Skip to main content

The Current Status and Future Applications of Hairy Root Cultures

  • Chapter
  • First Online:
Biotechnological Approaches for Medicinal and Aromatic Plants

Abstract

Hairy roots are produced when the soil phytopathogen, Agrobacterium rhizogenes, infects a host plant. Just like normal roots, the hairy roots have the capacity to absorb target elements and produce valuable phytochemicals. Hairy roots have thus been exploited in applications like large-scale production of secondary metabolites and recombinant proteins, upscaling in bioreactors, phytomining and phytoremediation. The hairy roots have industrial applications and areĀ used as important research tool for elucidation of secondary metabolite biosynthetic pathways and also expression and function of key genes and regulatory elements. The status of research conducted till date on hairy roots of medicinally important plants with respect to secondary metabolites production, elicitation, recombinant proteins, genetic manipulation, phytoremediation and phytomining is reviewed in the present chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

ASA:

Acetylsalicylic acid

AS:

Acetosyringone

BA:

Benzyladenine

BAP:

6-Benzylamino purine

B5:

Gamborgā€™s B5 medium (Gamborg et al. 1968)

bp:

Base pair

Cd:

Cadmium

2, 4-D:

2, 4-Dichlorophenoxy acetic acid

2, 4-DCP:

2, 4-Dichlorophenol

4ā€²-DM6MPTOX:

4ā€²-Demethyl-6-methoxy podophyllotoxin

DDT:

Dichlorodiphenyltrichloroethane

H2O2 :

Hydrogen peroxide

IAA:

Indole-3-acetic acid

IBA:

Indole-3-butyric acid

JA:

Jasmonic acid

Kn:

Kinetin

kb:

Kilobase

L-DOPA:

L-3, 4-dihydroxyphenylalanine

L:

Litre

LS:

Linsmaier and Skoog medium (Linsmaier and Skoog 1965)

MES:

2-(N-morpholino)ethanesulfonic acid

MPTOX:

6-Methoxy podophyllotoxin

MS:

Murashige and Skoog medium (Murashige and Skoog 1962)

MSRT:

MSĀ +Ā *RT vitamin complex (Khanna and Staba 1968)

NAA:

Ī±-Naphthalene acetic acid

Ni:

Nickel

NiSO4 :

Nickel sulphate

MeJa:

Methyl jasmonate

mM:

Millimole

nM:

Nanomole

PCBs:

Polychlorinated biphenyls

pM:

Picomole

ppm:

Parts per million

rpm:

Revolutions per minute

SA:

Salicylic acid

SH:

Schenk and Hildebrandt medium (Schenk and Hildebrandt 1972)

TCE:

Trichloroethylene

TDZ:

Thidiazuron

TNT:

2, 4, 6-Trinitrotoluene

Ī¼M:

Micromole

UM:

Uchimiya and Murashige medium (Uchimiya and Murashige 1974)

U:

Uranium

WPM:

Woody Plant Medium (Lloyd and McCown 1981)

YE:

Yeast extract

YPS:

Yeast polysaccharide

References

  • Abbasi, B. H., Liu, R., Saxena, P. K., & Liu, C. Z. (2009). Cichoric acid production from hairy root cultures of Echinacea purpurea grown in a modified airlift bioreactor. Journal of Chemical Technology and Biotechnology, 84, 1697ā€“1701. https://doi.org/10.1002/jctb.2233.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Agostini, E., Coniglio, M. S., Milrad, S. R., Tigier, H. A., & Giulietti, A. M. (2003). Phytoremediation of 2, 4-dichlorophenol by Brassica napus hairy root cultures. Biotechnology and Applied Biochemistry, 37, 139ā€“144.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Alderete, L. G. S., Talano, M. A., IbƔƱez, S. G., Purro, S., Agostini, E., Milrad, S. R., & Medina, M. I. (2009). Establishment of transgenic tobacco hairy roots expressing basic peroxidases and its application for phenol removal. Journal of Biotechnology, 139(4), 273ā€“279.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Allan, E. J., Eeswara, J. P., Jarvis, A. P., Mordue (Luntz), A. J., Morgan, E. D., & Stuchbury, T. (2002). Induction of hairy root cultures of Azadirachta indica A. Juss. and their production of azadirachtin and other important insect bioactive metabolites. Plant Cell Reports, 21, 374ā€“379. https://doi.org/10.1007/s00299-002-0523-3.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Al-Shalabi, Z., & Doran, P. M. (2013). Metal uptake and nanoparticle synthesis in hairy root cultures. In P. Doran (Ed.), Biotechnology of Hairy Root Systems. Advances in Biochemical Engineering/Biotechnology (Vol. 134). Berlin/Heidelberg: Springer.

    Google ScholarĀ 

  • Angelini, V. A., Agostini, E., Medina, M. I., & GonzĆ”lez, P. S. (2014). Use of hairy roots extracts for 2, 4-DCP removal and toxicity evaluation by Lactuca sativa test. Environmental Science and Pollution Research, 21, 2531ā€“2539.

    Google ScholarĀ 

  • Araujo, B. S., Charlwood, V. B., & Pletsch, M. (2002). Tolerance and metabolism of phenol and chloroderivatives by hairy root cultures of Daucus carota L. Environmental Pollution, 117, 329ā€“335.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Araujo, B. S., Dec, J., Bollag, J. M., & Pletsch, M. (2006). Uptake and transformation of phenol and chlorophenols by hairy root cultures of Daucus carota, Ipomoea batatas and Solanum aviculare. Chemosphere, 63(4), 642ā€“651.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Arellano, J., Vazquez, F., Villegas, T., & Hernandez, G. (1996). Establishment of transformed root cultures of Perezia cuernavacana producing the sesquiterpene quinone perezone. Plant Cell Reports, 15, 455ā€“458.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Asada, Y., Saito, H., Yoshikawa, T., Sakamoto, K., & Furuya, T. (1993). Biotransformation of 18/3-glycyrrhetinic acid by Ginseng hairy root culture. Phytochemistry, 34(4), 1049ā€“1052.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Bai, A. L. G., & Agastian, P. (2013). Agrobacterium rhizogenes mediated hairy root induction for increased colchicine content in Gloriosa superba L. Journal of Academia and Industrial Research (JAIR), 2(1), 68ā€“73.

    Google ScholarĀ 

  • Bais, H. P., Sudha, G., & Ravishankar, G. A. (2000). Enhancement of growth and coumarin production in hairy root cultures of Cichorium intybus, L. cv. Lucknow Local (Witloof Chicory) under the influence of fungal elicitors. Journal of Bioscience and Bioengineering, 90, 640ā€“645.

    ArticleĀ  Google ScholarĀ 

  • Bais, H. P., Suresh, B., Raghavarao, K. S. M. S., & Ravishankar, G. A. (2002). Performance of hairy root cultures of Cichorium intybus l. in bioreactors of different configurations. In Vitro Cellular & Developmental Biology. Plant, 38, 573ā€“580.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • BĆ”lvĆ”nyos, L., Kursinszki, L., & SzƵke, E. (2001). The effect of plant growth regulators on biomass formation and lobeline production of Lobelia inflata L. hairy root cultures. Plant Growth Regulation, 34, 339ā€“345.

    ArticleĀ  Google ScholarĀ 

  • Banerjee, S., Naqvil, A. A., Mandalt, S., & Ahuja, P. S. (1994). Transformation of Withania somnifera (L) Dunal by Agrobacterium rhizogenes: infectivity and phytochemical studies. Phytotherapy Research, 8, 452ā€“455.

    Google ScholarĀ 

  • Banerjee, S., Shang, T. Q., Wilson, A. M., Moore, A. L., Strand, S. E., Gordon, M. P., & Doty, S. L. (2002). Expression of functional mammalian P450 2E1 in hairy root cultures. Biotechnology and Bioengineering, 77(4), 462ā€“466.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Banerjee, S., Madhusudanan, K. P., Chattopadhyay, S. K., Rahman, L. U., & Khanuja, S. P. S. (2008). Expression of tropane alkaloids in the hairy root culture of Atropa acuminata substantiated by DART mass spectrometric technique. Biomedical Chromatography, 22, 830ā€“834.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • BĆ”nyai, P., BĆ”lvĆ”nyos, I., Kursinszki, L., & Szőke, Ɖ. (2003). Cultivation of Lobelia inflata L. hairy root culture in bioreactor. Acta Horticulturae, (597), 253ā€“256.

    Google ScholarĀ 

  • Baskaran, P., & Jayabalan, N. (2009). Psoralen production in hairy roots and adventitious roots cultures of Psoralea corylifolia. Biotechnology Letters, 31, 1073ā€“1077. https://doi.org/10.1007/s10529-009-9957-9.

  • Belabbassi, O., Khelifi-Slaoui, M., Zaoui, D., Benyammi, R., Khalfallah, N., Malik, S., Makhzoum, A., & Khelifi, L. (2016). Synergistic effects of polyploidization and elicitation on biomass and hyoscyamine content in hairy roots of Datura stramonium. Biotechnologie, Agronomie, SociĆ©tĆ© et Environnement, 20, 408ā€“416.

    CASĀ  Google ScholarĀ 

  • Bhadra, R., Vani, S., & Shank, J. V. (1993). Production of indole alkaloids by selected hairy root lines of Catharanthus roseus. Biotechnology and Bioengineering, 41, 581ā€“592.

    Google ScholarĀ 

  • Boominathan, R., & Doran, P. M. (2003). Cadmium tolerance and antioxidative defenses in hairy roots of the cadmium hyperaccumulator, Thlaspi caerulescens. Biotechnology and Bioengineering, 83, 158ā€“167.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Boominathan, R., Saha-Chaudhury, N. M., Sahajwalla, V., & Doran, P. M. (2004). Production of nickel bio-ore from hyperaccumulator plant biomass: applications in phytomining. Biotechnology and Bioengineering, 86, 243ā€“250.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Borkataky, M., Kakoti, B. B., & Saikia, L. R. (2014). Analysis of primary and secondary metabolite profile of Costus speciosus (Koen Ex.Retz.) Sm. rhizome. Journal of Natural Product and Plant Resources, 4(3), 71ā€“76.

    Google ScholarĀ 

  • Brooks, R. R., & Robinson, B. H. (1998). The potential use of hyperaccumulators and other plants for phytomining. In R. R. Brooks (Ed.), Plants that hyperaccumulate heavy metals (pp. 327ā€“356). Wallingford: CAB International.

    Google ScholarĀ 

  • Buitelaar, R. M., Langenhoff, A. A. M., Heidstra, R., & Tramper, J. (1991). Growth and thiophene production by hairy root cultures of Tagetes patula in various two-liquid-phase bioreactors. Enzyme and Microbial Technology, 13, 487ā€“494.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Bulgakov, V. P., Khodakovskaya, M. V., Labetskaya, N. V., Chernoded, G. K., & Zhuravle, Y. N. (1998). The impact of plant rolC oncogene on ginsenoside production by Ginseng hairy root cultures. Phytochemistry, 49(7), 1929ā€“1934.

    Google ScholarĀ 

  • Cardillo, A. B., Otalvaro, A. A. M., Busto, V. D., Talou, J. R., Velasquez, L. M. E., & Giulietti, A. M. (2010). Scopolamine, anisodamine and hyoscyamine production by Brugmansia candida hairy root cultures in bioreactors. Process Biochemistry, 45, 1577ā€“1581.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Carrizo, C. N., Pitta-Alvareza, S. I., Koganb, M. J., Giuliettia, A. M., & Tomaro, M. L. (2001). Occurrence of cadaverine in hairy roots of Brugmansia candida. Phytochemistry, 57, 759ā€“763.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Caspeta, L., Quintero, R., & Villarreal, M. L. (2005). Novel airlift reactor fitting for hairy root cultures: Developmental and performance studies. Biotechnology Progress, 21, 735ā€“740.

