Skip to main content

Advertisement

Log in

Expression of Rabies Glycoprotein and Ricin Toxin B Chain (RGP–RTB) Fusion Protein in Tomato Hairy Roots: A Step Towards Oral Vaccination for Rabies

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Transgenic hairy roots of Solanum lycopersicum were engineered to express a recombinant protein containing a fusion of rabies glycoprotein and ricin toxin B chain (rgprtxB) antigen under the control of constitutive CaMV35S promoter. Asialofetuin-mediated direct ELISA of transgenic hairy root extracts was performed using polyclonal anti-rabies antibodies (Ab1) and epitope-specific peptidal anti-RGP (Ab2) antibodies which confirmed the expression of functionally viable RGP–RTB fusion protein. Direct ELISA based on asialofetuin-binding activity was used to screen crude protein extracts from five transgenic hairy root lines. Expressions of RGP–RTB fusion protein in different tomato hairy root lines varied between 1.4 and 8 µg in per gram of tissue. Immunoblotting assay of RGP–RTB fusion protein from these lines showed a protein band on monomeric size of ~84 kDa after denaturation. Tomato hairy root line H03 showed highest level of RGP–RTB protein expression (1.14 %) and was used further in bench-top bioreactor for the optimization of scale-up process to produce large quantity of recombinant protein. Partially purified RGP–RTB fusion protein was able to induce the immune response in BALB/c mice after intra-mucosal immunization. In the present investigation, we have not only successfully scaled up the hairy root culture but also established the utility of this system to produce vaccine antigen which subsequently will reduce the total production cost for implementing rabies vaccination programs in developing nations. This study in a way aims to provide consolidated base for low-cost preparation of improved oral vaccine against rabies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mason, H. S., Lam, D. M. K., & Arntzen, C. J. (1992). Expression of hep-atitis B surface antigen in transgenic plants. Proceedings of the National Academy of Sciences of the United States of America, 89, 11745–11749.

    Article  CAS  Google Scholar 

  2. Meslin, F. X., & Stohr, K. (1997). Prospects of immunization against rabies in developing countries. In B. Dodet & F. X. Meslin (Eds.), Rabies control in Asia (pp. 15–18). Paris: Elsevier.

    Google Scholar 

  3. Pasteur, L. (1885). Méthode pour prévenir la rage aprésmorsure. Comptes Rendus de l’Académie des Sciences, 17, 765–774.

    Google Scholar 

  4. Plotkin, S. (1993). Vaccination in the 21st century. Journal of Infectious Diseases, 168, 29–37.

    Article  CAS  Google Scholar 

  5. Cox, J. H., Dietzschold, B., & Schneider, L. G. (1977). Rabies virus glycoprotein. II. Biological and serological characterization. Infection and Immunity, 16, 754–759.

    CAS  Google Scholar 

  6. Barta, A. (1986). The expression of a nopaline synthase human growth hormone chimaeric gene in transformed tobacco and sunflower callus tissue. Plant Molecular Biology, 6, 347–357.

    Article  CAS  Google Scholar 

  7. McGarvey, P. B., Hammond, J., Dienelt, M. M., Hooper, D. C., Fu, Z. F., & Dietzschold, B. (1995). Expression of the rabies virus glycoprotein in transgenic tomatoes. Biotechnology, 13, 1484–1487.

    Article  CAS  Google Scholar 

  8. Ashraf, S., Singh, P. K., Yadav, D. K., Shahnawaz, M., Mishra, S., Sawant, S. V., & Tuli, R. (2005). High level expression of surface glycoprotein in tobacco and its immunoprotective activity in mice. Journal of Biotechnology, 119, 1–14.

    Article  CAS  Google Scholar 

  9. De Aizpurua, H. J., & Russell-Jones, G. J. (1988). Oral vaccination: Identification of classes of proteins that provoke an immune response upon oral feeding. Journal of Experimental Medicine, 167, 440–451.

    Article  Google Scholar 

  10. Tiwari, S., Mishra, D. K., Roy, S., Singh, A., Singh, P. K., & Tuli, R. (2009). High level expression of a functionally active cholera toxin B: Rabies glycoprotein fusion protein in tobacco seeds. Plant Cell Reports, 28, 1827–1836.

    Article  CAS  Google Scholar 

  11. Roy, S., Tyagi, A., Tiwari, S., Singh, A., Singh, P. K., Sawant, S. V., & Tuli, R. (2010). Rabies glycoprotein fused with B subunit of cholera toxin is expressed at high level in tobacco plants and folds into biologically active pentameric protein. Protein Expression and Purification, 70, 184–190.

    Article  CAS  Google Scholar 

  12. Woffenden, B. J., Ñopo, L. H., Cramer, C. L., Dolan, M. C., & Medina-Bolivar, F. (2008). Expression of a ricin B: F1: V fusion protein in tobacco hairy roots: Steps toward a novel pneumonic plague vaccine. Electronic Journal of Integrative Biosciences, 3, 10–19.

