Skip to main content
Log in

Induction of Shikonin production in hairy root cultures of Arnebia hispidissima via Agrobacterium rhizogenes-mediated genetic transformation

  • Research Article
  • Published:
Journal of Crop Science and Biotechnology Aims and scope Submit manuscript

Abstract

Data presented herein provides a rapid and efficient method for Agrobacterium rhizogenes-mediated genetic transformation of Arnebia hispidissima for hairy root cultures as well as for enhancing Shikonin production. Etiolated explants viz. shoot tip, nodal, leaf and internodal segments were co-cultivated with Agrobacterium rhizogenes for induction of hairy root. Among the various explants employed, leaf explant showed maximum 70.7% response followed by shoot tip 48.3%, nodal segment 38.7% and internodal segment 9.3%. Integration of Ri plasmid rolB gene in the transformed hairy root cultures was confirmed by PCR analysis using forward (FrolB) and reverse (RrolB) primers of rolB gene resulting in the amplification of 0 ∼ 0.8 kb fragments. Medium compositions have been optimized for in vitro induction of Shikonin in hairy root cultures of Arnebia hispidissima. Hairy roots on hormonefree MS medium showed red spots in the older part of the tissues which turned white after a second subculture. Whereas hairy roots cultured on RC medium showed faster growth and produced large amount of Shikonin. The Shikonin content in transformed hairy root culture was estimated by recording absorbance at 620 nm and quantified against authentic sample of Shikonin. Shikonin content was estimated to be 0.85 mg g−1 fresh weight of tissue at the end of the 50 days of culture. The results presented herein will help to design strategies for bridging the gap between ever increasing demand and supply of raw products necessary for obtaining Shikonin for cosmetic, dyeing, food, medicinal, and pharmaceutical industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ambros PF, Matzke AJM, Matzyke MA. 1986. Localization of Agrobacterium rhizogenes T-DNA in plant chromosomes by in situ hybridization. EMBOJ 5: 2073–2077

    CAS  Google Scholar 

  • Asada Y, Li W, Yoshikawa T. 1998. Isoprenylated flavonoids from hairy root cultures of Glycyrrhiza glabra. Phytochem. 47: 389–392

    Article  CAS  Google Scholar 

  • Benjamin BD, Roja G, Heble MR. 1994. Alkaloid synthesis by root cultures of Rauwolfia serpentine transformed by Agrobacterium rhizogenes. Phytochemicals. 35: 381–383.

    Article  CAS  Google Scholar 

  • Berlin J, Martin B, Nowak J, Witte L, Wray V, Strack D. 1989. Effect of permeabilization on the biotransformation of phenylalanine by immobilized tobacco cell cultures. Z Naturforsch 44c: 249–254

    Google Scholar 

  • Boehm R, Sommer S, Li SM, Heide L. 2000. Genetic engineering on Shikonin Biosynthesis: Expression of the bacterial ubi A gene in Lithospermum erythrorhizon. Plant Cell Physiol. 41(8): 911–919

    Article  CAS  PubMed  Google Scholar 

  • Chaudhury A, Pal M. 2004. Guru Jambheshwar University of Science & Technology, Hisar, Haryana, India & Department of Biotechnology, Ministry of Science & Technology, Government of India, New Delhi, India. Method for enhanced Shikonin production in Arnebia species through induction of hairy root cultures. Patent Application # 2483/DEL/2004 dated 14-12-2004. Indian Patent. (Patent Pending)

  • Chaudhury A, Pal M. 2005. Guru Jambheshwar University of Science & Technology, Hisar, Haryana, India & Department of Biotechnology, Ministry of Science & Technology, Government of India, New Delhi, India. Method of direct regeneration, Shikonin induction in callus and Agrobacterium-mediated genetic transformation of Arnebia hispidissima. Patent Application # 05256545 dated 21-10-2005. European Patent Granted Published on 10th October, 2008

  • Flores HE, Hoy MW, Puckard JJ. 1987. Secondary metabolites from root cultures. Trends Biotechnol. Lett. 18: 863–868

    Google Scholar 

  • Flores HE, Vivanco JM, Loyola-Vorgas M. 1999. Radicle bio chemistry: The biology of root-specific metabolism. Trends Plant Sci. 4: 220–226

    Article  PubMed  Google Scholar 

  • Fujita Y, Hara Y, Ogino T, Suga C. 1981a. Production of Shikonin derivatives by cell suspension cultures of Lithospermum erythrorhizon: I. Effects of nitrogen sources on the production of Shikonin derivatives. Plant Cell Rep. 1: 59–60