    Google ScholarĀ 

  • Celma, C. R., Palazon, J., Cusido, R. M., Pinol, M. T., & Keil, M. (2001). Decreased scopolamine yield in field-grown Duboisia plants regenerated from hairy roots. Planta Medica, 67(7), 249ā€“253.

    Google ScholarĀ 

  • Chashmi, N. A., Sharifi, M., Karimi, F., & Rahnama, H. (2010). Differential production of tropane alkaloids in hairy roots and in vitro cultured two accessions of Atropa belladonnaĀ L under nitrate treatments. Zeitschrift fĆ¼r Naturforschung. Section C, 65, 373ā€“379.

    Google ScholarĀ 

  • Chaudhury, A., & Pal, M. (2010). Induction of shikonin production in hairy root cultures of Arnebia hispidissima via Agrobacterium rhizogenes-mediated genetic transformation. Journal of Crop Science and Biotechnology, 13(2), 99ā€“106.

    ArticleĀ  Google ScholarĀ 

  • Chen, H., Chen, F., Zhang, Y. L., & Song, J. Y. (1999). Production of lithospermic acid B and rosmarinic acid in hairy root cultures of Salvia miltiorrhiza. Journal of Industrial Microbiology & Biotechnology, 22, 133ā€“138.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Chen, S. L., Yu, H., Luo, H. M., Wu, Q., Li, C. F., & Steinmetz, A. (2016). Conservation and sustainable use of medicinal plants: problems, progress, and prospects. Chinese Medicine, 11, 37. https://doi.org/10.1186/s13020-016-0108-7.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Cheruvathur, M. K., Jose, B., & Thomas, T. D. (2015). Rhinacanthin production from hairy root cultures of Rhinacanthus nasutus (L.) Kurz. In Vitro Cellular & Developmental Biology. Plant, 51, 420ā€“427. https://doi.org/10.1007/s11627-015-9694-9.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Christen, P., Aoki, T., & Shimomura, K. (1992). Characteristics of growth and tropane alkaloid production in Hyoscyamus albus hairy roots transformed with Agrobacterium rhizogenes A4. Plant Cell Reports, 11, 597ā€“600.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Condori, J., Sivakumar, G., Hubstenberger, J., Dolan, M. C., Sobolev, V. S., & Medina-Bolivar, F. (2010). Induced biosynthesis of resveratrol and the prenylated stilbenoids arachidin-1 and arachidin-3 in hairy root cultures of peanut: effects of culture medium and growth stage. Plant Physiology and Biochemistry, 48, 310ā€“318.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Constabel, C. P., & Towers, G. H. N. (1988). Thiarubrine accumulation in hairy root cultures of Chaenactis douglasii. Plant Physiology, 133, 67ā€“72.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Deno, H., Yamagata, H., Emoto, T., Yoshioka, T., Yamada, Y., & Fujita, Y. (1987). Scopolamine production by root cultures of Duboisia myoporoides: II. Establishment of a hairy root culture by infection with Agrobacterium rhizogenes. Journal of Plant Physiology, 131, 315ā€“313.

    Google ScholarĀ 

  • Drake, P. M. W., Madeira, L. M., Szeto, T. H., & Ma, J. K. C. (2013). Transformation of Althaea officinalis L. by Agrobacterium rhizogenes for the production of transgenic roots expressing the anti-HIV microbicide cyanovirin-N. Transgenic Research, 22, 1225ā€“1229. https://doi.org/10.1007/s11248-013-9730-7.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Du, M., Wu, X. J., Ding, J., Hu, Z. B., White, K. N., & Branford-White, C. J. (2003). Astragaloside IV and polysaccharide production by hairy roots of Astragalus membranaceus in bioreactors. Biotechnology Letters, 25, 1853ā€“1856.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Dupraz, J. M., Christen, P., & Kapetanidis, I. (1994). Tropane alkaloids in transformed roots of Datura quercifolia. Planta Medica, 60(2), 158ā€“162.

    Google ScholarĀ 

  • Eapen, S., Suseelan, K. N., Tivarekar, S., Kotwal, S. A., & Mitra, R. (2003). Potential for rhizofiltration of uranium using hairy root cultures of Brassica juncea and Chenopodium amaranticolor. Environmental Research, 91, 127ā€“133.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • EMBO course (1982) The use of Ti plasmid as cloning vector for genetic engineering in plants, August 4ā€“23; pp 109

    Google ScholarĀ 

  • Fang, J., Reichelt, M., Hidalgo, W., Agnolet, S., & Schneider, B. (2012). Tissue-specific distribution of secondary metabolites in rapeseed (Brassica napus L.). PLoS One, 7(10), e48006.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  • Frankfater, C. R., Dowd, M. K., & Triplett, B. A. (2009). Effect of elicitors on the production of gossypol and methylated gossypol in cotton hairy roots. Plant Cell, Tissue and Organ Culture, 98, 341ā€“349.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Fu, C. X., Xu, Y., Zhao, D. X., & Shan, M. F. (2006). A comparison between hairy root cultures and wild plants of Saussurea involucrata in phenylpropanoids production. Plant Cell Reports, 24, 750ā€“754.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Fu, X., Yin, Z. P., Chen, J. G., Shangguan, X. C., Wang, X., Zhang, Q. F., & Peng, D. Y. (2015). Production of chlorogenic acid and its derivatives in hairy root cultures of Stevia rebaudiana. Journal of Agricultural and Food Chemistry, 63, 262ā€“268. https://doi.org/10.1021/jf504176r.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Gai, Q. Y., Jiao, J., Luo, M., Wei, Z. F., Zu, Y. G., Ma, W., & Fu, Y. J. (2015). Establishment of hairy root cultures by Agrobacterium rhizogenes mediated transformation of Isatis tinctoria L. for the efficient production of flavonoids and evaluation of antioxidant activities. PLoS One. https://doi.org/10.1371/journal.pone.0119022.

  • Gamborg, O. L., Miller, R. A., & Ojima, O. (1968). Nutrient requirements of suspension cultures of soybean root cell. Experimental Cell Research, 50, 151ā€“158.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Gangopadhyay, M., Dewanjee, S., & Bhattacharya, S. (2011). Enhanced plumbagin production in elicited Plumbago indica hairy root cultures. Journal of Bioscience and Bioengineering, 111(6), 706ā€“710.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Gaume, A., Komarnytsky, S., Borisjuk, N., & Raskin, I. (2003). Rhizosecretion of recombinant proteins from plant hairy roots. Plant Cell Reports, 21, 1188ā€“1193.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Ge, X. C., & Wu, J. Y. (2005). Tanshinone production and isoprenoid pathways in Salvia miltiorrhiza hairy roots induced by Ag+ and yeast elicitor. Plant Science, 168, 487ā€“491.

    Google ScholarĀ 

  • Geerlings, A., Hallard, D., Caballero, A. M., Cardoso, I. L., Heijden, R., & Verpoorte, R. (1999). Alkaloid production by a Cinchona officinalis ā€˜Ledgerianaā€™ hairy root culture containing constitutive expression constructs of tryptophan decarboxylase and strictosidine synthase cDNAs from Catharanthus roseus. Plant Cell Reports, 19, 191ā€“196.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • GonzĆ”lez, P. S., Capozucca, C. E., Tigier, H. A., Milrad, S. R., & Agostini, E. (2006). Phytoremediation of phenol from wastewater, by peroxidases of tomato hairy root cultures. Enzyme and Microbial Technology, 39, 647ā€“653.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • GonzĆ”lez, P. S., Maglione, G. A., Giordana, M., Paisio, C. E., Talano, M. A., & Agostini, E. (2012). Evaluation of phenol detoxification by Brassica napus hairy roots, using Allium cepa test. Environmental Science and Pollution Research, 19, 482. https://doi.org/10.1007/s11356-011-0581-6.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Grzegorczyk, I., & Wysokinska, H. (2010). Antioxidant compounds in Salvia officinalis L. shoot and hairy root cultures in the nutrient sprinkle bioreactor. Acta Societatis Botanicorum Poloniae, 79(1ā€“7), 7ā€“10.

    CASĀ  Google ScholarĀ 

  • Gujarathi, N. P., Haney, B. J., Park, H. J., Wickramasinghe, S. R., & Linden, J. C. (2005). Hairy roots of Helianthus annuus: a model system to study phytoremediation of tetracycline and oxytetracycline. Biotechnology Progress, 21, 775ā€“780.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Gupta, S. K., Liu, R. B., Liaw, S. Y., Chan, H. S., & Tsay, H. S. (2011). Enhanced tanshinone production in hairy roots of ā€˜Salvia miltiorrhiza Bungeā€™ under the influence of plant growth regulators in liquid culture. Botanical Studies, 52, 435ā€“443.

    CASĀ  Google ScholarĀ 

  • Gurusamy, P. D., Schaefer, H., Ramamoorthy, S., & Wink, M. (2017). Biologically active recombinant human erythropoietin expressed in hairy root cultures and regenerated plantlets of Nicotiana tabacum L. PLoS One. https://doi.org/10.1371/journal.pone.018236.

  • Ha, N. T., Sakakibara, M., & Sano, S. (2011). Accumulation of indium and other heavy metals by Eleocharis acicularis: An option for phytoremediation and phytomining. Bioresource Technology, 102(3), 2228ā€“2234.

    Google ScholarĀ 

  • Ha, L. T., Pawlicki-Jullian, N., Pillon-Lequart, M., Boitel-Conti, M., Duong, H. X., & Gontier, E. (2016). Hairy root cultures of Panax vietnamensis, a promising approach for the production of ocotillol-type ginsenosides. Plant Cell, Tissue and Organ Culture, 126, 93ā€“103.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Habibi, P., Piri, K., Deljo, A., Moghadam, Y. A., & Ghiasvand, T. (2015). Increasing scopolamine content in hairy roots of Atropa belladonna using bioreactor. Brazilian Archives of Biology and Technology, 58(2), 166ā€“174.

    Google ScholarĀ 

  • HƤggman, H. M., & Aronen, T. S. (2000). Agrobacterium rhizogenes for rooting recalcitrant woody plants. In S. M. Jain & S. C. Minocha (Eds.), Molecular biology of woody plants. Forestry sciences (Vol. 66). Dordrecht: Springer.

    Google ScholarĀ 

  • HƤkkinen, S. T., Raven, N., Henquet, M., Laukkanen, M. L., Anderlei, T., PitkƤnen, J. P., Twyman, R. M., Bosch, D., Oksman-Caldentey, K. M., Schillberg, S., & Ritala, A. (2014). Molecular farming in tobacco hairy roots by triggering the secretion of a pharmaceutical antibody. Biotechnology and Bioengineering, 111(2), 336ā€“346.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Hamill, J. D., Parr, A. J., Robins, R. J., & Rhodes, M. J. C. (1986). Secondary product formation by cultures of Beta vulgaris and Nicotiana rustica transformed with Agrobacterium rhizogenes. Plant Cell Reports, 5, 111ā€“114.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Hamill, J. D., Robins, R. J., & Rhodes, M. J. C. (1989). Alkaloid production by transformed root cultures of Cinchona ledgeriana. Planta Medica, 55, 354ā€“357.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Heller, R. (1953). Studies on mineral nutrition of in vitro plant tissue cultures. Annals Scientific and Natural Botany Biology of Vegetables. 11th Ser. 14, 1ā€“223.