  13. Choi, N. W., Estes, M. K., & Langridge, W. H. (2006). Mucosal immunization with a ricin toxin B subunit-rotavirus NSP4 fusion protein stimulates a Th1 lymphocyte response. Journal of Biotechnology, 121, 272–283.

    Article  CAS  Google Scholar 

  14. Carter, J. E., Odumosu, O., & Langridge, W. H. (2010). Expression of a ricin toxin B subunit: insulin fusion protein in edible plant tissues. Molecular Biotechnology, 44, 90–100.

    Article  CAS  Google Scholar 

  15. Endo, Y., & Tsurugi, K. (1988). The RNA N-glycosidase activity of ricin A-chain. Journal of Biological Chemistry, 263, 8735–8739.

    CAS  Google Scholar 

  16. Lambert, J. M., Goldmacher, V. S., Collision, A. R., Nadler, L. M., & Blattler, W. A. (1991). Animmunotoxin prepared with blocked ricin: A natural plant toxin adapted for therapeutic use. Cancer Research, 51, 6236–6242.

    CAS  Google Scholar 

  17. Falnes, P., & Sandvig, K. (2000). Penetration of protein toxins into cells. Current Opinion in Cell Biology, 12, 407–413.

    Article  CAS  Google Scholar 

  18. Chazaud, B., Muriel, M. P., Wantyghem, J., Aubery, M., & Decastel, M. (1995). Ricin toxicity and intracellular routing in tumoral HT-29 cells. Experimental Cell Research, 221, 214–220.

    Article  CAS  Google Scholar 

  19. Sandvig, K., Olsnes, S., & Pihl, A. (1976). Kinetics of binding of the toxic abrin and ricin to surface receptors of human cells. Journal of Biological Chemistry, 251, 3977–3984.

    CAS  Google Scholar 

  20. Holmgren, J., Lonnroth, I., Mansson, J.-E., & Svennerholm, L. (1975). Interaction of cholera toxin and membrane GM1 ganglioside of small intestine. Proceedings of the National Academy of Sciences of the United States of America, 72, 2520–2524.

    Article  CAS  Google Scholar 

  21. Tagge, E. P., Chandler, J., Harris, B., Czako, M., Marton, L., Willingham, M. C., et al. (1996). Preproricin expressed in Nicotianatabacum cells in vitro is fully processed and biologically active. Protein Expression and Purification, 8, 109–118.

    Article  CAS  Google Scholar 

  22. Tonevitsky, A., Toptygin, A., Agapov, I., Pfueller, U., & Frankel, A. (1994). Renatured ricin toxin B chain made in Escherichia coli is soluble, stable and biologically active. Biochemistry and Molecular Biology International, 32, 1139–1146.

    CAS  Google Scholar 

  23. Wales, R., Richardson, P., Roberts, L., Woodland, H., & Lord, J. (1991). Mutational analysis of the galactose binding activity of recombinant ricin B chain. Journal of Biological Chemistry, 266, 19172–19179.

    CAS  Google Scholar 

  24. Medina-Bolivar, F., Wright, R., Funk, V., Sentz, D., Barroso, L., Wilkins, T. D., et al. (2003). A non-toxic lectin for antigen delivery of plant-based mucosal. Vaccines, 21, 997–1005.

    Article  CAS  Google Scholar 

  25. Giddings, G., Allison, G., Brooks, D., & Carter, A. (2000). Transgenic plants as factories for biopharmaceuticals. Nature Biotechnology, 18, 1151–1155.

    Article  CAS  Google Scholar 

  26. Sharp, J. M., & Doran, P. M. (1999). Effect of bacitracin on growth and monoclonal antibody production by tobacco hairy roots and cell suspensions. Biotechnology and Bioprocess Engineering, 4, 253–258.

    Article  CAS  Google Scholar 

  27. Fischer, R., Drossard, J., Commandeur, U., Schillberg, S., & Emans, N. (1999). Towards molecular farming in the future: moving from diagnostic protein and antibody production in microbes to plants. Biotechnology and Applied Biochemistry, 30, 101–108.

    CAS  Google Scholar 

  28. Shevchuk, N. A., Bryksin, A. V., Nusinovich, Y. A., Cabello, F. C., Sutherland, M., & Ladisch, S. (2004). Construction of long DNA molecules using long PCR-based fusion of several fragments simultaneously. Nucleic Acids Research, 32, e19.

    Article  Google Scholar 

  29. Banerjee, S., Shang, T. Q., Wilson, A. M., Moore, A. L., Strand, S. E., Gordon, M. P., & Doty, S. L. (2002). Expression of functional mammalian P450 2E1 in hairy root cultures. Biotechnology and Bioengineering, 77, 462–466.

    Article  CAS  Google Scholar 

  30. Singh, A., Yadav, D., Rai, K. M., Srivastava, M., Verma, P. C., Singh, P. K., & Tuli, R. (2012). Enhanced expression of rabies virus surface G-protein in Escherichia coli using SUMO fusion. Protein Journal, 31, 68–74.

