Skip to main content

Plant Promoters: Characterization and Applications in Transgenic Technology

  • Chapter
  • First Online:
Plant Biotechnology: Principles and Applications

Abstract

Plant growth, development and adaptation are regulated by gene expression, in which promoters, the cis-acting elements that initiate transcription, play a pivotal role. This chapter on plant promoter characterization and applications is split into three major sections. The first section describes the structural features of plant promoters followed by their types along with examples. The understanding that promoters are a complex region of various interacting structural elements has encouraged researchers to develop synthetic promoters, and a subsection is devoted to discuss various such promoters developed. Different approaches available for promoter isolation, identification and their functional characterization are presented in the next section. This section also gives information on various mutant resources, and tools and databases available which help researchers in acquiring appropriate material for promoter isolation in model crops and carry out bioinformatic analysis of the promoter sequences/elements identified, respectively. All the related molecular techniques are also presented in brief. In transgenic development, the choice of promoter remains an important aspect which not only determines the efficiency of the transgenic crop but also might have implications in its biosafety. The third section describes various transgenic crops commercialized or in pipeline (which have completed biosafety trials) in relation to the specific promoters used in their development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abeel T et al (2008) Generic eukaryotic core promoter prediction using structural features of DNA. Genome Res 18:310–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Acharya S, Ranjan R, Pattanaik S et al (2014) Efficient chimeric plant promoters derived from plant infecting viral promoter sequences. Planta 239:381–396

    Article  CAS  PubMed  Google Scholar 

  • Alvarado VY, Tag A, Thomas TL (2011) A cis regulatory element in the TAPNAC promoter directs tapetal gene expression. Plant Mol Biol 75(1–2):129–139

    Article  CAS  PubMed  Google Scholar 

  • An YQ, McDowell JM, Huang S et al (1996) Constitutive expression of the Arabidopsis ACT2/ACT8 actin subclass in vegetative tissues. Plant J 10:107–121

    Article  CAS  PubMed  Google Scholar 

  • Anderson SL, Kay SA (1995) Functional dissection of circadian clock and phytochrome regulated transcription of the Arabidopsis CAB2 gene. Proc Natl Acad Sci U S A 92:1500–1504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antal Z et al (2004) Single oligonucleotide nested PCR: a rapid method for the isolation of genes and their flanking regions from expressed sequence tags. Curr Genet 46(4):240–246

    Article  CAS  PubMed  Google Scholar 

  • Arango J, Salazar B, Welsch R et al (2010) Putative storage root specific promoters from cassava and yam: cloning and evaluation in transgenic carrots as a model system. Plant Cell Rep 29(6):651–659

    Article  CAS  PubMed  Google Scholar 

  • Arnold CD et al (2013) Genome-wide quantitative enhancer activity maps identified by STARR-seq. Science 339:1074–1077

    Article  CAS  PubMed  Google Scholar 

  • Atkinson RG, Bolitho KM, Wright MA, Iturriagagoitia-Bueno T, Reid SJ, Ross GS (1998) Apple ACC-oxidase and polygalacturonase: ripening-specific gene expression and promoter analysis in transgenic tomato. Plant Mol Biol 38(3):449–60

    Article  CAS  PubMed  Google Scholar 

  • Azpiroz-Leehan R, Feldmann KA (1997) T-DNA insertion mutagenesis in Arabidopsis: going back and forth. Trends Genet 13(4):152–156

    Article  CAS  PubMed  Google Scholar 

  • Babiychuk E et al (1997) Efficient gene tagging in Arabidopsis thaliana using a gene trap approach. Proc Natl Acad Sci U S A 94(23):12,722–12,727

    Google Scholar 

  • Baker CC, Phelps WC, Lindgren V et al (1987) Structural and transcriptional analysis of human papillomavirus type 16 sequences in cervical carcinoma cell lines. J Virol 61(4):962–971

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ballinger DG, Benzer S (1989) Targeted gene mutations in Drosophila. Proc Natl Acad Sci U S A 86:9402–9406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banerji J, Rusconi S, Schaffner W (1981) Expression of a beta-globin gene is enhanced by remote SV40 DNA sequences. Cell 27:299–308

    Article  CAS  PubMed  Google Scholar 

  • Bang SW, Park SH, Jeong JS et al (2013) Characterization of the stress-inducible OsNCED3 promoter in different transgenic rice organs and over three homozygous generations. Planta 237(1):211–224

    Article  CAS  PubMed  Google Scholar 

  • Bäumlein H, Boerjan W, Nagy I et al (1991) A novel seed protein gene from Vicia faba is developmentally regulated in transgenic tobacco and Arabidopsis plants. Mol Gen Genet 225:459–467

    Article  PubMed  Google Scholar 

  • Beaudoin N et al (2000) Interactions between abscisic acid and ethylene signaling cascades. Plant Cell Online 12(7):1103–1115

    Article  CAS  Google Scholar 

  • Beltrán J, Prías M, Al-Babili S et al (2010) Expression pattern conferred by a glutamic acid-rich protein gene promoter in field-grown transgenic cassava (Manihot esculenta Crantz). Planta 231(6):1413–1424

    Article  PubMed  CAS  Google Scholar 

  • Bernard V, Brunaud V, Lecharny A (2010) TC-motifs at the TATA-box expected position in plant genes: a novel class of motifs involved in the transcription regulation. BMC Genomics 11:166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bhullar S, Chakravarthy S, Advani S et al (2003) Strategies for development of functionally equivalent promoters with minimum sequence homology for transgene expression in plants: cis-elements in a novel DNA context versus domain swapping. Plant Physiol 132(2):988–998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bisht H et al (2004) Severe acute respiratory syndrome coronavirus spike protein expressed by attenuated vaccinia virus protectively immunizes mice. Proc Natl Acad Sci U S A 101(17):6641–6646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blatt MR (2000) Cellular signaling and volume control in stomatal movements in plants. Annu Rev Cell Dev Biol 16(1):221–241

    Article  CAS  PubMed  Google Scholar 

  • Brandalise M, Severino FE, Maluf MP et al (2009) The promoter of a gene encoding an isoflavone reductase- like protein in coffee (Coffea arabica) drives a stress responsive expression in leaves. Plant Cell Rep 28:1699–1708

    Article  CAS  PubMed  Google Scholar 

  • Brazma A, Jonassen I, Vilo J et al (1998) Predicting gene regulatory in silico on a genomic scale. Genome Res 8(11):1202–1215

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burke TW, Kadonaga JT (1996) Drosophila TFIID binds to a conserved downstream basal promoter element that is present in many TATA-box-deficient promoters. Genes Dev 10:711–724

    Article  CAS  PubMed  Google Scholar 

  • Busk PK, Pagès M (2002) In vivo footprinting of plant tissues. Plant Mol Biol Report 20(3):287–297

    Article  CAS  Google Scholar 

  • Butler JEF, Kadonaga JT (2001) Enhancer-promoter specificity mediated by DPE or TATA core promoter motifs. Genes Dev 15:2515–2519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carninci P et al (2006) Genome-wide analysis of mammalian promoter architecture and evolution. Nat Genet 38:626–635