    Google ScholarĀ 

  • Hilton, M. G., & Rhodes, M. J. C. (1990). Growth and hyoscyamine production of 'hairy root' cultures of Datura stramonium in a modified stirred tank reactor. Applied Microbiology and Biotechnology, 33, 132ā€“138.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Hitaka, Y., Kino-oka, M., Taya, M., & Tone, S. (1997). Effect of liquid flow on culture of red beet hairy roots in single column reactor. JĀ Chem Eng Jpn, 30(6), 1070ā€“1075.

    Google ScholarĀ 

  • Huang, S. H., Vishwakarma, R. K., Lee, T. T., Chan, H. S., & Tsay, H. S. (2014). Establishment of hairy root lines and analysis of iridoids and secoiridoids in the medicinal plant Gentiana scabra. Botanical Studies, 55, 17.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Huber, C., Bartha, B., Harpaintner, R., & Schrƶder, P. (2009). Metabolism of acetaminophen (paracetamol) in plants-two independent pathways result in the formation of a glutathione and a glucose conjugate. Environemental Science and Pollution Research, 16, 206ā€“213.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Huet, Y., Ekouna, J. P. E., Caron, A., Mezreb, K., Boitel-Conti, M., & Guerineau, F. (2014). Production and secretion of a heterologous protein by turnip hairy roots with superiority over tobacco hairy roots. Biotechnology Letters, 36, 181ā€“190.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Hwang, H. H., Yu, M., & Lai, E. M. (2017). Agrobacterium-mediated plant transformation: Biology and applications. The Arabidopsis Book, 15, e0186. https://doi.org/10.1199/tab.0186.

  • Ishimaru, K., & Shimomura, K. (1991). Tannin production in hairy root culture of Geranium thunbergii. Phytochemistry, 30(3), 825ā€“828.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Ishimaru, K., Sudo, H., Satake, M., & Shimomura, K. (1990). Phenyl glucosides from a hairy root culture of Swertia japonica. Phytochemistry, 29(12), 3823ā€“3825.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Jaremicz, Z., Luczkiewicz, M., Kokotkiewicz, A., Krolicka, A., & Sowinski, P. (2014). Production of tropane alkaloids in Hyoscyamus niger (black henbane) hairy roots grown in bubble-column and spray bioreactors. Biotechnology Letters, 36, 843ā€“853.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Jaziri, M., Legros, M., Homes, J., & Vanhaelen, M. (1988). Tropine alkaloids production by hairy root cultures of Datura stramonium and Hyoscyamus niger. Phytochemistry, 27(2), 419ā€“420.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Jaziri, M., Homes, J., & Shimomura, K. (1994). An unusual root tip formation in hairy root culture of Hyoscyamus muticus. Plant Cell Reports, 13, 349ā€“352.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Jeong, G. T., & Park, D. H. (2006). Enhanced secondary metabolite biosynthesis by elicitation in transformed plant root system: Effect of abiotic elicitors. Applied Biochemistry and Biotechnology, 129(132), 436ā€“446.

    Google ScholarĀ 

  • Jeong, G. T., Park, D. H., Hwang, B., Park, K., Kim, S. W., & Woo, J. C. (2002). Studies on mass production of transformed Panax ginseng hairy roots in bioreactor. In M. Finkelstein, J. D. McMillan, & B. H. Davison (Eds.), Biotechnology for fuels and chemicals. Appl Biochem Biotechnol (pp. 1115ā€“1127). Totowa: Humana Press.

    ChapterĀ  Google ScholarĀ 

  • Jin, U. H., Chun, J. A., Han, M. O., Lee, J. W., Yi, Y. B., Lee, S. W., & Chung, C. H. (2005). Sesame hairy root cultures for extra-cellular production of a recombinant fungal phytase. Process Biochemistry, 40(12), 3754ā€“3762.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Jung, G., & Tepfer, D. (1987). Use of genetic-transformation by the Ri T-DNA of Agrobacterium rhizogenes to stimulate biomass and tropane alkaloid production in Atropa belladonna and Calystegia sepium roots grown-in vitro. Plant Science, 50(2), 145ā€“151.

    Google ScholarĀ 

  • Jung, K. H., Kwak, S. S., Choi, C. Y., & Liu, J. R. (1995). An interchangeable system of hairy root and cell suspension cultures of Catharanthus roseus for indole alkaloid production. Plant Cell Reports, 15, 51ā€“54.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Kang, S., Ajjappala, H., Seo, H. H., Sim, J. S., Yoon, S. H., Koo, B. S., Kim, Y. H., Lee, S., & Hahn, B. S. (2011). Expression of the human tissue-plasminogen activator in hairy roots of oriental melon (Cucumis melo). Plant Molecular Biology Reporter, 29, 919ā€“926.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Kayser, O., & Quax, W. G. (2007). Medicinal plant biotechnology (Vol. 1, p. 604). Weinheim: WILEY-VCH Verlag GmbH & Co..

    Google ScholarĀ 

  • Khalili, G. M., Hasanloo, T., & Tabar, S. K. K. (2010). Ag+ enhanced silymarin production in hairy root cultures of Silybum marianum L. Plant. OMICS, 3, 109ā€“114.

    Google ScholarĀ 

  • Khanna, P., & Staba, J. (1968). Antimicrobials from plant tissue cultures. Lloydia, 31, 180ā€“189.

    Google ScholarĀ 

  • Kim, Y. H., & Yoo, Y. J. (1996). Peroxidase production from carrot hairy root cell culture. Enzyme and Microbial Technology, 18, 531ā€“535.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Kim, Y. J., Weathers, P. J., & Wyslouzil, B. E. (2002). Growth of Artemisia annua hairy roots in liquid- and gas-phase reactors. Biotechnology and Bioengineering, 80(4), 454ā€“464.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Kim, O. T., Manickavasagm, M., Kim, Y. J., Jin, M. R., Kim, K. S., Seong, N. S., & Hwang, B. (2005). Genetic transformation of Ajuga multiflora Bunge with Agrobacterium rhizogenes and 20-hydroxyecdysone production in hairy roots. Journal of Plant Biology, 48, 258ā€“262. https://doi.org/10.1007/BF03030416.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Kim, O. T., Bang, K. H., Shin, Y. S., Lee, M. J., Jung, S. J., Hyun, D. Y., Kim, Y. C., Seong, N. S., Cha, S. W., & Hwang, B. (2007). Enhanced production of asiaticoside from hairy root cultures of Centella asiatica (L.) Urban elicited by methyl jasmonate. Plant Cell Reports, 26, 1941ā€“1949.

    Google ScholarĀ 

  • Kim, O. T., Bang, K. H., Kim, Y. C., Hyun, D. Y., Kim, M. Y., & Cha, S. W. (2009). Upregulation of ginsenoside and gene expression related to triterpene biosynthesis in Ginseng hairy root cultures elicited by methyl jasmonate. Plant Cell, Tissue and Organ Culture, 9, 25ā€“33.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Kim, S. R., Sim, J. S., Ajjappala, H., Kim, Y. H., & Hahn, B. S. (2012). Expression and large-scale production of the biochemically active human tissue-plasminogen activator in hairy roots of Oriental melon (Cucumis melo). Journal of Bioscience and Bioengineering, 113(1), 106ā€“111.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Kim, O. T., Yoo, N. H., Kim, G. S., Kim, Y. C., Bang, K. H., Hyun, D. Y., Kim, S. H., & Kim, M. Y. (2013). Stimulation of Rg3 ginsenoside biosynthesis in Ginseng hairy roots elicited by methyl jasmonate. Plant Cell, Tissue and Organ Culture, 112, 87ā€“93.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Kino-oka, M., Hongo, Y., Taya, M., & Tone, S. (1992). Culture of red beet hairy root in bioreactor and recovery of pigment released from the cells by repeated treatment of oxygen starvation. JĀ Chem Eng Jpn, 25(5), 490ā€“495.

    Google ScholarĀ 

  • Kintzios, S., Makri, O., Pistola, E., Matakiadis, T., Shi, H. P., & Economou, A. (2004). Scale-up production of puerarin from hairy roots of Pueraria phaseoloides in an airlift bioreactor. Biotechnology Letters, 26, 1057ā€“1059.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Kisiel, W., Stojakowska, A., Malarz, J., & Kohlmunzer, S. (1995). Sesquiterpene lactones in Agrobacterium rhizogenes-transformed hairy root culture of Lactuca virosa. Phytochemistry, 40(4), 1139ā€“1140.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Kittipongpatana, N., Hock, R. S., & Porter, J. R. (1998). Production of solasodine by hairy root, callus, and cell suspension cultures of Solanum aviculare Forst. Plant Cell, Tissue and Organ Culture, 52, 133ā€“143.

    Google ScholarĀ 

  • Kochan, E., KrĆ³licka, A., & Chmiel, A. (2012). Growth and ginsenoside production in Panax quinquefolium hairy roots cultivated in flasks and nutrient sprinkle bioreactor. Acta Physiologiae Plantarum, 34, 1513ā€“1518.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Kochan, E., Szymańska, G., & Szymczyk, P. (2014). Effect of sugar concentration on ginsenoside biosynthesis in hairy root cultures of Panax quinquefolium cultivated in shake flasks and nutrient sprinkle bioreactor. Acta Physiologiae Plantarum, 36, 613ā€“619.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Kochan, E., Szymczyk, P., KuÅŗma, Ł., & Szymańska, G. (2016). Nitrogen and phosphorus as the factors affecting ginsenoside production in hairy root cultures of Panax quinquefolium cultivated in shake flasks and nutrient sprinkle bioreactor. Acta Physiologiae Plantarum, 38, 149.

    Google ScholarĀ 

  • Kochan, E., Szymczyk, P., KuÅŗma, Ł., Lipert, A., & Szymańska, G. (2017). Yeast extract stimulates ginsenoside production in hairy root cultures of American ginseng cultivated in shake flasks and nutrient sprinkle bioreactors. Molecules, 22(6), 880. https://doi.org/10.3390/molecules22060880.

  • Komarnytsky, S., Gaume, A., Garvey, A., Borisjuk, N., & Raskin, I. (2004). A quick and efficient system for antibiotic-free expression of heterologous genes in tobacco roots. Plant Cell Reports, 22, 765ā€“773.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Kondo, O., Honda, H., Taya, M., & Kobayashi, T. (1989). Comparison of growth properties of carrot hairy root in various bioreactors. Applied Microbiology and Biotechnology, 32, 291ā€“294.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Kƶrner C (2016) Plant adaptation to cold climates. F1000Research 2016, 5(F1000 Faculty Rev):2769

    Google ScholarĀ 

  • KrĆ³licka, A., Staniszewska, I. I., Bielawski, K., Maliński, E., Szafranek, J., & Łojkowska, E. (2001). Establishment of hairy root cultures of Ammi majus. Plant Science: An International Journal of Experimental Plant Biology, 160(2), 259ā€“264.

