Skip to main content
Log in

Evaluation in tobacco of the organ specificity and strength of therolD promoter, domain A of the 35S promoter and the 35S2 promoter

  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

In order to study the expression in plants of therolD promoter ofAgrobacterium rhizogenes, we have constructed chimaeric genes placing the coding region of thegusA (uidA) marker gene under control of tworolD promoter fragments of different length. Similar results were obtained with both genes. Expression studies were carried out in transformed R1 progeny plants. In mature transformed tobacco plants, therolD-gus genes were expressed strongly in roots, and to much lower levels in stems and leaves. This pattern of expression was transmitted to progeny, though the ratio of the level of expression in roots relative to that in leaves was much lower in young seedlings. The degree of root specificity inrolD-gus transformants was less than that of a gene constructed with domain A of the CaMV 35S promoter,domA-gus, but the level of root expression was much higher than with the latter gene. However, the level of expression of therolD-gus genes was less than that of agus gene with a 35S promoter with doubled domain B, 35S2-gus. TherolD-gus genes had a distinctive pattern of expression in roots, compared to that of the two other genes, with the strongest GUS activity observed in the root elongation zone and in vascular tissue, and much less in the root apex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benfey, P.N., Ren, L. and Chua, N.H. (1989) The CaMV 35S enhancer contains at least two domains which can confer different developmental and tissue-specific expression patterns.EMBO J. 8, 2195–202.

    Google Scholar 

  • Block, M. De and Debrouwer, D. (1992)In-situ enzyme histochemistry on plastic-embedded plant material. The development of an artefact-free β-glucuronidase assay.Plant J. 2, 261–6.

    Google Scholar 

  • Birot, A.M., Bouchez, D., Casse-Delbart, F., Durand-Tardif, M., Jouanin, L., Pautot, V., Robaglia, C., Tepfer, D., Tepfer, M., Tourneur, J. and Vilaine F. (1987) Studies and uses of Ri plasmids ofAgrobacterium rhizogenes.Plant Physiol. Biochem. 25, 323–35.

    Google Scholar 

  • Bogusz, D., Appleby, C.A., Landsmann, J., Dennis, E.S., Trinick, M.J. and Peacock, W.J. (1988) Functioning haemoglobin genes in non-nodulating plants.Nature 331, 178–80.

    Google Scholar 

  • Bourgin, J.P., Chupeau, Y. and Missionier, C. (1979) Plant regeneration from mesophyll protoplasts of severalNicotiana species.Physiol. Plant. 45, 288–92.

    Google Scholar 

  • Brears, T., Walker, E.L. and Coruzzi, G.M. 1991 A promoter sequence Involved in cell-specific expression of the pea glutamine synthetase GS3A gene in organs of transgenic tobacco and alfalfa.Plant J. 1, 235–44.

    Google Scholar 

  • Capone, I., Cardarelli, M., Mariotti, D., Pomponi, M., Paolis, A. De and Costantino, P. (1991) Different promoter regions control level and tissue specificity of expression ofAgrobacterium rhizogenes rolB gene in plants.Plant Mol. Biol. 16, 427–36.

    Google Scholar 

  • Conkling, M.A., Cheng, C.L., Yamamoto, Y.T. and Goodman, H.M. (1990) Isolation of transcriptionally regulated root-specific genes from tobacco.Plant Physiol. 93, 1203–11.

    Google Scholar 

  • Devereux, J. (1991) The GCG sequence analysis software package, version 7.0. Genetics Computer Group, Inc., University Research Park, Madison.

    Google Scholar 

  • Dietrich, R.A., Radke, S.E. and Harada, J.J. (1992) Downstream DNA sequences are required to activate a gene expressed in the root cortex of embryos and seedlings.Plant Cell 4, 1371–82.

    Google Scholar 

  • Durand-Tardif, M., Broglie, R., Slightom, J. and tepfer, D. (1985) Structure and expression of Ri T-DNA fromAgrobacterium rhizogenes inNicotiana tabacum.J. Mol. Biol. 186, 557–64.

