Skip to main content
Log in

Upstream sequence of fatty acyl-CoA reductase (FAR6) of Arabidopsis thaliana drives wound-inducible and stem-specific expression

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

An Arabidopsis mutant line T90, exhibiting a stem-specific and wound-responsive GUS expression was identified from a population of Arabidopsis thaliana tagged with a promoterless β-glucuronidase (GUS) in the T-DNA. Sequence flanking the insertion from the right border was amplified by TAIL PCR and cloned. The insertion was located in the third chromosome, 57 bp upstream of the ATG start codon in 5′ untranslated region (UTR) of the fatty acyl-CoA reductase 6 (FAR6) gene. RT-PCR analysis of the FAR6 gene revealed that the gene is expressed predominantly in stem tissue. Semi-quantitative RT-PCR showed that the expression is also induced by wounding in the epidermal layer of mature stem internodes. The transcription initiation site (TSS) was identified by 5′ RACE PCR. Different 5′ deletion fragments of the promoter sequences were developed and linked to the GUS reporter gene as transcriptional fusions and the expression patterns of GUS were histochemically analyzed in transgenic Arabidopsis plants. Sequences from −510 bp upstream to the transcriptional start site were sufficient to exhibit wound-inducible GUS expression in the stems. The addition of further upstream sequences (−510 to −958, −1,400 or −1,456) enhanced and extended the wound-inducible GUS expression throughout the mature stem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

GUS :

β-Glucuronidase

FAR6:

Fatty acyl-CoA reductase 6

TAIL:

Thermal asymmetric interlaced

RACE:

Rapid amplification of cDNA end

RT:

Reverse transcriptase

UTR:

Untranslated region

References

  • Aarts MG, Hodge R, Kalantidis K, Florack D, Wilson ZA, Mulligan BJ, Stiekema WJ, Scott R, Pereira A (1997) The Arabidopsis MALE STERILITY 2 protein shares similarity with reductases in elongation/condensation complexes. Plant J 12:615–623

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • An G, Mitra A, Choi HK, Costa M, An K, Thornburg RW, Ryan CA (1989) Functional analysis of the 3′ control region of the potato wound-inducible proteinase inhibitor II gene. Plant Cell 1:115–122

    Article  PubMed  CAS  Google Scholar 

  • Bate N, Twell D (1998) Functional architecture of a late pollen promoter: pollen-specific transcription is developmentally regulated by multiple stage-specific and co-dependent activator elements. Plant Mol Biol 37:859–869

    Article  PubMed  CAS  Google Scholar 

  • Benfey PN, Chua NH (1989) Regulated genes in transgenic plants. Science 244:174–181

    Article  PubMed  CAS  Google Scholar 

  • Bernards MA, Lewis NG (1998) The macromolecular aromatic domain in suberized tissue: a changing paradigm. Phytochemistry 47:915–933

    Article  PubMed  CAS  Google Scholar 

  • Bevan M, Shufflebottom D, Edwards K, Jefferson R, Schuch W (1989) Tissue- and cell-specific activity of a phenylalanine ammonia-lyase promoter in transgenic plants. EMBO J 8:1899–1906

    PubMed  CAS  Google Scholar 

  • Boter M, Ruiz-Rivero O, Abdeen A, Prat S (2004) Conserved MYC transcription factors play a key role in jasmonate signaling both in tomato and Arabidopsis. Genes Dev 18:1577–1591

    Article  PubMed  CAS  Google Scholar 

  • Bowler C, Alliotte T, De Loose M, Van Montagu M, Inze D (1989) The induction of manganese superoxide dismutase in response to stress in Nicotiana plumbaginifolia. EMBO J 8:31–38

    PubMed  CAS  Google Scholar 

  • Campos R, Nonogaki H, Suslow T, Saltveit ME (2004) Isolation and characterization of a wound inducible phenylalanine ammonia-lyase gene (LsPAL1) from Romaine lettuce leaves. Physiol Plant 121:429–438

    Article  CAS  Google Scholar 

  • Castillo MC, Martínez C, Buchala A, Métraux JP, León J (2004) Gene-specific involvement of β-oxidation in Arabidopsis. Plant Physiology 135:85–94

    Article  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium- mediated transformation of Arabidopsis thaliana. Plant J 16:7350–7743

    Article  Google Scholar 

  • Dean BB, Kolattukudy PE (1976) Synthesis of suberin during wound healing in jade leaves, tomato fruit, and bean pods. Plant Physiol 58:411–416