    Google ScholarĀ 

  • Kucerova, P., Mackova, M., Chroma, L., Burkhard, J., Triska, J., Demnerova, K., & Macek, T. (2000). Metabolism of polychlorinated biphenyls by Solanum nigrum hairy root clone SNC-9O and analysis of transformation products. Plant and Soil, 225, 109ā€“115.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Kumar, G. B. S., Ganapathi, T. R., Srinivas, L., Revathi, C. J., & Bapat, V. A. (2006). Expression of hepatitis B surface antigen in potato hairy roots. Plant Science, 170(5), 918ā€“925.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Kumar, V., Rajauria, G., Sahai, V., & Bisaria, V. S. (2012). Culture filtrate of root endophytic fungus Piriformospora indica promotes the growth and lignan production of Linum album hairy root cultures. Process Biochemistry, 47, 901ā€“907.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Kuzma, Ł., Skrzypek, Z., & Wysokinska, H. (2006). Diterpenoids and triterpenoids in hairy roots of Salvia sclarea. Plant Cell, Tissue and Organ Culture, 84, 171ā€“179.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Kuzma, L., Bruchajzer, E., & Wysokinska, H. (2009). Methyl jasmonate effect on diterpenoid accumulation in Salvia sclarea hairy root culture in shake flasks and sprinkle bioreactor. Enzyme and Microbial Technology, 44, 406ā€“410.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Lee, L. Y., & Gelvin, S. B. (2008). T-DNA binary vectors and systems. Plant Physiology, 146(2), 325ā€“332. https://doi.org/10.1104/pp.107.113001.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  • Lee, K. T., Suzuki, T., Yamakawa, T., Kodama, T., Igarashi, Y., & Shimomura, K. (1999). Production of tropane alkaloids by transformed root cultures of Atropa belladonna in stirred bioreactors with a stainless steel net. Plant Cell Reports, 18, 567ā€“571.

    Google ScholarĀ 

  • Lee, S. Y., Cho, S. I., Park, M. H., Kim, Y. K., Choi, J. E., & Park, S. U. (2007). Growth and rutin production in hairy root cultures of buckwheat (Fagopyrum esculentum M.). Preparative Biochemistry & Biotechnology, 37(3), 239ā€“246.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Lee, K. S. Y., Xu, H., Kim, Y. K., & Park, S. U. (2008). Rosmarinic acid production in hairy root cultures of Agastache rugosa Kuntze. World Journal of Microbiology and Biotechnology, 24, 969ā€“972.

    ArticleĀ  Google ScholarĀ 

  • Linsmaier, E. M., & Skoog, F. (1965). Organic growth factor requirements of tobacco tissue culture. Plant Physiology, 21, 487ā€“492.

    ArticleĀ  Google ScholarĀ 

  • Liu, C. Z., Wang, Y. C., Ouyang, F., Ye, H. C., & Li, G. F. (1998a). Production of artemisinin by hairy root cultures of Artemisia annua L in bioreactor. Biotechnology Letters, 20(3), 265ā€“268.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Liu, C., Wang, Y., Guo, C., Ouyang, F., Ye, H., & Li, G. (1998b). Enhanced production of artemisinin by Artemisia annua L hairy root cultures in a modified inner-loop airlift bioreactor. Bioprocess Engineering, 19, 389ā€“392.

    Google ScholarĀ 

  • Liu, C., Towler, M. J., Medrano, G., Cramer, C. L., & Weathers, P. J. (2009). Production of mouse interleukin-12 is greater in tobacco hairy roots grown in a mist reactor than in an airlift reactor. Biotechnology and Bioengineering, 102(4), 1074ā€“1086.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Lloyd, G., & McCown, B. (1981). Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Combined Proceedings, International Plant Propagatorsā€™ Society, 30, 421ā€“427.

    Google ScholarĀ 

  • Lokhande, V. H., Kudale, S., Nikalje, G., Desai, N., & Suprasanna, P. (2015). Hairy root induction and phytoremediation of textile dye, Reactive green 19A-HE4BD, in a halophyte, Sesuvium portulacastrum (L.) L. Biotechnology Reports, 28, 56ā€“63.

    ArticleĀ  Google ScholarĀ 

  • Lonoce, C., Salem, R., Marusic, C., Jutras, P. V., Scaloni, A., Salzano, A. M., Lucretti, S., Steinkellner, H., Benvenuto, E., & Donini, M. (2016). Production of a tumour-targeting antibody with a human-compatible glycosylation profile in N. benthamiana hairy root cultures. Biotechnology Journal, 11(9), 1209ā€“1220. https://doi.org/10.1002/biot.201500628.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Lopez, E. G., Ramarez, E. G. R., Guzman, O. G., & Calva, G. C. (2014). MALDI-TOF characterization of hGH1 produced by hairy root cultures of Brassica oleracea var. italica grown in an airlift with mesh bioreactor. Biotechnology Progress, 30(1), 161ā€“171. https://doi.org/10.1002/btpr.1829.

  • Luchakivskaya, Y. S., Olevinskaya, Z. M., Kishchenko, E. M., NYA, S., & Kuchuk, N. V. (2012). Obtaining of hairy root, callus and suspension cell cultures of carrot (Daucus carota L.) able to accumulate human interferon alpha-2b. Cytology and Genetics, 46(1), 15ā€“20.

    Google ScholarĀ 

  • Ludwig-MĆ¼ller, J., Georgiev, M., & Bley, T. (2008). Metabolite and hormonal status of hairy root cultures of Devilā€™s claw (Harpagophytum procumbens) in flasks and in a bubble column bioreactor. Process Biochemistry, 43, 15ā€“23.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Macek, T., Kotbra, P., Suchova, M., Skacel, F., Demnerova, K., & Ruml, T. (1994). Accumulation of cadmium by hairy-root cultures of Solanum nigrum. Biotechnology Letters, 16, 621ā€“624.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • MackovĆ”, M., Macek, T., KučerovĆ”, P., Burkhard, J., PazlarovĆ”, J., & DemnerovĆ”, K. (1997). Degradation of polychlorinated biphenyls by hairy root culture of Solanum nigrum. Biotechnology Letters, 19, 787ā€“790.

    ArticleĀ  Google ScholarĀ 

  • Madhusudanan, K. P., Banerjee, S., Khanuja, S. P. S., & Chattopadhyay, S. K. (2008). Analysis of hairy root culture of Rauvolfia serpentina using direct analysis in real time mass spectrometric technique. Biomedical Chromatography, 22, 596ā€“600.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Magnotta, M., Murata, J., Chen, J., & Luca, V. D. (2007). Expression of deacetylvindoline-4-O-acetyltransferase in Catharanthus roseus hairy roots. Phytochemistry, 68, 1922ā€“1931.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Maheswari, U. R., Selvamurugan, C., Jayabarath, J., & Lakshmi, P. A. (2011). Hairy root culture of an important medicinal plant: Coleus forskohlii. International Journal of Agricultural Science, 3(2), 82ā€“89.

    Google ScholarĀ 

  • Mai, N. T. P., Boitel-Conti, M., & Guerineau, F. (2016). Arabidopsis thaliana hairy roots for the production of heterologous proteins. Plant Cell, Tissue and Organ Culture, 127, 489ā€“496. https://doi.org/10.1007/s11240-016-1073-7.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Malarz, J., & Kisiel, W. (1999). Effect of methyl jasmonate on the production of sesquiterpene lactones in the hairy root culture of Lactuca virosa L. Acta Societatis Botanicorum Poloniae, 68(2), 119ā€“121.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Malarz, J., Stojakowska, A., & Kisiel, W. (2002). Sesquiterpene lactones in a hairy root culture of Cichorium intybus. Zeitschrift fĆ¼r Naturforschung, 57, 994ā€“997.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Mallol, A., Cusido, R. M., Palazon, J., Bonfill, M., Morales, C., & Pinol, M. T. (2001). Ginsenoside production in different phenotypes of Panax ginseng transformed roots. Phytochemistry, 57, 365ā€“371.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Mannan, A., Shaheen, N., Arshad, W., Qureshi, R. A., Zia, M., & Mirza, B. (2008). Hairy roots induction and artemisinin analysis in Artemisia dubia and Artemisia indica. African Journal of Biotechnology, 7(18), 3288ā€“3292.

    CASĀ  Google ScholarĀ 

  • Mano, Y., Ohkawa, H., & Yamada, Y. (1989). Production of tropane alkaloids by hairy root cultures of Duboisia leichhardtii transformed by Agrobacterium rhizogenes. Plant Science, 59, 191ā€“201.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Marsh, Z., Yang, T., Nopo-olazabal, W. S., Ingle, T., Joshee, N., & Medina-bolivar, M. (2014). Effect of light, methyl jasmonate and cyclodextrin on production of phenolic compounds in hairy root cultures of Scutellaria lateriflora. Phytochemistry, 107, 50ā€“60.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Martin, K. P., Sabovljevic, A., & Madassery, J. (2011). High-frequency transgenic plant regeneration and plumbagin production through methyl jasmonate elicitation from hairy roots of Plumbago indica L. Journal of Crop Science and Biotechnology, 14, 205ā€“212.

    ArticleĀ  Google ScholarĀ 

  • MartĆ­nez, C., Petruccelli, S., Giulietti, A. M., & Alvarez, M. A. (2005). Expression of the antibody 14D9 in Nicotiana tabacum hairy roots. Electronic Journal of Biotechnology, 8(2), 170ā€“176.

    ArticleĀ  Google ScholarĀ 

  • Matsuda, Y., Toyoda, H., Sawabe, A., Maeda, K., Shimizu, N., Fujita, N., Fujita, T., Nonomura, T., & Ouchi, S. (2000). A hairy root culture of melon produces aroma compounds. Journal of Agricultural and Food Chemistry, 48, 1417ā€“1420.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Matsumoto, T., & Tanaka, N. (1991). Production of phytoecdysteroids by hairy root cultures of Ajuga reptans var. atropurpurea. Agricultural and Biological Chemistry, 55(4), 1019ā€“1025.

    Google ScholarĀ 

  • Medina-BolĆ­var, F., & Cramer, C. (2004). Production of recombinant proteins by hairy roots cultured in plastic sleeve bioreactors. In P. BalbĆ”s & A. Lorence (Eds.), Recombinant gene expression: Reviews and protocols. Methods in Molecular Biology (pp. 351ā€“363). Totowa: Humana Press Inc.

    ChapterĀ  Google ScholarĀ 

  • Medina-Bolivar, F., Condori, J., Rimando, A. M., Hubstenberger, J., Shelton, K., O'Keefe, S. F., Bennett, S., & Dolan, M. C. (2007). Production and secretion of resveratrol in hairy root cultures of peanut. Phytochemistry, 68, 1992ā€“2003.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Mehrotra, S., Kukreja, A. K., Khanuja, S. P. S., & Mishra, B. N. (2008). Genetic transformation studies and scale up of hairy root culture of Glycyrrhiza glabra in bioreactor. Electronic Journal of Biotechnology, 11(2), 1ā€“7.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Metzger, L., Fouchault, I., Glad, C., Prost, R., & Tepfer, D. (1992). Estimation of cadmium availability using transformed roots. Plant and Soil, 143, 249ā€“257.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Mishra, B. N., & Ranjan, R. (2008). Growth of hairy-root cultures in various bioreactors for the production of secondary metabolites. Biotechnology and Applied Biochemistry, 49(1), 1ā€“10.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Mishra, J., Bhandari, H., Singh, M., Rawat, S., Agnihotri, R. K., Mishra, S., & Purohit, S. (2011). Hairy root culture of Picrorhiza kurroa Royle ex Benth.: a promising approach for the production of picrotin and picrotoxinin. Acta Physiologiae Plantarum, 33, 1841ā€“1846.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • MiÅ”ić, D., Å iler, B., Skorić, M., Djurickovic, M. S., Živković, J. N., Jovanović, V., & Giba, Z. (2013). Secoiridoid glycosides production by Centaurium maritimum (L.) Fritch hairy root cultures in temporary immersion bioreactor. Process Biochemistry, 48, 1587ā€“1591.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Moghadam, A., Niazi, A., Afsharifar, A., & Taghavi, S. M. (2016). Expression of a recombinant anti-HIV and anti-tumor protein, MAP 30, in Nicotiana tobacum hairy roots: a pH-stable and thermophilic antimicrobial protein. PLoS One. https://doi.org/10.1371/journal.pone.0159653.