    Article  CAS  PubMed  Google Scholar 

  • Castiglioni P, Warner D, Bensen RJ et al (2008) Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water-limited conditions. Plant Physiol 147:446–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang WC, Lee TY, Huang HD et al (2008) PlantPAN: plant promoter analysis navigator, for identifying combinatorial cis-regulatory elements with distance constraint in plant gene groups. BMC Genomics 26:561

    Article  CAS  Google Scholar 

  • Chaturvedi CP, Sawant SV, Kiran K et al (2006) Analysis of polarity in the expression from a multifactorial bidirectional promoter designed for high-level expression of transgenes in plants. J Biotechnol 123(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Chaturvedi CP, Lodhi N, Ansari SA et al (2007) Mutated TATA-box/TATA binding protein complementation system for regulated transgene expression in tobacco. Plant J 50(5):917–925

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Wang Z, Wang J et al (2007) Isolation and characterization of Brittle2 promoter from Zea mays and its comparison with Ze19 promoter in transgenic tobacco plants. Plant Cell Tissue Organ Cult 88:11–20

    Article  CAS  Google Scholar 

  • Cheng Y et al (2009) Erythroid GATA1 function revealed by genome-wide analysis of transcription factor occupancy, histone modifications, and mRNA expression. Genome Res 19:2172–2184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiu W, Niwa Y, Zeng W, Hirano T, Kobayashi H, Sheen J (1996) Engineered GFP as a vital reporter in plants. Curr Biol 6(3):325–330

    Article  CAS  PubMed  Google Scholar 

  • Christense AH, Sharrock RA, Quail PH (1992) Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol 18(4):675–689

    Article  Google Scholar 

  • Civan P, Svec M (2009) Genome-wide analysis of rice (Oryza sativa L. subsp. Japonica) TATA box and Y Patch promoter elements. Genome 52:294–297

    Article  CAS  PubMed  Google Scholar 

  • Clark IM, Forde BG, Hallahan DL (1997) Spatially distinct expression of two new cytochrome P450s in leaves of Nepeta racemosa: identification of a trichome-specific isoform. Plant Mol Biol 33:875–885

    Article  CAS  PubMed  Google Scholar 

  • Coussens G, Aesaert S, Verelst W et al (2012) Brachypodium distachyon promoters as efficient building blocks for transgenic research in maize. J Exp Bot 63(11):4263–4273

    Article  CAS  PubMed  Google Scholar 

  • Dalal M, Chinnusamy V, Bansal KC (2010) Isolation and functional characterization of lycopene beta-cyclase (CYC-B) promoter from Solanum habrochaites. BMC Plant Biol 10:61–66

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Damaj MB, Kumpatla SP, Emani C et al (2010) Sugarcane DIRIGENT and O-methyltransferase promoters confer stem-regulated gene expression in diverse monocots. Planta 231:1439–1458

    Article  CAS  PubMed  Google Scholar 

  • Deikman J, Fischer RL (1988) Interaction of a DNA with the 5’-flanking region of an ethylene-responsive fruit ripening gene from tomato. EMBO J 7:3315–3320

    CAS  PubMed  PubMed Central  Google Scholar 

  • Del Vecchio AJ (1996) High-laurate canola oil: how Calgene’s program began, where it’s headed. INFORM 7:230–240

    Google Scholar 

  • Dutt M, Ananthakrishnan G, Jaromin MK et al (2012) Evaluation of four phloem-specific promoters in vegetative tissues of transgenic citrus plants. Tree Physiol 32(1):83–93

    Article  CAS  PubMed  Google Scholar 

  • Dwivedi KK, Roche D, Carman JG (2010) Expression in Arabidopsis of a nucellus-specific promoter from watermelon (Citrullus lanatus). Plant Sci 179(5):549–552

    Article  CAS  PubMed  Google Scholar 

  • Ellerström M, StÃ¥lberg K, Ezcurra I et al (1996) Functional dissection of a napin gene promoter: identification of promoter elements required for embryo and endosperm-specific transcription. Plant Mol Biol 32(6):1019–1027

    Article  PubMed  Google Scholar 

  • Elmayan T, Tepfer M (1995) Evaluation in tobacco of the organ specificity and strength of the rolD promoter, domain A of the 35S promoter and the 35S2 promoter. Transgenic Res 4:388–396

    Article  CAS  PubMed  Google Scholar 

  • El-Mezawy A, Wu L, Shah S (2009) A seed coat-specific promoter for canola. Biotechnol Lett 31(12):1961–1965

    Article  CAS  PubMed  Google Scholar 

  • Ettwiller LM, Rung J, Birney E (2003) Discovering novel cis-regulatory motifs using functional networks. Genome Res 13:883–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evrard A, Meynard D, Guiderdoni E et al (2007) The promoter of the wheat puroindoline-a gene (PinA) exhibits a more complex pattern of activity than that of the PinB gene and is induced by wounding and pathogen attack in rice. Planta 225(2):287–300

    Article  CAS  PubMed  Google Scholar 

  • Fauteux F, MV Stromvik (2009) Seed storage protein gene promoters contain conserved DNA motifs in Brassicaceae, Fabaceae and Poaceae. BMC Plant Biol 9:126–136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Feldmann KA (1991) T-DNA insertion mutagenesis in Arabidopsis mutational spectrum. Plant J 1(1):71–82

    Article  CAS  Google Scholar 

  • Fickett JW, Hatzigeorgiou AG (1997) Eukaryotics promoter recognition. Genome Res 7:861–878

    CAS  PubMed  Google Scholar 

  • Forde BG, Hayworth A, Pywell J, Kreis M (1985) Nucleotide sequencing of a B1 hordein gene and the identification of possible upstream regulatory elements in endosperm storage protein genes from barley, wheat and maize. Nucleic Acids Res 13:7327–7339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Francia P, Simoni L, Cominelli E et al (2008) Gene trap-based identification of a guard cell promoter in Arabidopsis. Plant Signal Behav 3(9):684–686

    Article  PubMed  PubMed Central  Google Scholar 

  • Frith MC et al (2008) A code for transcription initiation in mammalian genomes. Genome Res 18:1–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Govindarajulu M, Elmore JM, Fester T et al (2008) Evaluation of constitutive viral promoters in transgenic soybean roots and nodules. Mol Plant-Microbe Interact 21(8):1027–1035

    Article  CAS  PubMed  Google Scholar 

  • Grosschedl R, Fiona MW (2001) From stem cells to specialized cells: signaling and gene regulation in cell differentiation. Curr Opin Genet Dev 11:493–496

    Article  CAS  Google Scholar 

  • Gupta V, Khurana R, Tyagi AK (2007) Promoters of two anther-specific genes confer organ-specific gene expression in a stage-specific manner in transgenic systems. Plant Cell Rep 26(11):1919–1931

    Article  CAS  PubMed  Google Scholar 

  • Gupta NC, Jain PK, Bhat SR et al (2012) Upstream sequence of fatty acyl-CoA reductase (FAR6) of Arabidopsis thaliana drives wound-inducible and stem-specific expression. Plant Cell Rep 31(5):839–850