    Google Scholar 

  • Evans, I.M., Swinhoe, R., Gatehouse, L.N., Gatehouse, J.A. and Boulter, D. (1988) Distribution of root mRNA species in other vegetative organs of pea (Pisum sativum L.).Mol. Gen. Genet. 214, 153–7.

    Google Scholar 

  • Evans, I.M., Gatehouse, L.N., Robinson, N.J., and Croy, R.R.D. (1989) A gene from pea (Pisum sativum L.) with homology to metallothionein genes.FEBS Lett. 262, 29–32.

    Google Scholar 

  • Evans, I.M., Gatehouse, J.A., Lindsay, W.P., Shi, J., Tommey, A.M. and Robinson, N.J. (1992) Expression of the pea metallothionein-like gene PsMTa inEscherichia coli andArabidopsis thaliana and analysis of trace metal ion accumulation-implications for PsMTa function.Plant Mol. Biol. 20, 1019–28.

    Google Scholar 

  • Framond, A.J. De (1991) A metallothionein-like gene from maize (Zea mays)-cloning and characterization.FEBS Lett. 290, 103–6

    Google Scholar 

  • Gallie, D.R., Sleat, D.E., Watts, J.W., Turner, P.C. and Wilson, M.A. (1987) The 5′-leader sequence of tobacco mosaic virus RNA enhances the expression of foreign gene transcriptsin vitro andin vivo.Nucl. Acids Res. 15, 3257–73.

    Google Scholar 

  • Harker, C.L., Ellis, T.H.N. and Coen, E.S. (1990) Identification and genetic regulation of the chalcone synthase multigene family in pea.Plant Cell 2, 185–94.

    Google Scholar 

  • Hayashida, N., Mizoguchi, T., Yamaguchi-Shinozaki, K. and Shinozaki, K. (1992) Characterization of a gene that encodes a homologue of protein kinase inArabidopsisthaliana.Gene 121, 325–30.

    Google Scholar 

  • Hertig, C., Rebmann, G., Bull, J., Mauch, F., Dudler, R. (1991) Sequence and tissue-specific expression of a putative peroxidase gene from wheat (Triticum aestivum L.).Plant Mol. Biol. 16, 171–4.

    Google Scholar 

  • Hobbs, S.L.A., Warkentin, T.D. and DeLong, C.M.O. (1993) Transgene copy number can be positively or negatively associated with transgene expression.Plant Mol. Biol. 21, 17–26.

    Google Scholar 

  • Hoff, T., Stummann, B.M. and Henningsen, K.W. (1991) Cloning and expression of a gene encoding a root specific nitrate reductase in bean (Phaseolus vulgaris).Physiol. Plant. 82, 197–204.

    Google Scholar 

  • Horsch, R.B., Fry, J.E., Hoffmann, N.L., Eicholtz, D., Rogers, S.G. and Fraley, R.T. (1985) A simple and general method for transferring genes into plants.Science 227, 1229–31.

    Google Scholar 

  • Jefferson, R.A. (1987) Assaying chimeric genes in plants: the GUS gene fusion system.Plant Mol. Biol. Reporter 5, 387–405.

    Google Scholar 

  • Kay, R., Chan, A., Daly, M. and McPherson, J. (1987) Duplication of CaMV 35S promoter sequences creates a strong enhancer for plant genes.Science 236, 1299–302.

    Google Scholar 

  • Keller, B. and Baumgartner, C. (1991) Vascular-specific expression of the bean Grp-1.8 gene is negatively regulated.Plant Cell 3, 1051–61.

    Google Scholar 

  • Keller, B. and Lamb, C.J. (1989) Specific expression of a novel cell wall hydroxyproline-rich glycoprotein gene in lateral root initiation.Genes Dev. 3, 1639–46.

    Google Scholar 

  • Koncz, C. and Schell, J. (1986) The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type ofAgrobacterium binary vector.Mol. Gen. Genet. 204, 383–96.

    Google Scholar 

  • Lam, E., Benfey, P.N., Gilmartin, P.M., Fang, R.X. and Chua, N.H. (1989) Site-specific mutations alterin vitro factor binding and change promoter expression pattern in transgenic plants.Proc. Natl. Acad. Sci. USA 86, 7890–94.

