close TJ, Lonardi S (2008) On the accurate construction of consensus genetic maps. Comput Syst Bioinform Conf 7:285–296

    Google Scholar 

  • Würschum T (2012) Mapping QTL for agronomic traits in breeding populations. Theor Appl Genet 125(2):201–210

    Article  PubMed  Google Scholar 

  • Yu J, Holland JB, McMullen MD, Buckler ES (2008) Genetic design and statistical power of nested association mapping in maize. Genetics 178(1):539–551

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Bai G, Bockus W, Ji X, Pan H (2012) Quantitative trait loci for fusarium head blight resistance in U.S. Hard winter wheat cultivar Heyne. Crop Sci 52(3):1187–1194

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support from the US Wheat and Barley Scab Initiative under ARS Agreement No: 59-0200-3-005 to J.L.G.H. and by the South Dakota Agricultural Experimental Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Gonzalez-Hernandez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 209 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eckard, J.T., Gonzalez-Hernandez, J.L., Chao, S. et al. Construction of dense linkage maps “on the fly” using early generation wheat breeding populations. Mol Breeding 34, 1281–1300 (2014). https://doi.org/10.1007/s11032-014-0116-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-014-0116-1

Keywords

Navigation