    Article  CAS  PubMed  Google Scholar 

  • Hajdukiewicz PTJ, Allison L, Maliga P (1997) The two RNA polymerases encoded by the nuclear and the plastid compartments transcribe distinct groups of genes in tobacco plastids. EMBO J 16:4041–4048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halees AS, Leyfer D, Weng Z (2003) PromoSer: a large-scale mammalian promoter and transcription start site identification service. Nucleic Acids Res 31:3554–3559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardison RC, Taylor J (2012) Genomic approaches towards finding cis-regulatory modules in animals. Nat Rev Genet 13:469–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He X, Fütterer J, Hohn T (2002) Contribution of downstream promoter elements to transcriptional regulation of the rice tungro bacilliform virus promoter. Nucleic Acids Res 30:497–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hehl R, Wingender E (2001) Database-assisted promoter analysis. Trends Plant Sci 6:251–255

    Article  CAS  PubMed  Google Scholar 

  • Helden JA (2003) Regulatory sequence analysis tools. Nucleic Acids Res 31:3593–3596

    Article  PubMed  PubMed Central  Google Scholar 

  • Hernandez-Garcia CM, Bouchard RA, Rushton PJ et al (2010) High level transgenic expression of soybean (Glycine max) GmERF and Gmubi gene promoters isolated by a novel promoter analysis pipeline. BMC Plant Biol 10:237

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hernandez-Garcia CM, Finer JJ (2014) Identification and validation of promoters and cis-acting regulatory elements. Plant Sci 217–218:109–119

    Article  PubMed  CAS  Google Scholar 

  • Hertz GZ, Stormo GD (1999) Identifying DNA and protein patterns with statistically significant alignments of multiple sequences. Bioinformatics 15(7):563–577

    Article  CAS  PubMed  Google Scholar 

  • Higo K, Ugawa W, Iwamoto M et al (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiwasa-Tanase K, Kuroda H, Hirai T et al (2012) Novel promoters that induce specific transgene expression during the green to ripening stages of tomato fruit development. Plant Cell Rep 31(8):1415–1424

    Article  CAS  PubMed  Google Scholar 

  • Hoa TTC et al (2003) Golden Indica and Japonica rice lines amenable to deregulation. Plant Physiol 133(1):161–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hood EE et al (1997) Commercial production of avidin from transgenic maize: characterization of transformant, production, processing, extraction and purification. Mol Breed 3(4):291–306

    Article  CAS  Google Scholar 

  • Hou L et al (2012) Construction of stress responsive synthetic promoters and analysis of their activity in transgenic Arabidopsis thaliana. Plant Mol Biol Report 30:1496–1506

    Article  CAS  Google Scholar 

  • Hsu CT, Liao DC, Wu FH, Liu NT, Shen SC, Chou SJ et al (2011) Integration of molecular biology tools for identifying promoters and genes abundantly expressed in flowers of Oncidium ‘Gower Ramsey’. BMC Plant Biol 11:60. doi:10.1186/1471-2229-11-60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu SW, Liu MU, Zen KC et al (2014) Identification of the tapetum/microspore-specific promoter of the pathogenesis-related 10 gene and its regulation in the anther of Lilium longiflorum. Plant Science 215–216:124–133

    Article  PubMed  CAS  Google Scholar 

  • Hunt AG, Maiti AB (2001) Strategies for expressing multiple foreign genes in plants as polycistronic constructs. In Vitro Cell Dev Biol Plant 37:313–320

    Article  CAS  Google Scholar 

  • Ibraheem O, Botha CE, Bradley G (2010) In silico analysis of cis-acting regulatory elements in 5_regulatory regions of sucrose transporter gene families in rice (Oryza sativa Japonica) and Arabidopsis thaliana. Comput Biol Chem 34:268–283

    Article  CAS  PubMed  Google Scholar 

  • Ichikawa T, Nakazawa M, Kawashima M et al (2003) Sequence database of 1172 T-DNA insertion sites in Arabidopsis activation-tagging lines that showed phenotypes in T1 generation. Plant J 36(3):421–429

    Article  CAS  PubMed  Google Scholar 

  • Ito H, Hiraga S, Tsugawa H et al (2000) Xylem-specific expression of wound-inducible rice peroxidase genes in transgenic plants. Plant Sci 155(1):85–100

    Article  CAS  PubMed  Google Scholar 

  • Ito S, Inoue H, Kobayashi T et al (2007) Interspecies compatibility of NAS1 gene promoters. Plant Physiol Biochem 45(5):270–276

    Article  CAS  PubMed  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jefferson RA, Goldsborough A, Bevan MW (1990) Transcriptional regulation of patatin-I gene in potato. Plant Mol Biol 14:995–1006

    Article  CAS  PubMed  Google Scholar 

  • Joshi CP (1987) An inspection of the domain between putative TATA box and translation start site in 79 plant genes. Nucleic Acids Res 15:6643–6653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaiser K, Goodwin SF (1990) Site-selected transposon mutagenesis of Drosophila. Proc Natl Acad Sci U S A 87:1686–1690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamaladini H, Abdullah NAS, Aziz MA et al (2013) Breaking-off tissue specific activity of the oil palm metallothionein-like gene promoter in T1 seedlings of tomato exposed to metal ions. J Plant Physiol 170:346–354

    Article  CAS  PubMed  Google Scholar 

  • Kanoria JS, Burman PK (2012) A 28 nt long synthetic 50UTR (synJ) as an enhancer of transgene expression in dicotyledonous plants. BMC Biotechnol 12:85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karaaslan M, Hrazdina G (2010) Characterization of an expansin gene and its ripening-specific promoter fragments from sour cherry (Prunus cerasus L.) cultivars. Acta Physiol Plant 32:1073–1084

    Article  CAS  Google Scholar 

  • Kato J, Hashimoto M (2007) Construction of consecutive deletions of the Escherichia coli chromosome. Mol Syst Biol 3:132

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim HJ, Murai N, Fang DD et al (2011) Functional analysis of Gossypium hirsutum cellulose synthase catalytic subunit 4 promoter in transgenic Arabidopsis and cotton tissues. Plant Sci 180(2):323–332

    Article  CAS  PubMed  Google Scholar 

  • Ko JH, Kim HT, Hwang I et al (2012) Tissue-type-specific transcriptome analysis identifies developing xylem-specific promoters in poplar. Plant Biotechnol J 10(5):587–596

    Article  CAS  PubMed  Google Scholar 

  • Koia J, Moyle R, Hendry C et al (2013) Pineapple translation factor SUI1 and ribosomal protein L36 promoters drive constitutive transgene expression patterns in Arabidopsis thaliana. Plant Mol Biol 81(4–5):327–336

    Article  CAS  PubMed  Google Scholar 

  • Kolovos P, Knoch TA, Grosveld FG et al (2012) Enhancers and silencers: an integrated and simple model for their function. Epigenet Chromatin 5:3–8

    Article  CAS  Google Scholar 

  • Komarnytsky S, Borisjuk N (2003) Functional analysis of promoter elelments in plants. In: Jetlow JK (ed) Genetic engineering, vol 25. Kluwer Academic/Plenum Publishers, pp 113–141