    Google Scholar 

  • Leach, F. and Aoyagi, K. (1991) Promoter analysis of the highly expressedrolC androlD root-inducing genes ofAgrobacterium-rhizogenes-enhancer and tissue-specific DNA determinants are dissociated.Plant Sci. 79, 69–76.

    Google Scholar 

  • Lerner, D.R. and Raikhel, N.V. (1989) Cloning and characterization of root-specific barley lectin.Plant Physiol. 91, 124–9.

    Google Scholar 

  • Levesque, H., Delepelaire, P., Rouzé, P., Slightom, J. and Tepfer, D. (1988) Common evolutionary origin of the central portions of the Ri TL-DNA ofAgrobacterium rhizogenes and the Ti T-DNAs ofAgrobacterium tumefaciens.Plant Mol. Biol. 11, 731–77.

    Google Scholar 

  • Leyva, A., Liang, X.W., Pintortoro, J.A., Dixon, R.A. and Lamb, C.J. (1992)Cis-element combinations determine phenylalanine ammonia-lyase gene tissue-specific expression patterns.Plant Cell 4, 263–71.

    Google Scholar 

  • Maiti, I.B., Murphy, J.F., Shaw, J.G. and Hunt, A.G. (1993) Plants that express a potyvirus VPg-proteinase gene are resistant to virus infection.Proc. Natl Acad. Sci. USA 90, 6110–4.

    Google Scholar 

  • Miranda, J.R. De, Thomas, M.A., Thurman, D.A., and Tomsett A.B. (1990) Metallothionein genes from the flowering plantMimulus guttatus.FEBS Lett. 260, 277–80.

    Google Scholar 

  • Okumura, N., Nishizawa, N.K., Umehara, Y. and Mori, S. (1991) An iron deficiency-specific cDNA from barley roots having two homologous cysteine-rich MT domains.Plant Mol. Biol. 17, 531–3.

    Google Scholar 

  • Paul, A. and Ferl, R.J. (1994)In vivo footprinting identifies an activating element of the maizeAdh2 promoter specific for root and vascular tissues.Plant J. 5, 523–33.

    Google Scholar 

  • Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989)Molecular cloning: a Laboratory Manual, 2nd edn. New York, USA: Cold Spring Harbor Laboratory.

    Google Scholar 

  • Schmülling, T., Schell, J. and Spena, A. (1989) Promoters of therolA, B, andC genes ofAgrobacterium rhizogenes are differentially regulated in transgenic plants.Plant Cell 1, 665–70.

    Google Scholar 

  • Shirsat, A.H., Wilford, N., Evans, I.M., Gatehouse, L.N. and Croy, R.R.D. (1991) Expression of aBrassica napus extensin gene in the vascular system of transgenic tobacco and rape plants.Plant Mol. Biol. 17, 701–9.

    Google Scholar 

  • Simmons, C.R., Litts, J.C., Huang, N. and Rodriguez, R.L. (1992) Structure of a rice β-glucanase gene regulated by ethylene, cytokinin, wounding, saicylic acid and fungal elicitors.Plant Mol. Biol. 18, 33–45.

    Google Scholar 

  • Slightom, J.L., Durand-Tardif, M., Jouanin, L. and tepfer, D. (1986) Nucleotide sequence analysis of TL-DNA ofAgrobacterium rhizogenes agropine type plasmid.J. Biol. Chem. 261, 108–121.

    Google Scholar 

  • White, F.F., Taylor, B.H., Huffman, G.A., Gordon, M. and Nester E.W. (1985) Molecular and genetic analysis of the transferred DNA regions of the root-inducing plasmid ofAgrobacterium rhizogenes.J. Bacteriol. 164, 33–44.

    Google Scholar 

  • Yamamoto, Y.T., Taylor, C.G., Acedo, G.N., Cheng, C. and Conkling, M.A. (1991) Characterization ofcis-acting sequences regulating root-specific gene expression in tobacco.Plant Cell 3, 371–82.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elmayan, T., Tepfer, M. Evaluation in tobacco of the organ specificity and strength of therolD promoter, domain A of the 35S promoter and the 35S2 promoter. Transgenic Research 4, 388–396 (1995). https://doi.org/10.1007/BF01973757

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01973757

Keywords

Navigation