    Article  CAS  Google Scholar 

  31. Prehaud, C., Coulon, P., LaFay, F., Thiers, C., & Flamand, A. (1988). Antigenic site II of the rabies virus glycoprotein: structure and role in viral virulence. Journal of Virology, 62, 1–7.

    CAS  Google Scholar 

  32. Tomar, N. R., Chandra, R., Kumar, R., Tiwari, A. K., & Kumar, A. (2011). Expression of rabies virus glycoprotein gene into eukaryotic system and determination of potential T-cell epitopes. Indian Journal of Experimental Biology, 49, 594–599.

    CAS  Google Scholar 

  33. Joshi, L., & Lopez, L. C. (2005). Bioprospecting in plants for engineered proteins. Current Opinion in Plant Biology, 8, 223–226.

    Article  CAS  Google Scholar 

  34. Ma, J. K.-C., Barros, E., Bock, R., Christou, P., Dale, P. J., Dix, P. J., et al. (2005). Molecular farming for new drugs and vaccines: Current perspectives on the production of pharmaceuticals in transgenic plants. EMBO Reports, 6, 593–599.

    Article  CAS  Google Scholar 

  35. Coslett, D. G., Hollow, B. P., & Obijeski, J. K. (1980). The structural proteins of rabies virus and evidence for their synthesis from separate monocistronic RNA species. Journal of General Virology, 49, 161–180.

    Article  CAS  Google Scholar 

  36. Wiktor, T. J., Gyorgy, E., Schlumberger, D., Sokol, F., & Koprowski, H. (1973). Antigenic properties of rabies virus components. Journal of Immunology, 110, 269–276.

    CAS  Google Scholar 

  37. Yadav, D. K., Ashraf, S., Singh, P. K., & Tuli, R. (2012). Localization of rabies virus glycoprotein into the endoplasmic reticulum produces immuno-protective antigen. Protein Journal, 31, 447–456.

    Article  CAS  Google Scholar 

  38. Steeves, R. M., Denton, M. E., Barnard, F. C., Henry, A., & Lambert, J. M. (1999). Identification of three oligosaccharide binding sites in ricin. Biochemistry, 38, 11677–11685.

    Article  CAS  Google Scholar 

  39. Arakawa, T., Yu, J., Chong, D. K., Hough, J., Engen, P. C., & Langridge, W. H. (1998). A plant-based cholera toxin B subunit-insulin fusion protein protects against the development of autoimmune diabetes. Nature Biotechnology, 16, 934–938.

    Article  CAS  Google Scholar 

  40. De Guzman, G., Walmsley, A. M., Webster, D. E., & Hamill, J. D. (2011). Hairy roots cultures from different Solanaceous species have varying capacities to produce E. coli B-subunit heat-labile toxin antigen. Biotechnology Letters, 33, 2495–2502.

    Article  CAS  Google Scholar 

  41. Verma, P. C., Trivedi, I., Singh, H., Shukla, A. K., Kumar, M., Upadhyay, S. K., et al. (2009). Efficient production of gossypol from hairy root cultures of cotton (Gossypiumhirsutum L.). Current Pharmaceutical Biotechnology, 10, 691–700.

    Article  CAS  Google Scholar 

  42. Udomsuk, L., Jarukamjorn, K., Tanaka, H., & Putalun, W. (2009). Isoflavonoid production in a hairy roots culture of Puerariacandollei. Zeitschrift für Naturforschung. C, 64, 687–691.

    CAS  Google Scholar 

  43. Mirjalili, H., Fakhr-Tabatabaei, S., Bonfill, M., Alizadeh, H., Cusido, R., Ghassempour, A., & Palazon, J. (2009). Morphology and withanolide production of Withaniacoagulans hairy root cultures. Engineering in Life Sciences, 9, 197–204.

    Article  CAS  Google Scholar 

  44. Liu, C., Towler, M. J., Medrano, G., Cramer, C. L., & Weathers, P. J. (2009). Production of mouse Interleukin- 12 is greater in tobacco hairy roots grown in a mist reactor than in an airlift reactor. Biotechnology and Bioengineering, 102, 1074–1086.

    Article  CAS  Google Scholar 

  45. Flores, H.E., Curtis, W.R. (1992). Approaches to understanding and manipulating the biosynthetic potential of plant roots. In: H. Pederson, R. Mutharsan, D. Di Biasio (Ed.), Biochemical Engineering VII: Cellular and Reaction Engineering. Ann N Y Acad Sci (Vol. 665, pp. 188–209).

Download references

Acknowledgments

Authors are thankful to Dr. Shakti Mehrotra (Young Scientist, CSIR-Central Institute of Medicinal & Aromatic Plants, Lucknow, UP) for her kind help in bioreactor related studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen C. Verma.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Srivastava, S., Chouksey, A. et al. Expression of Rabies Glycoprotein and Ricin Toxin B Chain (RGP–RTB) Fusion Protein in Tomato Hairy Roots: A Step Towards Oral Vaccination for Rabies. Mol Biotechnol 57, 359–370 (2015). https://doi.org/10.1007/s12033-014-9829-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-014-9829-y

Keywords

Navigation