    Google Scholar 

  • Krysan PH, Young JC, Tax F et al (1996) Identification of transferred DNA insertions within Arabidopsis genes involved in signal transduction and ion transport. Proc Natl Acad Sci U S A 93:8145–8150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhlemeier C, Fluhr R, Green PJ, Chua NH (1987) Sequences in the pea rbcS-3A gene have homology to constitutive mammalian enhancers but function as negative regulatory elements. Genes Dev 1:247–255

    Article  CAS  PubMed  Google Scholar 

  • Kumar M, Shukla AK, Singh H et al (2009) Development of insect resistant transgenic cotton lines expressing cry1EC gene from an insect bite and wound inducible promoter. J Biotechnol 140(3–4):143–148

    Article  CAS  PubMed  Google Scholar 

  • Kumar D, Patro S, Ranjan R et al (2011) Development of useful recombinant promoter and its expression analysis in different plant cells using confocal laser scanning microscopy. PLoS One 6(9):e24627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumari S, Ware D (2013) Genome wide computational prediction and analysis of core promoter elements across monocots and dicots. PLoS ONE 8(10)

    Google Scholar 

  • Kutach AK, Kadonaga JT (2000) The downstream promoter element DPE appears to be as widely used as the TATA box in Drosophila core promoters. Mol Cell Biol 20:4754–4764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lagrange T, Kapanidis AN, Tang H, Reinberg D, Ebright RH (1998) New core promoter element in RNA polymerase II-dependent transcription: sequence-specific DNA binding by transcription factor IIB. Genes Dev 12:34–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamacchia C, Shewry PR, Di Fonzo N, Forsyth JL, Harris N et al (2001) Endosperm specific activity of a storage protein gene promoter in transgenic wheat seed. J Exp Bot 52:243–250

    Article  CAS  PubMed  Google Scholar 

  • Landouar-Arsivaud L, Juchaux-Cachau M, Jeauffre J et al (2011) The promoters of 3 celery salt-induced phloem-specific genes as new tools for monitoring salt stress responses. Plant Physiol Biochem 49(1):2–8

    Article  CAS  PubMed  Google Scholar 

  • Lang Z, Zhou P, Yu J et al (2008) Functional characterization of the pollen-specific SBgLR promoter from potato (Solanum tuberosum L.). Planta 227:387–396

    Article  CAS  PubMed  Google Scholar 

  • Lau OS, Sun SSM (2009) Plant seeds as bioreactors for recombinant protein production. Biotechnol Adv 27:1015–1022

    Article  CAS  PubMed  Google Scholar 

  • Lee WS, Tzen JT, Kridl JC et al (1991) Maize oleosin is correctly targeted to seed oil bodies in Brassica napus transformed with the maize oleosin gene. Proc Natl Acad Sci U S A 88(14):6181–6185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lescot M, Dehais P, Thijs G et al (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30(1):325–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li ZT, Gray D (2005) Nucleotide sequences of 2s albumin gene and its promoter from grape and uses thereof. Patent WO2004078945 A2

    Google Scholar 

  • Li G, Hall TC (1999) Footprinting in vivo reveals changing profiles of multiple factor interactions with the β-phaseolin promoter during embryogenesis. Plant J 18(6):633–641

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Yin J, Xiao M, Gao C, Mason AS, Zhao Z, Liu Y, Li J, Fu D (2012) Characterization and evolution of 5’ and 3’ untranslated regions in eukaryotes. Gene 507:106–111

    Article  CAS  PubMed  Google Scholar 

  • Liu YG, Whittier RF (1995) Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics 25(3):674-81

    Google Scholar 

  • Li Y, Liu S, Yu Z et al (2013) Isolation and characterization of two novel root-specific promoters in rice (Oryza sativa L.). Plant Sci 207:37–44

    Article  CAS  PubMed  Google Scholar 

  • Lienard D et al (2007) Pharming and transgenic plants. Biotechnol Annu Rev 13:115–147

    Article  CAS  PubMed  Google Scholar 

  • Lindsey K, Wei W, Clarke MC et al (1993) Tagging genomic sequences that direct transgene expression by activation of a promoter trap in plants. Transgenic Res 2:33–47

    Article  CAS  PubMed  Google Scholar 

  • Lodish H, Berk A, Zipursky LS et al (2000) Regulation of transcription initiation. In: Freeman WH (ed) Molecular cell biology. W. H. Freeman, New York

    Google Scholar 

  • Ma JKC, Drake PMW, Christou P (2003) The production of recombinant pharmaceutical proteins in plants. Nat Genet Rev 4:794–805

    Article  CAS  Google Scholar 

  • Maeo K, Tomiya T, Hayashi K, Akaike M, Morikami A, Ishiguro S, Nakamura K (2001) Sugar-responsible elements in the promoter of a gene for beta-amylase of sweet potato. Plant Mol Biol 46(5):627–637

    Article  CAS  PubMed  Google Scholar 

  • Maliga P (2002) Engineering the plastid genome of higher plants. Curr Opin Plant Biol 5:164–172

    Article  CAS  PubMed  Google Scholar 

  • Malone SC et al (2000) An upstream oct-1-and oct-2-binding silencer governs B29 (Igβ) gene expression. J Immunol 164(5):2550–2556

    Article  CAS  PubMed  Google Scholar 

  • Mann DG, King ZR, Liu W et al (2011) Switchgrass (Panicum virgatum L.) polyubiquitin gene (PvUbi1 and PvUbi2) promoters for use in plant transformation. BMC Biotechnol 11:74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mariani C et al (1992) A chimaeric ribonuclease-inhibitor gene restores fertility to male sterile plants. Nature 357:384–387

    Article  CAS  Google Scholar 

  • Marks MD, Feldmann KA (1989) Trichome development in Arabidopsis thaliana: T-DNA tagging of the GLABROUSI gene. Plant Cell 1:1043–1050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martienssen RA (1998a) Functional genomics: probing plant gene function and expression with transposons. Proc Natl Acad Sci U S A 95(5):2021–2026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martienssen RA (1998b) Transposons, DNA methylation and gene control. Trends Genet 14(7):263–264

    Article  CAS  PubMed  Google Scholar 

  • Maruyama K et al (2012) Identification of cis-acting promoter elements in cold- and dehydration-induced transcriptional pathways in Arabidopsis, rice, and soybean. DNA Res 19:37–49

    Article  CAS  PubMed  Google Scholar 

  • Marzábal P, Busk PK, Ludevid MD, Torrent M (1998) The bifactorial endosperm box of gamma-zein gene: characterisation and function of the Pb3 and GZM cis-acting elements. Plant J 16:41–52

    Article  PubMed  Google Scholar 

  • Matys V, Fricke E, Geffers R et al (2003) TRANSFAC: transcriptional regulation, from patterns to pro-fiE. Nucleic Acids Res 31:374–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McElroy D, Zhang W, Cao J et al (1990) Isolation of an efficient actin promoter for use in rice transformation. Plant Cell 2:163–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKinney EC, Ali N, Traut A et al (1995) Sequenced-based identification of T-DNA insertion mutations in Arabidopsis: actin mutants act2–1 and act4–1. Plant J 8:613–622