  • Momčilović, I., GrubiÅ”ić, D., Kojić, M., & NeÅ”ković, M. (1997). Agrobacterium rhizogenes-mediated transformation and plant regeneration of four Gentiana species. Plant Cell, Tissue and Organ Culture, 50, 1ā€“6.

    ArticleĀ  Google ScholarĀ 

  • Moreno-Valenzuela, O., Coello-Coello, J., Loyola-Vargas, V. M., & VĆ”zquez-Flota, F. (1999). Nutrient consumption and alkaloid accumulation in a hairy root line of Catharanthus roseus. Biotechnology Letters, 21, 1017ā€“1021.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Mukundan, U., Bhagwat, V., Singh, G., & Curtis, W. (2001). Integrated recovery of pigments released from red beet hairy roots exposed to acidic medium. Journal of Plant Biochemistry and Biotechnology, 10, 67ā€“69.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Muranaka, T., Ohkawa, H., & Yamada, Y. (1993). Continuous production of scopolamine by a culture of Duboisia leichhardtii hairy root clone in a bioreactor system. Applied Microbiology and Biotechnology, 40, 219ā€“223.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15, 473ā€“497.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Murthy, H. N., Dijkstra, C., Anthony, P., White, D. A., Davey, M. R., Power, J. B., Hahn, E. J., & Paek, K. Y. (2008). Establishment of Withania somnifera hairy root cultures for the production of withanolide A. Journal of Integrative Plant Biology, 50(8), 975ā€“981.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Nagakari, M., Kushiro, T., Matsumoto, T., Tanaka, N., Kakinuma, K., & Fujimoto, Y. (1994). Incorporation of acetate and cholesterol into 20-hydroxyecdysone by hairy root clone of Ajuga reptans var. atropurpurea. Phytochemistry, 36(4), 907ā€“914.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Nanasato, Y., Namiki, S., Oshima, M., Moriuchi, R., Konagaya, K., Seike, N., Otani, T., Nagata, Y., Tsuda, M., & Tabei, Y. (2016). Biodegradation of Ī³-hexachlorocyclohexane by transgenic hairy root cultures of Cucurbita moschata that accumulate recombinant bacterial LinA. Plant Cell Reports, 35, 1963ā€“1974. https://doi.org/10.1007/s00299-016-2011-1.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Neagoe, A., Tenea, G., N, C., Ion, S., & Iordache, V. (2017). Coupling Nicotiana tabaccum transgenic plants with Rhizophagus irregularis for phytoremediation of heavy metal polluted areas. Revista de Chimie -Bucharest, 68, 789ā€“795.

    CASĀ  Google ScholarĀ 

  • Nedelkoska, T. V., & Doran, P. M. (2000). Hyperaccumulation of cadmium by hairy roots of Thlaspi caerulescens. Biotechnology and Bioengineering, 67, 607ā€“615.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Nedelkoska, T. V., & Doran, P. M. (2001). Hyperaccumulation of nickel by hairy roots of Alyssum species: Comparison with whole regenerated plants. Biotechnology Progress, 17, 752ā€“759.

    Google ScholarĀ 

  • Neelwarne, B., & Thimmaraju, R. (2009). Bioreactor for cultivation of red beet hairy roots and in situ recovery of primary and secondary metabolites. Engineering in Life Sciences, 9(3), 227ā€“238.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Nilsson, O., & Olsson, O. (1997). Getting to the root: the role of the Agrobacterium rhizogenes rol genes in the formation of hairy roots. Physiologia Plantarum, 100, 463ā€“473.

    Google ScholarĀ 

  • Noda, T., Tanaka, N., Mano, Y., Nabeshima, S., Ohkawa, H., & Matsui, C. (1987). Regeneration of horseradish hairy roots incited by Agrobacterium rhizogenes infection. Plant Cell Reports, 6, 283ā€“286.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Novo, L. A. B., Castro, P. M. L., Alvarenga, P., & Silva, E. F. (2017). Phytomining of rare and valuable metals. In A. A. Ansari, S. S. Gill, R. Gill, G. R. Lanza, & L. Newman (Eds.), Phytoremediation : Management of Enviornmental ContaminantsĀ (Vol. 5, pp. 469ā€“486), Cham: Springer International Publishing.

    Google ScholarĀ 

  • Nuutila, A. M., Toivonen, L., & Kauppinen, V. (1994). Bioreactor studies on hairy root cultures of Catharanthus roseus: comparison of three bioreactor types. Biotechnology Techniques, 8(1), 61ā€“66.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Nuutila, A. M., Lindqvist, A. S., & Kauppinen, V. (1997). Growth of hairy root cultures of strawberry (FragariaĀ xĀ ananassa Duch.) in three different types of bioreactors. Biotechnology Techniques, 11, 363ā€“366.

    Google ScholarĀ 

  • Oksman-Caldentey, K. M., Park, O., Joki, E., & Hiltunen, R. (1989). Increased production of tropane alkaloids by conventional and transformed root cultures of Hyoscyamus muticus. Planta Medica, 55, 682.

    ArticleĀ  Google ScholarĀ 

  • Ondrej, M., & Protiva, J. (1987). In vitro culture of crown gall and hairy root tumors of Atropa belladonna: Differentiation and alkaloid production. Biologia Plantarum, 29(4), 241ā€“246.

    Google ScholarĀ 

  • Pala, Z., Shukla, V., Alok, A., Kudale, S., & Desai, N. (2016). Enhanced production of an anti-malarial compound artesunate by hairy root cultures and phytochemical analysis of Artemisia pallens Wall. 3 Biotech, 6, 182. https://doi.org/10.1007/s13205-016-0496-5.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • PalazĆ³n, J., CusidĆ³, R. M., Bonfill, M., Mallol, A., Moyano, E., Morales, C., & PiƱol, M. T. (2003a). Elicitation of different Panax ginseng transformed root phenotypes for an improved ginsenoside production. Plant Physiology and Biochemistry, 41, 1019ā€“1025.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • PalazĆ³n, J., Mallol, A., Eibl, R., Lattenbauer, C., CusidĆ³, R. M., & PiƱol, M. T. (2003b). Growth and ginsenoside production in hairy root cultures of Panax ginseng using a novel bioreactor. Planta Medica, 69, 344ā€“349.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Park, S. U., Kim, Y. K., & Lee, S. Y. (2009). Establishment of hairy root culture of Rubia akane Nakai for alizarin and purpurin production. Scientific Research and Essays, 4(2), 094ā€“097.

    Google ScholarĀ 

  • Parr, A. J., & Hamill, J. D. (1987). Relationship between Agrobacterium rhizogenes transformed hairy roots and intact, uninfected Nicotiana plants. Phytochemistry, 26(12), 3241ā€“3245.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Patel, D. K. (2015). Diversity of underground medicinal and aromatic plants and their regeneration for further ex situ conservation in herbal garden. Journal of Biodiversity and Endangered Species, 3(1). https://doi.org/10.4172/2332-2543.1000152.

  • Patial, V., Devi, K., Sharma, M., Bhattacharya, A., & Ahuja, P. S. (2012). Propagation of Picrorhiza kurroa Royle ex Benth: an important medicinal plant of western Himalaya. Journal of Medicinal Plants Research, 6, 4848ā€“4860.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Patra, N., & Srivastava, A. K. (2014). Enhanced production of artemisinin by hairy root cultivation of Artemisia annua in a modified stirred tank reactor. Applied Biochemistry and Biotechnology, 174, 2209ā€“2222. https://doi.org/10.1007/s12010-014-1176-8.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Patra, N., & Srivastava, A. K. (2015). Use of model-based nutrient feeding for improved production of artemisinin by hairy roots of Artemisia annua in a modified stirred tank bioreactor. Applied Biochemistry and Biotechnology, 177, 373ā€“388. https://doi.org/10.1007/s12010-015-1750-8.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Patra, N., Srivastava, A. K., & Sharma, S. (2013). Study of various factors for enhancement of artemisinin in Artemisia annua hairy roots. IJCEA, 4(3), 157ā€“160.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Pavlov, A., & Bley, T. (2006). Betalains biosynthesis by Beta vulgaris L. hairy root culture in a temporary immersion cultivation system. Process Biochemistry, 41, 848ā€“852.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Pavlov, A., Kovatcheva, P., Georgiev, V., Koleva, I., & Ilieva, M. (2002). Biosynthesis and radical scavenging activity of betalains during the cultivation of red beet (Beta vulgaris) hairy root cultures. Zeitschrift fĆ¼r Naturforschung. Section C, 57, 640ā€“644.

    Google ScholarĀ 

  • Pavlov, A., Georgiev, M., & Bley, T. (2007). Batch and fed-batch production of betalains by red beet (Beta vulgaris) hairy roots in a bubble column reactor. Zeitschrift fĆ¼r Naturforschung, 62c, 439ā€“446.

    Google ScholarĀ 

  • Pavlova, O. A., Matveyeva, T. V., & Lutova, L. A. (2014). Rol-Genes of Agrobacterium rhizogenes. Russian Journal of Genetics: Applied Research, 4(2), 137ā€“145.

    ArticleĀ  Google ScholarĀ 

  • Payne, J., Hamill, J. D., Robins, R., & Rhodes, M. J. C. (1987). Production of hyoscyamine by 'hairy root' cultures of Datura stramonium. Planta Medica, 53, 474ā€“478.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Perassolo, M., Cardillo, A. B., Mugasc, M. L., Montoyac, S. C. N., Giuliettia, A. M., & Taloua, J. R. (2017). Enhancement of anthraquinone production and release by combination of culture medium selection and methyl jasmonate elicitation in hairy root cultures of Rubia tinctorum. Industrial Crops and Products, 105, 124ā€“132.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Peraza-Luna, F., RodrĆ­guez-Mendiola, M., Arias-Castro, C., Bessiere, J. M., & Calva-Calva, G. (2001). Sotolone production by hairy root cultures of Trigonella foenum-graecum in airlift with mesh bioreactors. Journal of Agricultural and Food Chemistry, 49, 6012ā€“6019.

    Google ScholarĀ 

  • Pham, N. B., SchƤfer, H., & Wink, M. (2012). Production and secretion of recombinant thaumatin in tobacco hairy root cultures. Biotechnology Journal, 7, 537ā€“545. https://doi.org/10.1002/biot.201100430.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Phongprueksapattana, S., Putalun, W., Keawpradub, N., & Wungsintaweekul, J. (2008). Mitragyna speciosa: hairy root culture for triterpenoid production and high yield of mitragynine by regenerated plants. Zeitschrift fĆ¼r Naturforschung, 63c, 691ā€“698.

    ArticleĀ  Google ScholarĀ 

  • Pillai, D. B., Jose, B., Satheeshkumar, K., & Krishnan, P. N. (2015). Optimization of inoculum density in hairy root culture of Plumbago rosea L. for enhanced growth and plumbagin production towards scaling-up in bioreactor. Indian Journal of Biotechnology, 14(2), 264ā€“269.