    Article  CAS  Google Scholar 

  • Fujita Y, Hara Y, Suga C, Morimoto T. 1981b. Production of Shikonin derivatives by cell suspension cultures of Lithospermum erythrorhizon. II. A new medium for the production of Shikonin derivatives. Plant Cell Rep. 1:61–63

    Article  CAS  Google Scholar 

  • Fukui H, Hasan AFMF, Ueoka T, Kyo M. 1998. Formation and secretion of a new brown benzoquinones by hairy root cultures of Lithospermum erythrorhizon. Phytochem. 47: 1037–1039

    Article  CAS  Google Scholar 

  • Fukui H, Hasan AFMF, Kyo M. 1999. Formation and secretion of a unique quinone by hairy root cultures of Lithospermum erythrorhizon. Phytochem. 51: 511–515

    Article  CAS  Google Scholar 

  • Hamill JD, Rounsley S, Spencer A, Todd G, Rhodes MJC. 1991. The use of the polymerase chain reaction in plant transformation studies. Plant Cell Rep. 10: 221–224

    Article  CAS  Google Scholar 

  • Heide L, Nishioka N, Fukui H, Tabata M. 1989. Enzymatic regulation of Shikonin biosynthesis in Lithospermum erythrorhizon cell suspension cultures. Phytochem. 28:1873–1877

    Article  CAS  Google Scholar 

  • Khatoon S, Mehrotra BN, Mehrotra S. 2003. Pharmacognistic evaluation of Ratanjot of Arnebia nobilis. Ref. Nat. Prod. Sci. 9: 286–290

    CAS  Google Scholar 

  • Khatoon S, Mehrotra S, Bajpai VK, Mehrotra BN. 1994. Ultramorphology of some Boraginaceous taxa used as Ratanjot. Feddes-Repertorium 105: 61–71

    Google Scholar 

  • Ko KS, Ebizyka Y, Noguchi H, Sanakawa U. 1988. Secondary metabolite production by hairy roots and regenerated plants transformed by Ri plasmids. Chem. Pharm. Bull. 36: 417–420

    Google Scholar 

  • Ko KS, Noguchi H, Ebizyka Y, Sanakawa U. 1989. Oligoside production by hairy root cultures transformed by Ri plasmids. Chem. Pharm. Bull. 37: 245–258

    CAS  Google Scholar 

  • Kunshi M, Shimomura K, Takida M, Kitanaka S. 1998. Growth and ginsenoside production of adventitious and hairy root cultures in an inter-specific hybrid ginseng (Panax ginseng x P. quinquefolium). Nat. Med. 52: 1–4

    Google Scholar 

  • Leonard E, Runguphan W, O’Connor S, Prather KJ. 2009. Opportunities in metabolic engineering to facilitate scalable alkaloid production. Nat. Chem. Biol. 5(5): 292–300

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Qi JL, Chen L, Zhang MS, Wang XQ, Pang YJ, Yang YH. 2006. Effect of light on gene expression and shikonin formation in cultured Onosma paniculatum cells. Plant Cell, Tissue Organ Cult. 84: 39–46

    Article  CAS  Google Scholar 

  • Mizukami H, Konoshima M, Tabata M. 1977. Effect of nutritional factors on Shikonin derivative formation in Lithospermum callus culture. Phytochem. 16: 1183–1186

    Article  CAS  Google Scholar 

  • Mano Y, Ohkawa H, Yamada Y. 1989. Production of tropane — alkaloids by hairy root cultures of Duboisia leichhardtii trans formed by Agrobacterium rhizogenes. Plant Sci. 59: 191–201

    Article  CAS  Google Scholar 

  • Mei WY, Wang JB, Luo D, Jia JF. 2001. Regeneration of plants from callus cultures of roots induced by Agrobacterium rhizogenes on Alhagi pseudoalhagi. Cell Res. 11(4): 279–284

    Article  Google Scholar 

  • Murashige T, Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 15: 473–497

    Article  CAS  Google Scholar 

  • Pal M. 2005. In vitro culture and induction of Shikonin production in Arnebia hispidissima. Ph.D. Thesis submitted to Department of Biotechnology, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, India

    Google Scholar 

  • Pal M, Chaudhury A. 2010. High frequency direct plant regener ation, micropropagation and Shikonin induction in Arnebia hispidissima J. Crop Sci. Biotech. 13:(1) 13–20.