    Article  CAS  PubMed  Google Scholar 

  • McKnight SL, Kingsbury R (1982) Transcriptional control signals of a eukaryotic protein-coding gene. Science 217(4557):316–324

    Article  CAS  PubMed  Google Scholar 

  • Mehrotra R, Mehrotra S (2010) Promoter activation by ACGT in response to salicylic and abscisic acids is differentially regulated by the spacing between two copies of the motif. J Plant Physiol 167:1214–1218

    Article  CAS  PubMed  Google Scholar 

  • Mehrotra R, Panwar J (2009) Dimerization of GT element interferes negatively with gene activation. J Genet 88:257–2607

    Article  CAS  PubMed  Google Scholar 

  • Mehrotra R, Kiran K, Chaturvedi CP et al (2005) Effect of copy number and spacing of the ACGT and GT cis elements on transient expression of minimal promoter in plants. J Genet 84:183–118

    Article  CAS  PubMed  Google Scholar 

  • Miyata LY, Harakava R, Stipp LC, Mendes BM et al (2013) GUS expression in sweet oranges (Citrus sinensis L. Osbeck) driven by three different phloem-specific promoters. Plant Cell Rep 31:2005–2013

    Article  CAS  Google Scholar 

  • Mohan R, Vijayan P, Kolattukudy PE (1993) Developmental and tissue-specific expression of a tomato anionic peroxidase (tap1) gene by a minimal promoter, with wound and pathogen induction by an additional 5′-flanking region. Plant Mol Biol 22(3):475–490

    Article  CAS  PubMed  Google Scholar 

  • Molina C, Grotewold E (2005) Genome wide analysis of Arabidopsis core promoters. BMC Genomics 6:25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Montgomery J, Pollard V, Deikman J, Fischer RL (1993) Positive and negative regulatory regions control the spatial distribution of polygalacturonase transcription in tomato fruit pericarp. Plant Cell 5:1049–1062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mueller PR, Barbara W (1989) In vivo footprinting of a muscle specific enhancer by ligation-mediated PCR. Science 246:780–786

    Article  CAS  PubMed  Google Scholar 

  • Nain V, Verma A, Kumar N et al (2008) Cloning of an ovule specific promoter from Arabidopsis thaliana and expression of beta-glucuronidase. Indian J Exp Biol 46(4):207–211

    CAS  PubMed  Google Scholar 

  • Nakamura M, Tsunoda T, Obokata J (2002) Photosynthesis nuclear genes generally lack TATA-boxes: a tobacco photosystem I gene responds to light through an initiator. Plant J 29:1–10

    Article  CAS  PubMed  Google Scholar 

  • Navarre C, Sallets A, Gauthy E et al (2011) Isolation of heat shock-induced Nicotiana tabacum transcription promoters and their potential as a tool for plant research and biotechnology. Transgenic Res 20(4):799–810

    Article  CAS  PubMed  Google Scholar 

  • Nelson HC (2001) Risk perception, behaviour and consumer response to genetically modified organisms. Am Behav Sci 44(8):1371–1388

    Article  Google Scholar 

  • Nielsen SJ, Præstegaard M, Jørgensen HF, Clark BFC (1998) Different Sp1 family members differentially affect transcription from the human elongation factor 1 A-1 gene promoter. Biochem J 333:511–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nomura M, Sentoku N, Nishimura A, Lin JH, Honda C et al (2000) The evolution of C4 plants: acquisition of cisregulatory sequences in the promoter of C4 -type pyruvate, orthophosphate dikinase gene. Plant J 22:211–221

    Article  CAS  PubMed  Google Scholar 

  • Nontachaiyapoom S, Scott PT, Men AE et al (2007) Promoters of orthologous Glycine max and lotus japonicus nodulation autoregulation genes interchangeably drive phloem-specific expression in transgenic plants. Mol Plant-Microbe Interact 20(7):769–780

    Article  CAS  PubMed  Google Scholar 

  • Nunberg AN, Li Z, Bogue MA, Vivekananda J, Reddy AS, Thomas TL (1994) Developmental and hormonal regulation of sunflower helianthinin genes: proximal promoter sequences confer regionalized seed expression. Plant Cell 6:473–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ochman H, Gerber AS, Hartl DL (1998) Genetic applications of an inverse polymerase chain reaction. Genetics 120(3):621–623

    Google Scholar 

  • Odell JT, Nagy F, Chua NH (1987) Variability in 35S promoter expression between independent transformants. In: Mclntosh L, Ke J (eds) Plant gene systems and their biology, vol 62. Alan R. Liss, Inc., New York, pp 329–331

    Google Scholar 

  • Ohler U, Niemann H (2001) Identification and analysis of eukaryotic promoters: recent computational approaches. Trends Genet:1756–1760

    Google Scholar 

  • O’Malley RC et al (2007) An adapter ligation-mediated PCR method for high-throughput mapping of T-DNA inserts in the Arabidopsis genome. Nat Protoc 2(11):2910–7

    Article  PubMed  CAS  Google Scholar 

  • Ow DW et al (1986) Transient and stable expression of the firefly luciferase gene in plant cells and transgenic plants. Science 234:856–959

    Article  CAS  PubMed  Google Scholar 

  • Padidam M (2003) Chemically regulated gene expression in plants. Curr Opin Plant Biol 6:169–177

    Article  CAS  PubMed  Google Scholar 

  • Paine JA, Shipton CA, Chaggar S, Howells RM et al (2005) Improving the nutritional value of golden rice through increased pro-vitamin A content. Nat Biotechnol Let 23:482–487

    Article  CAS  Google Scholar 

  • Park SH, Bang SW, Jeong JS et al (2012) Analysis of the APX, PGD1 and R1G1B constitutive gene promoters in various organs over three homozygous generations of transgenic rice plants. Planta 235(6):1397–1408

    Article  CAS  PubMed  Google Scholar 

  • Parida SK, Dalal V, Singh NK, Mohapatra T (2009) Genic non-coding microsatellites in the rice genome: characterization, marker design and use in assessing genetic and evolutionary relationships among domesticated groups. BMC Genomics 10:140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parra G, Bradnam K, Rose AB et al (2011) Comparative and functional analysis of intron-mediated enhancement signals reveals conserved features among plants. Nucleic Acids Res 39:5328–5337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parvathy ST, Srinivasan R (2016) Functional analysis of a cryptic promoter from Arabidopsis thaliana. Plant Biotechnol Rep 10:241–255

    Google Scholar 

  • Pei ZM, Ghassemian M, Kwak CM, McCourt P, Schroeder JI (1998) Role of farnesyltransferase in ABA regulation of guard cell anion channels and plant water loss. Science 282:287–290

    Article  CAS  PubMed  Google Scholar 

  • Pellegrineschi A, Reynolds M, Pacheco M et al (2004) Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under green house conditions. Genome 47:493–500

    Article  CAS  PubMed  Google Scholar 

  • Peremarti A, Twyman RM, Gómez-Galera S et al (2010) Promoter diversity in multigene transformation. Plant Mol Biol 73:363–378