    CASĀ  Google ScholarĀ 

  • Pirian, K., Piri, K., & Ghiyasvand, T. (2012). Hairy roots induction from Portulaca oleracea using Agrobacterium rhizogenes to Noradrenalineā€™s production. International Research Journal of Applied and Basic Sciences, 3(3), 642ā€“649.

    CASĀ  Google ScholarĀ 

  • Pitta-Alvarez, S. I., & Giulietti, A. M. (1995). Advantages and limitations in the use of hairy root cultures for the production of tropane alkaloids: use of anti-auxins in the maintenance of normal root morphology. In Vitro Cellular & Developmental Biology. Plant, 31, 215ā€“220.

    ArticleĀ  Google ScholarĀ 

  • Pitta-Alvarez, S. I., & Giulietti, A. M. (1998). Novel biotechnological approaches to obtain scopolamine and hyoscyamine: the influence of biotic elicitors and stress agents on cultures of transformed roots of Brugmansia candida. Phytotherapy Research, 12, S18ā€“S20.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Putalun, W., Taura, F., Qing, W., Matsushita, H., Tanaka, H., & Shoyama, Y. (2003). Anti-solasodine glycoside single-chain Fv antibody stimulates biosynthesis of solasodine glycoside in plants. Plant Cell Reports, 22, 344ā€“349. https://doi.org/10.1007/s00299-003-0689-3.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Putalun, W., Luealon, W., De-Eknamkul, W., Tanaka, H., & Shoyama, Y. (2007). Improvement of artemisinin production by chitosan in hairy root cultures of Artemisia annua L. Biotechnology Letters, 29, 1143ā€“1146.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Rahimi, S., Hasanloo, T., Najafi, F., & Khavari-Nejad, R. A. (2012). Methyl jasmonate influence on silymarin production and plant stress responses in Silybum marianum hairy root cultures in a bioreactor. Natural Product Research, 26(18), 1662ā€“1667. https://doi.org/10.1080/14786419.2011.593518.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Rao, S. R., Tripathi, U., Suresh, B., & Ravishankar, G. A. (2001). Enhancement of secondary metabolite production in hairy root cultures of Beta vulgaris and Tagetes patula under the influence of microalgal elicitors. Food Biotechnology, 15(1), 35ā€“46. https://doi.org/10.1081/FBT-100103893.

  • Rezek, J., Macek, T., Mackova, M., & Triska, J. (2007). Plant metabolites of polychlorinated biphenyls in hairy root culture of black nightshade Solanum nigrum SNC-90. Chemosphere, 69, 1221ā€“1227.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Riker, A. J., Banfield, W. M., Wright, W. H., Keitt, G. W., & Sagen, H. E. (1930). Studies on infectious hairy root of nursery apple trees. Journal of Agricultural Research, 41, 507ā€“540.

    Google ScholarĀ 

  • Ritala, A., Dong, L., Imseng, N., SeppƤnen-Laakso, T., Vasilev, N., Krol, S., Rischer, H., Maaheimo, H., Virkki, A., BrƤndli, J., Schillberg, S., Eibl, R., Bouwmeester, H., & Oksman-Caldentey, K. M. (2014). Evaluation of tobacco (Nicotiana tabacum L. cv. Petit Havana SR1) hairy roots for the production of geraniol, the first committed step in terpenoid indole alkaloid pathway. Journal of Biotechnology, 176, 20ā€“28.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Robins, R. J., Hamill, J. D., Parr, A. J., Smith, K., Walton, N. J., & Rhodes, M. J. C. (1987). Potential for use of nicotinic acid as a selective agent for isolation of high nicotine -producing lines of Nicotiana rustica hairy root cultures. Plant Cell Reports, 6(2), 122ā€“126.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Rosić, N., Momčilović, I., Kovačević, N., & GrubiÅ”ić, D. (2006). Genetic transformation of Rhamnus fallax and hairy roots as a source of anthraquinones. Biologia Plantarum, 50(4), 514ā€“518.

    ArticleĀ  Google ScholarĀ 

  • Ru, M., An, Y., Wang, K., Peng, L., li, B., Bai, Z., Wang, B., & Liang, Z. (2016). Prunella vulgaris L. hairy roots: Culture, growth, and elicitation by ethephon and salicylic acid. Engineering in Life Sciences, 16, 494ā€“502.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Rudrappa, T., Neelwarne, B., Kumar, V., Lakshmanan, V., Venkataramareddy, S. R., & Aswathanarayana, R. G. (2005). Peroxidase production from hairy root cultures of red beet (Beta vulgaris). Electronic Journal of Biotechnology, 8(2), 185ā€“196.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Saito, K., Sudo, H., Yamazaki, M., Koseki-Nakamura, M., Kitajima, M., Takayama, H., & Aimi, N. (2001). Feasible production of camptothecin by hairy root culture of Ophiorrhiza pumila. Plant Cell Reports, 20, 267ā€“271. https://doi.org/10.1007/s002990100320.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Sajjalaguddam, R. R., & Paladugu, A. (2016). Influence of Agrobacterium rhizogenes strains and elicitation on hairy root induction and glycyrrhizin production from Abrus precatorius. Journal of Pharmaceutical Sciences and Research, 8(12), 1353ā€“1357.

    Google ScholarĀ 

  • Sakamoto, S., Putalun, W., Pongkitwitoon, B., Juengwatanatrakul, T., Shoyama, Y., Tanaka, H., & Morimoto, S. (2012). Modulation of plumbagin production in Plumbago zeylanica using a single-chain variable fragment antibody against plumbagin. Plant Cell Reports, 31, 103ā€“110. https://doi.org/10.1007/s00299-011-1143-6.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Sampaio, B. L., Edrada-Ebel, R. A., & Da Costa, F. B. (2016). Effect of the environment on the secondary metabolic profile of Tithonia diversifolia: a model for environmental metabolomics of plants. Scientific Reports, 6, 29265.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Sasaki, K., Udagawa, A., Ishimaru, H., Hayashi, T., Alfermann, A. W., Nakanishi, F., & Shimomura, K. (1998). High forskolin production in hairy roots of Coleus forskohlii. Plant Cell Reports, 17, 457ā€“459.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Satdive, R. K., Fulzele, D. P., & Eapen, S. (2007). Enhanced production of azadirachtin by hairy root cultures of Azadirachta indica A. Juss by elicitation and media optimization. Journal of Biotechnology, 128, 281ā€“289.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Sauerwein, M., Yamazaki, T., & Shimomura, K. (1991). Hernandulcin in hairy root cultures of Lippia dulcis. Plant Cell Reports, 9, 579ā€“581.

    Google ScholarĀ 

  • Savitha, B. C., Thimmaraju, R., Bhagyalakshmi, N., & Ravishankar, G. A. (2006). Different biotic and abiotic elicitors influence betalain production in hairy root cultures of Beta vulgaris in shake-flask and bioreactor. Process Biochemistry, 41(1), 50ā€“60.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Schenk, R. V., & Hildebrandt, A. C. (1972). Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Canadian Journal of Botany, 50, 199ā€“204.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Sharp, J. M., & Doran, P. M. (1990). Characteristics of growth and tropane alkaloid synthesis in Atropa belladonna roots transformed by Agrobacterium rhizogenes. Journal of Biotechnology, 16, 171ā€“186.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Sheoran, V., Sheoran, A. S., & Poonia, P. (2013). Phytomining of gold: a review. Journal of Geochemical Exploration, 128, 42ā€“50.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Shi, H. P., & Lindemann, P. (2006). Expression of recombinant Digitalis lanata EHRH. Cardenolide 16ā€²-O-glucohydrolase in Cucumis sativus L. hairy roots. Plant Cell Reports, 25, 1193ā€“1198. https://doi.org/10.1007/s00299-006-0183-9.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Shi, M., Kwok, K. W., & Wu, J. Y. (2007). Enhancement of tanshinone production in Salvia miltiorrhiza Bunge (red or Chinese sage) hairy-root culture by hyperosmotic stress and yeast elicitor. Biotechnology and Applied Biochemistry, 46, 191ā€“196.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Shimomura, K., Suda, H., Saga, K., & Kamada, H. (1991). Shikonin production and secretion by hairy root cultures of Lithospermum erythrorhizon. Plant Cell Reports, 10, 282ā€“285.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Shimon-Kerner, N., Mills, D., & Merchuk, J. C. (2000). Sugar utilization and invertase activity in hairy-root and cell-suspension cultures of Symphytum officinale. Plant Cell, Tissue and Organ Culture, 62, 89ā€“94.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Shin, K. S., Murthy, H. N., Ko, J. Y., & Paek, K. Y. (2002). Growth and betacyanin production by hairy roots of Beta vulgaris in airlift bioreactors. Biotechnology Letters, 24, 2067ā€“2069.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Shinde, A. N., Malpathak, N., & Fulzele, D. P. (2009). Enhanced production of phytoestrogenic isoflavones from hairy root cultures of Psoralea corylifolia L. using elicitation and precursor feeding. Biotechnology and Bioprocess Engineering, 14, 288ā€“294. https://doi.org/10.1007/s12257-008-0238-6.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Sim, S. J., & Chang, H. N. (1993). Increased shikonin production by hairy roots of Lithospermum erythrorhizon in two phase bubble column reactor. Biotechnology Letters, (2), 145ā€“150.

    Google ScholarĀ 

  • Singh, S., Melo, J. S., Eapen, S., & Dā€™Souza, S. F. (2006). Phenol removal using Brassica juncea hairy roots: Role of inherent peroxidase and H2O2. Journal of Biotechnology, 123, 43ā€“49.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Singh, A., Srivastava, S., Chouksey, A., Panwar, B. S., Verma, P. C., Roy, S., Singh, P. K., Saxena, G., & Tuli, R. (2015). Expression of rabies glycoprotein and ricin toxin b chain (RGPā€“RTB) fusion protein in tomato hairy roots: A step towards oral vaccination for rabies. Molecular Biotechnology, 57, 359ā€“370. https://doi.org/10.1007/s12033-014-9829-y.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Sirikantaramas, S., Morimoto, S., Shoyama, Y., Ishikawa, Y., Wada, Y., Shoyama, Y., & Taura, F. (2004). The gene controlling marijuana psychoactivity: molecular cloning and heterologous expression of delta1-tetrahydrocannabinolic acid synthase from Cannabis sativa L. The Journal of Biological Chemistry, 279(38), 39767ā€“39774.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Sivakumar, G., Liu, C., Towler, M. J., & Weathers, P. J. (2010). Biomass production of hairy roots of Artemisia annua and Arachis hypogaea in a scaled-up mist bioreactor. Biotechnology and Bioengineering 1, 107(5), 802ā€“813. https://doi.org/10.1002/bit.22892.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Sivanandhan, G., Dev, K. G., Jeyaraj, M., Rajesh, M., Arjunan, A., Muthuselvam, M., Manickavasagam, M., & Ganapathi, A. (2013). Increased production of withanolide A withanone and withaferin A in hairy root cultures of Withania somnifera (L.) Dunal elicited with methyl jasmonate and salicylic acid. Plant Cell, Tissue and Organ Culture, 114, 121ā€“129.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Siwach, P., Gill, A. R., & Sethi, K. (2013). Hairy root cultures of medicinal trees: A viable alternative for commercial production of high-value secondary metabolites. In R. K. Salar, S. Gahlawat, P. Siwach, J. Duhan (Eds.),Ā Biotechnology: Prospects and applicationsĀ (pp. 67ā€“78), New Delhi: Springer.

