Skip to main content
Log in

Modulation of plumbagin production in Plumbago zeylanica using a single-chain variable fragment antibody against plumbagin

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

A single-chain variable fragment antibody (scFv) against plumbagin (PL) accumulated the PL production in the hairy roots of Plumbago zeylanica. Recombinant Agrobacterium rhizogenes (ATCC 15834) containing an scFv gene against PL (PL-scFv) were obtained through triparental mating and transformed into P. zeylanica to induce PL-scFv protein in the hairy roots. Up to 40 μg recombinant PL-scFv were expressed per milligram of soluble protein in transgenic P. zeylanica hairy root cultures. The mean PL content obtained from transgenic hairy roots (12.24 μg/100 mg dry weight) exhibited 2.2 times higher than those obtained from wild-type (5.48 μg/100 mg dry weight). The high correlation between the PL-scFv expression level and PL content of the recombinant plants suggested that the PL biosynthesis pathway had been modulated by the expression of PL-scFv protein in the hairy roots of P. zeylanica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Artsaenko O, Peisker M, Zurnieden U, Fiedler U, Weiler EW, Muntz K, Conrad U (1995) Expression of a single-chain Fv antibody against abscisic acid creates a wilty phenotype in transgenic tobacco. Plant J 8:745–750

    Article  PubMed  CAS  Google Scholar 

  • Bermejo-Bescós P, Martín-Aragón S, Jiménez-Aliaga KL, Ortega A, Molina MT, Buxaderas E, Orellana G, Csákÿ AG (2010) In vitro antiamyloidogenic properties of 1, 4-naphthoquinones. Biochem Biophys Res Commun 400:169–174

    Article  PubMed  Google Scholar 

  • Bhargava SK (1984) Effects of plumbagin on reproductive function of male dog. Indian J Exp Biol 22:153–156

    PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive for the quantitation of microgram quantitites of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • de Paiva SR, Figueiredo MR, Aragao TV, Kaplan MAC et al (2003) Antimicrobial activity in vitro of plumbagin isolated from Plumbago species. Mem Inst Oswaldo Cruz 98:959–961

    Article  PubMed  CAS  Google Scholar 

  • Eto J, Suzuki Y, Ohkawa H, Yamaguchi I (2003) Anti-herbicide single-chain antibody expression confers herbicide tolerance in transgenic plants. FEBS Lett 550:179–184

    Article  PubMed  CAS  Google Scholar 

  • Fiedler U, Philips J, Artsaenko O, Conrad U (1997) Optimization of scFv antibody production in transgenic plants. Immunotechnology 3:205–216

    Article  PubMed  CAS  Google Scholar 

  • Gangopadhyay M, Sircar D, Mitra A, Bhattacharya S (2008) Hairy root culture of Plumbago indica as a potential source for plumbagin. Biol Plant 52:533–537

    Article  CAS  Google Scholar 

  • Hiatt AC, Cafferkey R, Bowdish K (1989) Production of antibodies in transgenic plants. Nature 342:76–78

    Article  PubMed  CAS  Google Scholar 

  • Harmsen MM, Langedijk AC, Vantuinen E, Geerse RH, Raue HA, Maat J (1993) Effect of a pmr 1 disruption and different signal sequences on the intracellular processing and secretion of Cyamopsis tetragonoloba alpha-galactosidase by Saccharomyces cerevisiae. Gene 125:115–123

    Article  PubMed  CAS  Google Scholar 

  • Hsu YL, Cho CY, Kuo PL, Huang YT, Lin CC (2006) Plumbagin (5-hydroxy-2-methyl-1, 4-naphthoquinone) induces apoptosis and cell cycle arrest in A549 cells through p53 accumulation via c-Jun NH2-terminal kinase-mediated phosphorylation at serine 15 in vitro and in vivo. J Pharmacol Exp Ther 318:484–494

    Article  PubMed  CAS  Google Scholar 

  • Itogawa M, Takeya K, Furukawa H (1991) Cardiotonic action of plumbagin on guinea-pig papillary muscle. Planta Med 57:317–319