    Article  CAS  PubMed  Google Scholar 

  • Pfeifer GP, Rigg, AD (1993) Genomic sequencing. In: Griffin H, Griffin A (eds) Methods in molecular biology, vol 23: DNA sequencing protocols. Humana, Totowa, pp 169–181

    Google Scholar 

  • Piechulla B, Merforth N, Rudolph B (1998) Identification of tomato Lhc promoter regions necessary for circadian expression. Plant Mol Biol 38:655–662

    Google Scholar 

  • Plesse B, Criqui MC, Durr A et al (2001) Effects of the polyubiquitin gene Ubi.U4 leader intron and first ubiquitin monomer on reporter gene expression in Nicotiana tabacum. Plant Mol Biol 45:655–667

    Article  CAS  PubMed  Google Scholar 

  • Potenza C, Aleman L, Sengupta-Gopalan C (2004) Invited Review: Targeting transgene expression in research, agricultural, and environmental applications: Promoters used in plant transformation InVitro Cell. Dev Biol-Plant 40:1–22

    Article  CAS  Google Scholar 

  • Porto MS, Pinheiro MPN, Batista VGL et al (2013) Plant promoters: an approach of structure and function. Mol Biotechnol. doi:10.1007/s12033–013–9713-1

    Google Scholar 

  • Prasad AM, Sivanandan C, Resminath R et al (2005) Cloning and characterization of a pentatricopeptide repeat protein-encoding gene (LOJ) that is specifically expressed in lateral organ junctions in Arabidopsis thaliana. Gene 353:67–79

    Article  CAS  PubMed  Google Scholar 

  • Pratibha P, Singh SK, Sharma I et al (2013) Characterization of a T-DNA promoter trap line of Arabidopsis thaliana uncovers a cryptic bi-directional promoter. Gene 524(2013):22–27

    Article  CAS  PubMed  Google Scholar 

  • Pratibha P, Singh SK, Srinivasan R et al (2017) Mitochondrial Coproporphyrinogen gene is required for gametophyte development in Arabidopsis. Plant Physiol (In press)

    Google Scholar 

  • Radhamony RN, Prasad AM, Srinivasan R (2005) T-DNA insertional mutagenesis in Arabidopsis: a tool for functional genomics. Electron J Biotechnol [online] 8(1):82–106

    Google Scholar 

  • Ramachandran S, Sundaresan V (2001) Transposons as tools for functional genomics. Plant Physiol Biochem 39(3):243–252

    Article  CAS  Google Scholar 

  • Ranjan A, Ansari SA, Srivastava R et al (2009) A T9G mutation in the prototype TATA-box TCACTATATATAG determines nucleosome formation and synergy with upstream activator sequences in plant promoters. Plant Physiol 151(4):2174–2186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reese MG (2001) Application of a time-delay neural network to promoter annotation in the Drosophila melanogaster genome. Comput Chem 26:51–56

    Article  CAS  PubMed  Google Scholar 

  • Reidt W, Wohlfarth T, Ellerström M et al (2000) Gene regulation during late embryogenesis: the RY motif of maturation-specific gene promoters is a direct target of the FUS3 gene product. Plant J 21(5):401–408

    Article  CAS  PubMed  Google Scholar 

  • Resminath, Prasad AM, Thakre DR et al (2005) Promoter trapping in Arabidopsis using T-DNA insertional mutagenesis. J Plant Biochem Biotechnol 14:1–8

    Google Scholar 

  • Rombauts S, Florquin K, Lescot M et al (2003) Computational approaches to identify promoters and cis regulatory elements in plant genomes. Plant Physiol 132:1162–1176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rushton PJ, Reinstadler A, Lipka V et al (2002) Synthetic plant promoters containing defined regulatory elements provide novel insights into pathogen and wound-induced signaling. Plant Cell 14:749–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saha D, Kumar V, Bhat SR, Srinivasan R (2010) Characterization of upstream sequences of the LOJ gene leads to identification of a novel enhancer element conferring lateral organ junction-specific expression in Arabidopsis thaliana. Plant Mol Biol Report 28

    Google Scholar 

  • Saha D, Kumar V, Bhat SR, Srinivasan R (2011) Characterization of Upstream Sequences of the LOJ Gene Leadsto Identification of a Novel Enhancer Element Conferring Lateral Organ Junction-Specific Expression in Arabidopsis thaliana. Plant Mol. Biol. Rep. 29:265–277

    Google Scholar 

  • Saha DN, Kumar, V, Bhat, SR, Srinivasan R (2012) A simple PCR cloning step to utilize a binary vector for identification and characterization of enhancer element in plant promoters. Agric. Res. 1:190–196

    Google Scholar 

  • Saha, D, Prasad AM, Sujatha TP et al (2007a) In silico analysis of the Lateral Organ Junction (loj) gene and promoter of Arabidopsis thaliana. In Silico Biology 7:7-19

    Google Scholar 

  • Saha D, Prasad AM, Srinivasan R (2007b) Pentatricopeptide repeat Proteins and their emerging roles in plants. Plant Physiol Biochem 45:521–534

    Article  CAS  PubMed  Google Scholar 

  • Sandelin A et al (2007) Mammalian RNA polymerase II core promoters: insights from genome-wide studies. Nat Rev Genet 8:424–436

    Article  CAS  PubMed  Google Scholar 

  • Sandhu JS, Webster CI, Gray JC (1998) A/T-rich sequences act as quantitative enhancers of gene expression in transgenic tobacco and potato plants. Plant Mol Biol 37:885–896

    Article  CAS  PubMed  Google Scholar 

  • Sauer N, Stolz J (1994) SUC1 and SUC2: two sucrose transporters from Arabidopsis thaliana: expression and characterization in baker’s yeast and identification of the histidine-tagged protein. Plant J 6:67–77

    Article  CAS  PubMed  Google Scholar 

  • Sawant SV, Singh PK, Gupta SK et al (1999) Conserved nucleotide sequence in highly expressed genes in plants. J Genet 78:123–131

    Article  CAS  Google Scholar 

  • Sawant SV, Singh PK, Madanala R et al (2001) Designing of an artificial expression cassette for the high-level expression of transgenes in plants. Theor Appl Genet 102:635–644

    Article  CAS  Google Scholar 

  • Sawant SV, Kiran K, Mehrotra R et al (2005) A variety of synergistic and antagonistic interactions mediated by cis-acting DNA motifs regulate gene expression in plant cells and modulate stability of the transcription complex formed on a basal promoter. J Exp Bot 56(419):2345–2353

    Article  CAS  PubMed  Google Scholar 

  • Scherf U et al (2000) A gene expression database for the molecular pharmacology of cancer. Nat Genet 24(3):236–244

    Article  CAS  PubMed  Google Scholar 

  • Schmulling T, Schell J, Spena A (1989) Promoters of the rol A, B, and C genes of Agrobacterium rhizogenes are differentially regulated in transgenic plants. Plant Cell 1:665–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schrott M (1995) Selectable marker and reporter genes. In: Potrykus T, Spangenberg G (eds) Gene transfer to plants. Springer Verlag, Berlin, pp 325–336