    Article  Google Scholar 

  • Petit A, David C, Dahl GA, Ellis JG, Guyon P, Casse-Delbast F, Tempe J. 1983. Opine concept: plasmid in Agrobacterium rhizogenes cooperate for opine degradation. Mol. Gen. Genet. 190: 204–214

    Article  CAS  Google Scholar 

  • Ravishankar GA, Ramachandra Rao S. 2000. Biotechnological production of phyto-pharmaceuticals. J. Biochem. Mol. Biol. Biophys. 4: 73–102

    CAS  Google Scholar 

  • Saghai-Maroof MA, Soliman K, Jorgensen RA, Allard RW. 1984. Ribosomal DNA spacer length polymorphisms in barley: Mendelian inheritance, chromosomal location and population dynamics. Proc. Natl. Acad. Sci. USA 81: 8014–8018

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular Cloning: A Laboratory Manual (Second Edition), Cold Spring Harbor Laboratory Press, New York, USA

    Google Scholar 

  • Shimomura K, Sudo H, Saga H, Komada H. 1991. Shikonin pro duction and secretion by hairy root cultures of Lithospermum erythrorhizon. Plant Cell Rep. 10: 282–285

    Article  CAS  Google Scholar 

  • Sim SJ, Chang HN. 1993. Increased Shikonin production by hairy roots of Lithospermum erythrorhizon in two phase bubble column reactor. Biotechnol. Lett. 15: 145–150

    Article  CAS  Google Scholar 

  • Tabata M. 1996. The mechanism of Shikonin biosynthesis in Lithospermum cell cultures. Plant Tissue Culture Lett. 13: 117–125

    CAS  Google Scholar 

  • Tabata M, Mizukami H, Hiraoka N, Konoshima M. 1973. Pigment formation in callus cultures of Lithospermum erythrorhizon. Phytochem. 13: 927–932

    Article  Google Scholar 

  • Tepfer D. 1990. Genetic transformation using Agrobacterium rhizogenes. Physiol. Plant 79: 140–146

    Article  CAS  Google Scholar 

  • Terda A, Tanoue Y, Taniguchi H. 1990 Chemistry of Shikonin, ancient purple pigment and its derivatives. J Syn Org Chem. Jpn 48:866–875.

    Google Scholar 

  • Thomas E, Davey MR. 1982. Plant tissue culture media (5) root culture medium. EMBO Course on Ti Plasmids, Lab, Genetics Riaks Universiteit, Gent, Belgium: 109

    Google Scholar 

  • Touno K, Harada K, Yoshimatsu K, Yazaki K, Shimomura K. 2000. Shikonin derivative formation on the stem of cultured shoots in Lithospermum erythrorhizon. Plant Cell Rep. 19: 1121–112

    Article  CAS  Google Scholar 

  • Tsukada M, Tabata M. 1984. Intracellular localization and secretion of napthoquinone pigments in cell cultures of Lithospermum erythrorhizon. Planta Med. 50: 338–341

    Article  CAS  PubMed  Google Scholar 

  • Yazaki K, Bechthold A, Tabata M. 1995a. Nucleotide sequence of a cDNA from Lithospermum erythrorhizon homologous to PR-1 of parsley. Plant Physiol. 108: 1331–1332

    Article  CAS  PubMed  Google Scholar 

  • Yazaki K, Bechthold A, Tabata M. 1995b. Two genes preferentially expressed in darkness Lithospermum erythrorhizon cell suspension cultures. In B Diettrich, Ed, Abstr. 43rd Annu. Cong. Medicinal Plant Res. Georg Thieme Verlag, Stuttgart New York: 1331–1332

    Google Scholar 

  • Yazaki K, Tanaka S, Matsuoka H, Sato F. 1998. Stable transformation of Lithospermum erythrorhizon by Agrobacterium rhizogenes and Shikonin production of transformants. Plant Cell Rep. 18: 214–219

    Article  CAS  Google Scholar 

  • Yoshikawa T, Furuya T. 1987. Saponin production by cultures of Panax ginseng transformed with Agrobacterium rhizogenes. Plant Cell Rep. 6: 449–452.

    CAS  Google Scholar 

  • Zhang L, Ding R, Chai Y, Bonfill M, Moyano E, Oksman-Caldentey K-M, Xu T, Pi Y, Wang Z, Zhang H, Kai G, Liao Z, Sun X, Tang K. 2004. Engineering tropane biosynthetic pathway in Hyoscyamus niger hairy root cultures. Proc. Natl. Acad. Sci. USA 101: 6786–6791

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Chaudhury.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaudhury, A., Pal, M. Induction of Shikonin production in hairy root cultures of Arnebia hispidissima via Agrobacterium rhizogenes-mediated genetic transformation. J. Crop Sci. Biotechnol. 13, 99–106 (2010). https://doi.org/10.1007/s12892-010-0007-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12892-010-0007-x

Key words

Navigation