    Google ScholarĀ 

  • Skorupińska-Tudek, K., Hung, V. S., Olszowska, O., Furmanowa, M., Chojnacki, T., & Swiezewska, E. (2000). Polyprenols in hairy roots of Coluria geoides. Biochemical Society Transactions, 28(6), 790ā€“791.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Smigocki, A. C., Puthoff, D. P., Zuzga, S., & Ivic-Haymes, S. D. (2009). Low efficiency processing of an insecticidal Nicotiana proteinase inhibitor precursor in Beta vulgaris hairy roots. Plant Cell, Tissue and Organ Culture, 97, 167ā€“174. https://doi.org/10.1007/s11240-009-9512-3.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Soudek, P., Petrova, S., Benesova, D., & Vanek, T. (2011). Uranium uptake and stress responses of in vitro cultivated hairy root culture of Armoracia rusticana. Agrochimica Pisa, 55(1), 15ā€“28.

    CASĀ  Google ScholarĀ 

  • Souret, F. F., Kim, Y., Wyslouzil, B. E., Wobbe, K. K., & Weathers, P. J. (2003). Scale up of Artemisia annuaL. hairy root cultures produces complex patterns of terpenoid gene expression. Biotechnology and Bioengineering, 83, 653ā€“667.

    Google ScholarĀ 

  • Spano, L., Mariotti, D., Pezzotti, M., Damjani, F., & Arcioni, S. (1987). Hairy root transformation in alfalfa (Medicago sativa L.). Theoretical and Applied Genetics, 73(4), 523ā€“530.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Spollansky, T. C., Pitta-Alvarez, S. I., & Giulietti, A. M. (2000). Effect of jasmonic acid and aluminum on production of tropane alkaloids in hairy root cultures of Brugmansia candida. Electronic Journal of Biotechnology, 3(1). https://doi.org/10.2225/vol3-issue1-fulltext-6.

  • Srivastava, S., & Srivastava, A. K. (2012). Azadirachtin production by hairy root cultivation of Azadirachta indica in a modified stirred tank reactor. Bioprocess and Biosystems Engineering. https://doi.org/10.1007/s00449-012-0745-x.

  • Srivastava, S., & Srivastava, A. K. (2013). Production of the biopesticide azadirachtin by hairy root cultivation of Azadirachta indica in liquid-phase bioreactors. Applied Biochemistry and Biotechnology, 171, 1351ā€“1361. https://doi.org/10.1007/s12010-013-0432-7.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Stewart, F. C., Rolf, F. M., & Hall, F. H. (1900). A fruit disease survey of western New York in 1900. New York State Agricultural Experiment Station, 191, 291ā€“331.

    Google ScholarĀ 

  • Stojakowska, A., Burczyk, J., Kisel, W., Zych, M., Banaś, A., & Duda, T. (2008). Effect of various elicitors on the accumulation and secretion of spiroketal enol ether diacetylenes in feverfew hairy root culture. Acta Societatis Botanicorum Poloniae, 77, 17ā€“21.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Straczek, A., Wannijn, J., Van Hees, M., Thijs, H., & Thiry, Y. (2009). Tolerance of hairy roots of carrots to U chronic exposure in a standardized in vitro device. Environmental and Experimental Botany, 65(1), 82ā€“89.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Streatfield, S. J. (2007). Approaches to achieve high-level heterologous protein production in plants. Plant Biotechnology Journal, 5, 2ā€“15.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Subroto, M. A., Priambodo, S., & Indrasti, N. S. (2007). Accumulation of zinc by hairy root cultures of Solanum nigrum. Biotechnology, 6, 344ā€“348.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Sudo, H., Yamakawa, T., Yamazaki, M., Aimi, N., & Saito, K. (2002). Bioreactor production of camptothecin by hairy root cultures of Ophiorrhiza pumila. Biotechnology Letters, 24, 359ā€“363.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Sung, L. S., & Huang, S. Y. (2006). Lateral root bridging as a strategy to enhance L-dopa production in Stizolobium hassjoo hairy root cultures by using a mesh hindrance mist trickling bioreactor. Biotechnology and Bioengineering, 94(3), 441ā€“449.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Suresh, B., Thimmaraju, R., Bhagyalakshmi, N., & Ravishankar, G. A. (2004). Polyamine and methyl jasmonate-influenced enhancement of betalaine production in hairy root cultures of Beta vulgaris grown in a bubble column reactor and studies on efflux of pigments. Process Biochemistry, 39(12), 2091ā€“2096.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Suresh, B., Sherkhane, P. D., Kale, S., Eapen, S., & Ravishankar, G. A. (2005). Uptake and degradation of DDT by hairy root cultures of Cichorium intybus and Brassica juncea. Chemosphere, 61, 1288ā€“1292.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Suza, W., Harris, R. S., & Lorence, A. (2008). Hairy roots: from high-value metabolite production to phytoremediation. Electronic Journal of Integrative Biosciences, 3(1), 57ā€“65.

    Google ScholarĀ 

  • Tada, H., Murakam, Y., Omoto, T., Shimomura, K., & Ishimaru, K. (1996). Rosmarinic acid and related phenolics in hairy root cultures of Ocimum basilicum. Phytochemistry, 42(2), 431ā€“434.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Talamond, P., Verdeil, J. L., & ConĆ©jĆ©ro, G. (2015). Secondary metabolite localization by autofluorescence in living plant cells. Molecules, 20, 5024ā€“5037. https://doi.org/10.3390/molecules20035024.

    ArticleĀ  PubMedĀ  CASĀ  PubMed CentralĀ  Google ScholarĀ 

  • Taya, M., Yoyama, A., Kondo, O., Kobayashi, T., & Matsui, C. (1989). Growth characteristics of plant hairy roots and their cultures in bioreactors. Journal of Chemical Engineering of Japan, 22(1), 84ā€“89.

    ArticleĀ  Google ScholarĀ 

  • Thakore, D., Srivastava, A. K., & Sinha, A. K. (2017). Mass production of ajmalicine by bioreactor cultivation of hairy roots of Catharanthus roseus. Biochemical Engineering Journal, 119, 84ā€“91. https://doi.org/10.1016/j.bej.2016.12.010.

  • Theboral, J., Sivanandhan, G., Subramanyam, K., Arun, M., Selvaraj, N., Manickavasagam, M., & Ganapathi, A. (2014). Enhanced production of isoflavones by elicitation in hairy root cultures of soybean. Plant Cell, Tissue and Organ Culture, 117(3), 477ā€“481. https://doi.org/10.1007/s11240-014-0450-3.

  • Tikhomiroff, C., Allais, S., Klvana, M., Hisiger, S., & Jolicoeur, M. (2002). Continuous selective extraction of secondary metabolites from Catharanthus roseus hairy roots with silicon oil in a two-liquid-phase bioreactor. Biotechnology Progress, 18(5), 1003ā€“1009.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Tokmakov, A. A., Kurotani, A., Takagi, T., Toyama, M., Shirouzu, M., Fukami, Y., & Yokoyama, S. (2012). Multiple post-translational modifications affect heterologous protein synthesis. The Journal of Biological Chemistry, 287(32), 27106ā€“27116.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  • Trotin, F., Moumou, Y., & Vasseur, J. (1993). Flavanol production by Fagopyrum esculentum hairy and normal root cultures. Phytochemistry, 32, 929ā€“931.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Uchimiya, H., & Murashige, T. (1974). Evaluation of parameters in the isolation of viable protoplasts from cultured tobacco cells. Plant Physiology, 54(6), 936ā€“944. https://doi.org/10.1104/pp.54.6.936.

  • Urbańska, N., Giebułtowicz, J., Olszowska, O., & Szypuła, W. J. (2014). The growth and saponin production of Platycodon grandiflorum (Jacq.) A. DC. (Chinese bellflower) hairy roots cultures maintained in shake flasks and mist bioreactor. Acta Societatis Botanicorum Poloniae, 83(3), 229ā€“237. https://doi.org/10.5586/asbp.2014.017.

    ArticleĀ  Google ScholarĀ 

  • Verma, P. C., Rahman, L. U., Nagi, A. S., Jain, D. C., Khanuja, S. P. S., & Banerjee, S. (2007). Agrobacterium rhizogenes-mediated transformation of Picrorhiza kurroa Royle ex Benth.: establishment and selection of superior hairy root clone. Plant Biotechnology Reports, 1, 169ā€“174.

    ArticleĀ  Google ScholarĀ 

  • Verma, P., Mathur, A. K., & Shanker, K. (2012). Growth, alkaloid production, rol genes integration, bioreactor up-scaling and plant regeneration studies in hairy root lines of Catharanthus roseus. Plant BiosystemsĀ ā€“ An International Journal Dealing with all Aspects of Plant Biology, 146(sup1), 27ā€“40. https://doi.org/10.1080/11263504.2011.649797.

  • Verma, P., Khan, S. A., Mathur, A. K., Shanker, K., & Lal, R. K. (2014). Regulation of vincamine biosynthesis and associated growth promoting effects through abiotic elicitation, cyclooxygenase inhibition, and precursor feeding of bioreactor grown Vinca minor hairy roots. Applied Biochemistry and Biotechnology, 173, 663ā€“672.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Verma, P. C., Singh, H., Negi, A. S., Saxena, G., Rahman, L., & Banerjee, S. (2015). Yield enhancement strategies for the production of picroliv from hairy root culture of Picrorhiza kurroa Royle ex Benth. Plant Signaling & Behavior, 10(5), e1023976. https://doi.org/10.1080/15592324.2015.1023976.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Vinterhalter, B., Savić, J., PlatiÅ”a, J., Raspor, M., Ninković, S., Mitić, N., & Vinterhalter, D. (2008). Nickel tolerance and hyperaccumulation in shoot cultures regenerated from hairy root cultures of Alyssum murale Waldst et Kit. Plant Cell, Tissue and Organ Culture, 94, 299ā€“303.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Walton, N. J., & Belshaw, N. J. (1988). The effect of cadaverine on the formation of anabasine from lysine in hairy root cultures of Nicotiana hesperis. Plant Cell Reports, 7(2), 115ā€“118.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Walton, N. J., Robin, R. J., & Rhodes, M. J. C. (1988). Peturbation of alkaloid production by cadaverine in hairy root culture of Nicotina rustica. Plant Science, 54, 125ā€“131.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Wang, J. W., Zhang, Z., & Tan, R. X. (2001). Stimulation of artemisinin production in Artemisia annua hairy roots by the elicitor from the endophytic Colletotrichum sp. Biotechnology Letters, 23, 857ā€“860.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Wang, B., Zhang, G., Zhua, L., Chena, L., & Zhang, Y. (2006a). Genetic transformation of Echinacea purpurea with Agrobacterium rhizogenes and bioactive ingredient analysis in transformed cultures. Colloid Surface B, 53, 101ā€“104.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Wang, J. W., Zheng, L. P., & Tan, R. X. (2006b). The preparation of an elicitor from a fungal endophyte to enhance artemisinin production in hairy root cultures of Artemisia annua L. Chinese Journal of Biotechnology, 22(5), 829ā€“834.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Weathers, P. J., Bunk, G., & McCoy, M. C. (2005). The effect of phytohormones on growth and artemisinin production in Artemisia annua hairy roots. In Vitro Cellular & Developmental Biology. Plant, 41, 4753.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Wevar-Oller, A. L., Agostini, E., Talano, M. A., Capozucca, C., Milrad. S.R., Tigier, H. A., & Medina, M. I. (2005). Overexpression of a basic peroxidase in transgenic tomato (Lycopersicon esculentumĀ Mill. cv. Pera) hairy roots increases phytoremediation of phenol. Plant Science, 169, 1102ā€“1111.