    Article  Google Scholar 

  • Kitanov GM, Pashankov PP (1994) Quantitative investigation on the dynamics of plumbagin in Plumbago europea L. roots and herb by HPLC. Pharmazie 49:642–646

    Google Scholar 

  • Komaraiah P, Kavi Kishor PB, Ramakrishna SV (2001) Production of plumbagin from cell suspension cultures of Plumbago rosea L. Biotechnol Lett 23:1269–1272

    Article  CAS  Google Scholar 

  • Komaraiah P, Naga Amrutha RP, Kavi Kishor B, Ramakrishna SV (2002) Elicitor enhanced production of plumbagin in suspension cultures of Plumbago rosea L. Enzyme Microb Technol 31:634–639

    Article  CAS  Google Scholar 

  • Putalun W, Udomsin O, Yusakul G, Juengwatanatrakul T, Sakamoto S, Tanaka H (2010) Enhanced plumbagin production from in vitro cultures of Drosera burmanii using elicitation. Biotechnol Lett 32:721–724

    Article  PubMed  CAS  Google Scholar 

  • Putalun W, Taura F, Qing W, Matsushita H, Tanaka H, Shoyama Y (2003) Anti-solasodine glycoside single-chain Fv antibody stimulates biosynthesis of solasodine glycoside in plants. Plant Cell Rep 22:344–349

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto S, Putalun W, Tsuchihashi R, Morimoto S, Kinjo J, Tanaka H (2008) Development of an enzyme-linked immunosorbent assay (ELISA) using highly-specific monoclonal antibodies against plumbagin. Anal Chim Acta 607:100–105

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto S, Taura F, Putalun W, Pongkitwitoon B, Tsuchihashi R, Morimoto S, Kinjo J, Shoyama Y, Tanaka H (2009) Construction and expression of specificity-improved single-chain variable fragments against the bioactive naphthoquinone, plumbagin. Biol Pharm Bull 32:434–439

    Article  PubMed  CAS  Google Scholar 

  • Sandur SK, Ichikawa H, Sethi G, Ahn KS, Aggarwal BB (2006) Plumbagin (5-hydroxy-2-methyl-1, 4-naphthoquinone) suppresses NF-kappaB activation and NF-kappaB-regulated gene products through modulation of p65 and IkappaBalpha kinase activation, leading to potentiation of apoptosis induced by cytokine and chemotherapeutic agents. J Biol Chem 281:17023–17033

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan L, Mathew N, Muthuswamy K (2009) In vitro antifilarial activity of glutathione S-transferase inhibitors. Parasitol Res 105:1179–1182

    Article  PubMed  Google Scholar 

  • Suzuki Y, Mizuno T, Urakami E, Yamaguchi I, Asami T (2008) Immunomodulation of bioactive gibberellin confers gibberellin-deficient phenotypes in plants. Plant Biotechnol J 6:355–367

    Article  PubMed  CAS  Google Scholar 

  • Taussig R, Carlson M (1983) Nucleotide sequence of the yeast SUC2 gene for invertase. Nucl Acids Res 11:1943–1954

    Article  PubMed  CAS  Google Scholar 

  • Verma PC, Singh D, Rahman LU, Gupta MM, Banerjee S (2002) In vitro-studies in Plumbago zeylanica: rapid micropropagation and establishment of higher plumbagin yielding hairy root cultures. J Plant Physiol 159:547–552

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We appreciate for the technical supports from the Research Support Center, Graduate School of Medical Sciences, Kyushu University. This work was funded by the Research Fellowship of the Japan Society for the Promotion of Science for Young Scientists. The research in this paper was also supported, in part, by a Grant in Aid from the Japan Society for the Promotion of Science Asian CORE Program; the Ministry of Education, Culture, Sports, Science, and Technology of Japan; and the National Center for Genetic and Biotechnology (BIOTEC), Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Tanaka.

Additional information

Communicated by Q. Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakamoto, S., Putalun, W., Pongkitwitoon, B. et al. Modulation of plumbagin production in Plumbago zeylanica using a single-chain variable fragment antibody against plumbagin. Plant Cell Rep 31, 103–110 (2012). https://doi.org/10.1007/s00299-011-1143-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-011-1143-6

Keywords

Navigation