    Google Scholar 

  • Sharma I, Srinivasan R, Bhat SR et al (2015) Identification and characterization of a T-DNA promoter trap line of Arabidopsis thaliana uncovers an embryo sac-specific bi-directional promoter. Plant Mol Biol Rep 33:1404–1412

    Google Scholar 

  • Shiina T, Allison L, Maliga P (1998) rbcL transcript levels in tobacco plastids are independent of light: reduced dark transcription rate is compensated by increased mRNA stability. Plant Cell 10:1713–1722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singer T, Burke E (2003) High-throughput TAIL-PCR as a tool to identify DNA flanking insertion. Methods Mol Biol 236:241–272

    CAS  PubMed  Google Scholar 

  • Singer VL, Wobbe CR, Struhl K (1990) A wide variety of DNA sequences can functionally replace a yeast TATA element for transcriptional activation. Genes Dev 4:636–645

    Article  CAS  PubMed  Google Scholar 

  • Sivanandan C, Sujatha TP, Prasad AM et al (2005) T-DNA tagging and characterization of a cryptic root-specific promoter in Arabidopsis. Biochim Biophys Acta 1731:202–208

    Google Scholar 

  • Smirnova OG, Ibragimova SS, Kochetov AV (2012) Simple database to select promoters for plant transgenesis. Transgenic Res 21(2):429–437

    Article  CAS  PubMed  Google Scholar 

  • Song F, Cui CJ, Chen L et al (2012) Isolation and characterization of an endosperm-specific promoter from wheat (Triticum aestivum L.). Z Naturforsch C 67(11–12):611–619

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan R, Saha D (2010) Promoter trapping in plants using T-DNA mutagenesis In: Jain SM, Brar DS (eds) Molecular techniques in crop improvement, doi: 10.1007/978-90-481-2967-6_23, © Springer Science+Business Media B.V. 2010

  • Staub JM, Maliga P (1994) Translation of psbA mRNA is regulated by light via the 5’ untranslated region in tobacco plastids. Plant J 6:547–553

    Article  CAS  PubMed  Google Scholar 

  • Stockhaus J, Schell J, Willmitzer L (1989) Identification of enhancer elements in the upstream region of the nuclear photosynthetic gene ST-LS1. Plant Cell 1:8805–8813

    Article  Google Scholar 

  • Streatfield SJ, Bray J, Love RT et al (2010) Identification of maize embryo-preferred promoters suitable for high-level heterologous protein production. GM Crops 1(3):162–172

    Article  PubMed  Google Scholar 

  • Subramanian S, Hu X, Lu G et al (2004) The promoters of two isoflavone synthase genes respond differentially to nodulation and defense signals in transgenic soybean roots. Plant Mol Biol 54:623–639

    Article  CAS  PubMed  Google Scholar 

  • Sujatha TP, Sivanandan C, Bhat SR, Srinivasan R (2009) Insilico and deletion analysis of upstream promoter fragment of S-Adenosyl Homocysteine Hydrolase(SAHH1) of Arabidopsis leads to the identification of a fragment capable of driving gene expression in developing seeds and anthers. J Plant Biochem Biotechnol 18:13–20

    Google Scholar 

  • Sun C, Sathish P, Ahlandsberg S et al (1998) The two genes encoding starch-branching enzymes IIa and IIb are differentially expressed in barley. Plant Physiol 118(1):37–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Q, Gao F, Zhao L et al (2010) Identification of a new 130 bp cis-acting element in the TsVP1 promoter involved in the salt stress response from Thellungiella halophila. BMC Plant Biol 10:90

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun SSM (2008) Application of agricultural biotechnology to improve food nutrition and healthcare products. Asia Pac J Clin Nutr 17:87–90

    PubMed  Google Scholar 

  • Sunilkumar G, Mohr L, Lopata-Finch E, Emani C, Rathore KS (2002) Developmental and tissue-specific expression of CaMV 35S promoter in cotton as revealed by GFP. Plant Mol Biol 50:463–474

    Article  CAS  PubMed  Google Scholar 

  • Sundaresan V, Patrica Springer, Volpe T, Haward S et al (1995) Patterns of gene action in plant development revealed by enhancer trap and gene trap transposable elements. Genes Dev 9:1797–1810

    Google Scholar 

  • Suzuki Y, Tsunoda T, Sese J, Taira H et al (2001) Identification and characterization of the potential promoter regions of 1031 kinds of human genes. Genome Res 11:677–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terauchi R, Kahl G (2000) Rapid isolation of promoter sequences by TAIL-PCR: the 5′-flanking regions of Pal and Pgi genes from yams (Dioscorea). Mol Gen Genet 263(3):554–560

    Article  CAS  PubMed  Google Scholar 

  • Thakre D et al (2006) Molecular and histochemical analysis of a T-DNA tagged mutant of Arabidopsis exhibiting anther-specific GUS expression. J Plant Biochem Biotechnol 15:7–13

    Google Scholar 

  • Thilmony R, Guttman M, Thomson JG et al (2009) The LP2 leucine-rich repeat receptor kinase gene promoter directs organ-specific, light-responsive expression in transgenic rice. Plant Biotechnol J 7(9):867–882

    Article  CAS  PubMed  Google Scholar 

  • Thomas JH (1993) Thinking about genetic redundancy. Trends Genet 9:395–399

    Article  CAS  PubMed  Google Scholar 

  • Thomas MS, Flavell RB (1990) Identification of an enhancer element for the endosperm-specific expression of high molecular weight glutenin. Plant Cell 2:1171–1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tissier AF et al (1999) Multiple independent defective suppressor-mutator transposon insertions in Arabidopsis: a tool for functional genomics. The Plant Cell Online 11(10):1841–1852

    Article  CAS  Google Scholar 

  • Tittarelli A, Milla L, Vargas F et al (2007) Isolation and comparative analysis of the wheat TaPT2 promoter: identification in silico of new putative regulatory motifs conserved between monocots and dicots. J Exp Bot 58(10):2573–2582

    Article  CAS  PubMed  Google Scholar 

  • Tittarelli A, Santiago M, Morales A et al (2009) Isolation and functional characterization of cold-regulated promoters, by digitally identifying peach fruit cold-induced genes from a large EST dataset. BMC Plant Biol 9:121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tiwari SB, Hagen G, Guilfoyle T (2003) The roles of auxin response factor domains in auxin-responsive transcription. Plant Cell 15:533–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Twell T, Yamaguchi J, Wing RA et al (1991) Promoter analysis of genes that are coordinately expressed during pollen development reveals pollen-specific enhancer sequences and shared regulatory elements. Genes Dev 5:496–507

    Article  CAS  PubMed  Google Scholar 

  • Unni SC, Vivek PJ, Maju TT, Maju TT, Varghese RT, Soniya EV (2012) Molecular cloning and characterization of fruit specific promoter from Cucumis sativus L. Am J Mol Biol 2:132–139

    Article  CAS  Google Scholar 

  • van der Geest AH, Hall TC (1996) A 68 bp element of the beta-phaseolin promoter functions as a seed-specific enhancer. Plant Mol Biol 32(4):579–88