    Google ScholarĀ 

  • Wielanek, M., & Urbanek, H. (2006). Enhanced glucotropaeolin production in hairy root cultures of Tropaeolum majus L. by combining elicitation and precursor feeding. Plant Cell, Tissue and Organ Culture, 86, 177ā€“186.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Wilczańska-Barska, A., KrĆ³licka, A., GÅ‚Ć³d, D., Majdan, M., Kawiak, A., & Krauze Baranowska, M. (2012). Enhanced accumulation of secondary metabolites in hairy root cultures of Scutellaria lateriflora following elicitation. Biotechnology Letters, (9), 1757ā€“1763.

    Google ScholarĀ 

  • Wilson, P. D. G., Hilton, M. G., Robins, R. J., & Rhodes, M. J. C. (1987). Fermentation studies of transformed root cultures. In G. W. Moody & P. B. Baker (Eds.), International conference on bioreactors and biotransformations (pp. 38ā€“51). London: Elsevier.

    Google ScholarĀ 

  • Wongsamuth, R., & Doran, P. M. (1997). Production of monoclonal antibodies by tobacco hairy roots. Biotechnology and Bioengineering, 54(5), 401ā€“415.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Wongwicha, W., Tanaka, H., Shoyama, Y., & Putalun, W. (2011). Methyl jasmonate elicitation enhances glycyrrhizin production in Glycyrrhiza inflata hairy roots cultures. Zeitschrift fĆ¼r Naturforschung. Section C, 66(7ā€“8), 423ā€“428.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Woods, R. R., Geyer, B. C., & Mor, T. S. (2008). Hairy-root organ cultures for the production of human acetylcholinesterase. BMC Biotechnology, 8(95), 1ā€“7.

    Google ScholarĀ 

  • Wu, S. J., & Wu, J. Y. (2008). Extracellular ATP-induced NO production and its dependence on membrane Ca2+ flux in Salvia miltiorrhiza hairy roots. Journal of Experimental Botany, 59(14), 4007ā€“4016. https://doi.org/10.1093/jxb/ern242.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  • Wu, J. Y., Ng, J., Shi, M., & Wu, S. J. (2007). Enhanced secondary metabolite (tanshinone) production of Salvia miltiorrhiza hairy roots in a novel root-bacteria coculture process. Applied Microbiology and Biotechnology, 77, 543ā€“550.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Xie, D., Wang, L., Ye, H., & Le, G. (2000). Isolation and production of artimisinin and stigma sterol in hairy root cultures of Artemisia annua. Plant Cell, Tissue and Organ Culture, 63, 161ā€“166.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Yamazaki, Y., Sudo, H., Yamazaki, M., Aimi, N., & Saito, K. (2003). Camptothecin biosynthetic genes in hairy roots of Ophiorrhiza pumila: cloning, characterization and differential expression in tissues and by stress compounds. Plant & Cell Physiology, 44(4), 395ā€“403.

    Google ScholarĀ 

  • Yan, Q., Hu, Z. D., Tan, R. X., & Wu, J. Y. (2005). Efficient production and recovery of diterpenoid tanshinones in Salvia miltiorrhiza hairy root cultures with in situ adsorption, elicitation and semi-continuous operation. Journal of Biotechnology, 119, 416ā€“424.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Yan, Q., Shi, M., Ng, J., & Wu, J. Y. (2006). Elicitor-induced rosmarinic acid accumulation and secondary metabolism enzyme activities in Salvia miltiorrhiza hairy roots. Plant Science, 170, 853ā€“858.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Yan, H. J., He, M., Huang, W. J., Li, D., & Yu, X. (2016). Induction of hairy roots and plant regeneration from the medicinal plant Pogostemon cablin. Pharmacognosy Journal, 8(1), 50ā€“55.

    Google ScholarĀ 

  • Yang, C., Chen, M., Zeng, L., Zhang, L., Liu, X., Lan, X., Tang, K., & Liao, Z. (2011). Improvement of tropane alkaloids production in hairy root cultures of Atropa belladonna by overexpressing pmt and h6h genes. Plant Omics, 4(1), 29ā€“33.

    CASĀ  Google ScholarĀ 

  • Yazawa, M., Suginuma, C., Ichikawa, K., & Akihama, T. (1995). Regeneration of transgenic plants from hairy root of kiwi fruit (Actinidia deliciosa) induced by Agrobacterium rhizogenes. Breeding Science, 45, 241ā€“244.

    Google ScholarĀ 

  • Yonemitsu, H., Shimomura, K., Satake, M., Mochida, S., Tanaka, M., Endo, T., & Kaji, A. (1990). Lobeline production by hairy root culture of Lobelia inflata L. Plant Cell Reports, 9, 307ā€“310.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Yoshikawa, T., & Furuya, T. (1987). Saponin production by cultures of Panax ginseng transformed with Agrobacterium rhizogenes. Plant Cell Reports, 6, 449ā€“453.

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Yu, K. W., Gao, W. Y., Son, S. H., & Paek, K. Y. (2000). Improvement of ginsenoside production by jasmonic acid and some other elicitors in hairy root culture of ginseng (Panax ginseng C.A. Meyer). In Vitro Cellular & Developmental Biology. Plant, 36, 424ā€“428.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Yu, K. W., Hahn, E. J., & Paek, K. Y. (2003). Ginsenoside production by hairy root cultures of Panax ginseng C.A. Meyer in bioreactors. Acta Horticulturae, (597), 237ā€“243.

    Google ScholarĀ 

  • Zhang, L., Ding, R., Chai, Y., Bonfill, M., Moyano, E., Oksman-Caldentey, K. M., Xu, T., Pi, Y., Wang, Z., Zhang, H., Kai, G., Liao, Z., Sun, X., & Tang, K. (2004a). Engineering tropane biosynthetic pathway in Hyoscyamus niger hairy root cultures. PNAS, 101(17), 6786ā€“6791.

    ArticleĀ  PubMedĀ  CASĀ  PubMed CentralĀ  Google ScholarĀ 

  • Zhang, C., Yan, Q., Cheuk, W., & Wu, J. (2004b). Enhancement of tanshinone production in Salvia miltirrhiza hairy root culture by Ag+ elicitation and nutrient feeding. Planta Medica, 70, 147ā€“151.

    Google ScholarĀ 

  • Zhang, L., Yang, B., Lu, B., Kai, G., Wang, Z., Xia, Y., Ding, R., Zhang, H., Sun, X., Chen, W., & Tang, K. (2007). Tropane alkaloids production in transgenic Hyoscyamus niger hairy root cultures over-expressing putrescine N-methyltransferase is methyl jasmonate-dependent. Planta, 225, 887ā€“896.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Zhang, H. C., Liu, J. M., Lu, H. Y., & Gao, S. L. (2009). Enhanced flavonoid production in hairy root cultures of Glycyrrhiza uralensis Fisch by combining the over-expression of chalcone isomerase gene with the elicitation treatment. Plant Cell Reports, 28, 1205ā€“1213.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Zhang, B., Zou, T., Yan Hua, L. Y. H., & Wang, J. W. (2010). Stimulation of artemisinin biosynthesis in Artemisia annua hairy roots by oligogalacturonides. African Journal of Biotechnology, 9, 3437ā€“3442.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Zhao, J. L., Zhou, L. G., & Wu, J. Y. (2010). Promotion of Salvia miltiorrhiza hairy root growth and tanshinone production by polysaccharide-protein fractions of plant growth-promoting rhizobacterium Bacillus cereus. Process Biochemistry, 45, 1517ā€“1522.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Zhao, J. L., Zou, L., Zhang, C. Q., Li, Y. Y., Peng, L. X., Xiang, D. B., & Zhao, G. (2014). Efficient production of flavonoids in Fagopyrum tataricum hairy root cultures with yeast polysaccharide elicitation and medium renewal process. Pharmacognosy Magazine, 10, 234ā€“240.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  • Zheng, L. P., Zhang, B., Zou, T., Chen, Z. H., & Wang, J. W. (2010). Nitric oxide interacts with reactive oxygen species to regulate oligosaccharide-induced artemisinin biosynthesis in Artemisia annua hairy roots. Journal of Medicinal Plants Research, 4, 758ā€“765.

    CASĀ  Google ScholarĀ 

  • Zhou, L. G., Zhu, H. T., Hu, H., & Yang, C. R. (1999). Hairy root culture of Panax japonicus var. major and its saponin formation. In C. R. Yang, O. Tanaka (Eds.),Ā Ā Advances in Plant Glycosides. Chemistry and Biology,(Vol. 6, pp. 91-98), Studies in Plant Science, Elsevier Science Ltd., The Netherlands:Ā Amsterdam

    Google ScholarĀ 

  • Zhou, X., Wu, Y., Wang, X., Liu, B., & Xu, H. (2007a). Salidroside production by hairy roots of Rhodiola sachalinensis obtained after transformation with Agrobacterium rhizogenes. Biological & Pharmaceutical Bulletin, 30(3), 439ā€“442.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Zhou, L., Cao, X., Zhang, R., Peng, Y., Zhao, S., & Wu, J. (2007b). Stimulation of saponin production in Panax ginseng hairy roots by two oligosaccharides from Paris polyphylla var. yunnanensis. Biotechnology Letters, 29, 631ā€“634.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Zhou, M. L., Zhu, X. M., Shao, J. R., Wu, Y. M., & Tang, Y. X. (2010). Transcriptional response of the catharanthine biosynthesis pathway to methyl jasmonate/nitric oxide elicitation in Catharanthus roseus hairy root culture. Applied Microbiology and Biotechnology, 88, 737ā€“750.

    Google ScholarĀ 

  • Zid, S. A., & Orihara, Y. (2005). Polyacetylenes accumulation in Ambrosia maritima hairy root and cell cultures after elicitation with methyl jasmonate. Plant Cell, Tissue and Organ Culture, 81, 65ā€“75. https://doi.org/10.1007/s11240-004-2776-8.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Zlatić, N. M., & Stanković, M. S. (2017). Variability of secondary metabolites of the species Cichorium intybus L. from different habitats. Plants (Basel), 6(3), 38.

    Google ScholarĀ 

  • ZubrickĆ”, D., MiÅ”ianikovĆ”, A., HenzelyovĆ”, J., Valletta, A., de Angelis, G., Dā€™Auria, F. D., Simonetti, G., Pasqua, G., & CellĆ”rovĆ”, E. (2015). Xanthones from roots, hairy roots and cell suspension cultures of selected Hypericum species and their antifungal activity against Candida albicans. Plant Cell Reports, 34, 1953ā€“1962.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

Download references

Acknowledgements

The authors thank the Director, CSIR-IHBT, Palampur for providing the necessary infrastructure. ND thanks the University Grants Commission, Govt. of India for providing Senior Research Fellowship. VP thanks the Council of Scientific and Industrial Research (CSIR) for providing her fellowship. ND and VP also acknowledge the Academy of Scientific and Innovative Research (AcSIR), New Delhi, India. The CSIR-IHBT communication number for the present article is 4227.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amita Bhattacharya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dhiman, N., Patial, V., Bhattacharya, A. (2018). The Current Status and Future Applications of Hairy Root Cultures. In: Kumar, N. (eds) Biotechnological Approaches for Medicinal and Aromatic Plants. Springer, Singapore. https://doi.org/10.1007/978-981-13-0535-1_5

Download citation

Publish with us

Policies and ethics