    Article  PubMed  Google Scholar 

  • Van Helden J et al (1998) Extracting regulatory sites from the upstream region of yeast gene by computational analysis of oligonucleotide frequencies. J Mol Biol 281

    Google Scholar 

  • Vigeolas H, Waldeck P, Zank T et al (2007) Increasing seed oil content in oil-seed rape (Brassica napus L.) by over-expression of a yeast glycerol-3-phosphate dehydrogenase under the control of a seed-specific promoter. Plant Biotechnol J 5(3):431–441

    Article  CAS  PubMed  Google Scholar 

  • Visser RG, Stolte A, Jacobsen E (1991) Expression of a chimeric granule-bound starch synthase-GUS gene in transgenic potato plants. Plant Mol Biol 17(4):691–699

    Article  CAS  PubMed  Google Scholar 

  • Vitale A, Wu RJ, Cheng Z et al (2003) Multiple conserved 5_elements are required for high-level pollen expression of the Arabidopsis reproductive actinACT1. Plant Mol Biol 52:1135–1151

    Article  CAS  PubMed  Google Scholar 

  • Wang E, Gan S, Wagner GJ (2002) Isolation and characterization of the CYP71D16 trichome-specific promoter from Nicotiana tabacum L. J Exp Bot 53:1891–1897

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Ying J, Kuzma M et al (2005) Molecular tailoring of farnesylation for plant drought tolerance and yield protection. Plant J 43:413–424

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Beaith M, Chalifoux M et al (2009) Shoot-specific down-regulation of protein farnesyltransferase (α-Subunit) for yield protection against drought in canola. Mol Plant 2(1):191–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang N, Long T, Yao W et al (2013) Mutant resources for the functional analysis of the rice genome. Mol Plant 6(3):596–604

    Article  CAS  PubMed  Google Scholar 

  • Weigel D, Ahn JH, Miguel A et al (1996) Activation tagging in Arabidopsis. Plant Physiol 122(4):1003–1014

    Article  Google Scholar 

  • Werner T (2000) Identification and functional modelling of DNA sequence elements of transcription. Brief Bioinform 1:372–380

    Article  CAS  PubMed  Google Scholar 

  • Wisman E et al (1998) Knock-out mutants from an En-1 mutagenized Arabidopsis thaliana population generate phenylpropanoid biosynthesis phenotypes. Proc Natl Acad Sci U S A 95(21):12,432–12,437

    Google Scholar 

  • Won SK, Choi SB, Kumari S et al (2010) Root hair-specific EXPANSIN B genes have been selected for Graminaceae root hairs. Mol Cell 30(4):369–376

    Article  CAS  Google Scholar 

  • Wu L, El-Mezawy A, Shah S (2011) A seed coat outer integument-specific promoter for Brassica napus. Plant Cell Rep 30(1):75–80

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto YT, Taylor CG, Acedo GN, Cheng CL, Conkling MA (1991) Characterization of cis-acting sequences regulating root-specific gene expression in tobacco. Plant Cell 3:371–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto YY, Ichida H, Matsui M et al (2007) Identification of plant promoter constituents by analysis of local distribution of short sequences. BMC Genomics 8:67

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang Y, Costa A, Leonhardt N et al (2008) Isolation of a strong Arabidopsis guard cell promoter and its potential as a research tool. Plant Methods 19:4–6

    Google Scholar 

  • Yang YN, Niu YF, Xu C, Wang Y et al (2011) Characterization of upstream sequences from the 8S globulin gene of Vigna radiata. Afr J Biotechnol 10:11477–11482

    CAS  Google Scholar 

  • Yang S, Vanderbeld B, Wan J et al (2010) Narrowing down the targets: towards successful genetic engineering of drought-tolerant crops. Mol Plant 3(3):469–490

    Article  CAS  PubMed  Google Scholar 

  • Yanofsky MF, Ma H, Bowman JL, Drews GN, Feldmann KA, Meyerowitz EM (1990) The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346:35–39

    Article  CAS  PubMed  Google Scholar 

  • Yap YK, Kakamu K, Yamaguchi Y et al (2002) Promoter analysis of WIPK, a gene encoding a tobacco MAP kinase, with reference to wounding and tobacco mosaic virus infection. Plant Physiol 159(1):77–83

    Article  CAS  Google Scholar 

  • Ye X, Al-Babili S, Klöti A et al (2000) Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287(5451):303–305

    Article  CAS  PubMed  Google Scholar 

  • Ye R, Zhou F, Lin Y (2012) Two novel positive cis-regulatory elements involved in green tissue-specific promoter activity in rice (Oryza sativa L. ssp.). Plant Cell 31:1159–1172

    Article  CAS  Google Scholar 

  • Yi N, Kim YS, Jeong MH, Oh SJ, Jeong JS, Park SH et al (2010) Functional analysis of six drought-inducible promoters in transgenic rice plants throughout all stages of plant growth. Planta 232:743–754

    Article  CAS  PubMed  Google Scholar 

  • Yin T, Wu H, Zhang S et al (2009) Two negative cis-regulatory regions involved in fruit-specific promoter activity from watermelon (Citrullus vulgaris S). J Exp Bot 60(1):169–185

    Article  CAS  PubMed  Google Scholar 

  • Yu SM, Ko SS, Hong CY et al (2007) Global functional analyses of rice promoters by genomics approaches. Plant Mol Biol 65(4):417–425

    Article  CAS  PubMed  Google Scholar 

  • Zakhrov A et al (2004) Seed-specific promoters direct gene expression in non-seed tissue. J Exp Bot 55(402):1463–1471

    Article  CAS  Google Scholar 

  • Zavallo D, Lopez Bilbao M, Hopp HE et al (2010) Isolation and functional characterization of two novel seed-specific promoters from sunflower (Helianthus annuus L.). Plant Cell Rep 29(3):239–248

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Kwan B, Chang S, Raymond P (2012) Freeze tolerant hybrid eucalyptus named ‘FTE 427’. US Patent 20120266339 P1

    Google Scholar 

  • Zhang Y et al (2009) Primary sequence and epigenetic determinants of in vivo occupancy of genomic DNA by GATA1. Nucleic Acids Res 37:7024–7038

    Google Scholar 

  • Zheng L, Baumann U, Reymond JL (2004) An efficient one-step site-directed and site-saturation mutagenesis protocol. Nucleic Acids Res 32, e115

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu Q, Song B, Zhang C et al (2008) Construction and functional characteristics of tuber-specific and cold-inducible chimeric promoters in potato. Plant Cell Rep 27(1):47–55

    Article  CAS  PubMed  Google Scholar 

  • Zuo J, Chua NH (2000) Chemical-inducible systems for regulated expression of plant genes. Curr Opin Biotechnol 11:146–151

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Srinivasan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Mithra, S.V.A., Kulkarni, K., Srinivasan, R. (2017). Plant Promoters: Characterization and Applications in Transgenic Technology. In: Abdin, M., Kiran, U., Kamaluddin, Ali, A. (eds) Plant Biotechnology: Principles and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-10-2961-5_5

Download citation

Publish with us

Policies and ethics