    Article  PubMed  CAS  Google Scholar 

  • Doan TTP, Carlsson AS, Hamberg M, Bulow L, Stymne S, Olsson P (2009) Functional expression of five Arabidopsis fatty acyl-CoA reductase genes in Escherichia coli. J. Plant Physiol 166:787–796

    Article  PubMed  CAS  Google Scholar 

  • Domergue F, Vishwanath SJ, Joubes J, Ono J, Lee JA, Bourdon M, Alhattab R, Lowe C, Pascal S, Lessire R, Rowland O (2010) Three Arabidopsis fatty acyl-coenzyme A reductases, FAR1, FAR4, and FAR5, generate primary fatty alcohols associated with suberin deposition. Plant Physiol 153:1539–1554

    Article  PubMed  CAS  Google Scholar 

  • Filichkin SA, Leonard JM, Monteros A, Liu PP, Nonogaki H (2004) A novel endo-beta-mannanase gene in tomato LeMAN5 is associated with anther and pollen development. Plant Physiol 134:1080–1087

    Article  PubMed  CAS  Google Scholar 

  • Fischer HM (1994) Genetic regulation of nitrogen fixation in rhizobia. Microbiol Rev 58:352–386

    PubMed  CAS  Google Scholar 

  • Fobert PR, Miki BL, Iyer VN (1991) Detection of gene regulatory signals in plants revealed by T-DNA mediated fusions. Plant Mol Biol 17:837–851

    Article  PubMed  CAS  Google Scholar 

  • Hahlbrock K, Scheel D (1987) Biochemical responses of plants to pathogens. In: Chet I (ed) lnnovative approaches to plant diseases control. Wiley, New York, pp 229–254

  • Heredia B, Cisneros-Zevallos L (2009) The effects of exogenous ethylene and methyl jasmonate on the accumulation of phenolic antioxidants in selected whole and wounded fresh produce. Food Chem 115:1500–1508

    Article  CAS  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res 27:297–300

    Article  PubMed  CAS  Google Scholar 

  • Itxhaki H, Maxson JM, Woodson WR (1994) An ethylene-responsive enhancer element is involved in the senescence-related expression of the carnation glutathione-S transferase (GST1) gene. Proc Natl Acad Sci USA 91:8925–8929

    Article  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MV (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Jetter R, Kunst L, Samuels AL (2006) Composition of plant cuticular waxes. In: Riederer M, Mueller C (eds) Biology of the plant cuticle. Annual plant reviews 23. Blackwell, Oxford, pp 145–181

    Chapter  Google Scholar 

  • Kertbundit S, De Greve H, Deboeck F, Van-Montagu M, Hernalsteens JP (1991) In vivo random β-glucuronidase gene fusions in Arabidopsis thaliana. Proc Natl Acad Sci USA 88:5212–5216

    Article  PubMed  CAS  Google Scholar 

  • Kolattukudy PE (2001) Polyesters in higher plants. Adv Biochem Eng Biotechnol 71:1–49

    PubMed  CAS  Google Scholar 

  • Koncz C, Schell J (1986) The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet 204:383–396

    Article  CAS  Google Scholar 

  • Lawton MA, Lamb CJ (1987) Transcriptional activation of plant defence genes by fungal elicitor, wounding and infection. Mol Cell Biol 7:335–341

    PubMed  CAS  Google Scholar 

  • Lebel E, Heifetz P, Thorne L, Uknes S, Ryals J, Ward E (1998) Functional analysis of regulatory sequences controlling PR-1gene expression in Arabidopsis. Plant J 16:223–233

    Article  PubMed  CAS  Google Scholar 

  • Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouze P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327

    Article  PubMed  CAS  Google Scholar 

  • Lindsey K, Wei W, Clarke MC, McArdle HF, Rooke LM, Topping JF (1993) Tagging genomic sequences that direct transgene expression by activation of a promoter trap in plants. Transgenic Res 2:33–47

    Article  PubMed  CAS  Google Scholar 

  • Liu YG, Mitsukawa N, Oosumi T, Whittier RF (1995) Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J 8:457–463

    Article  PubMed  CAS  Google Scholar 

  • Liu YL, Ahn JE, Datta S, Salzman RA, Moon J, Huyghues-Despointes B, Pittendrigh B, Murdock LL, Koiwa H, Zhu-Salzman K (2005) Arabidopsis vegetative storage protein is an anti-insect acid phosphatase. Plant Physiol 139:1545–1556

    Article  PubMed  CAS  Google Scholar 

  • Logemann J, Lipphardt S, Lorz H, Hauser I, Willmitrer L, Schell J (1989) 5′ Upstream sequences from the wunl gene are responsible for gene activation by wounding in transgenic plants. Plant Cell 1:151–158

    Article  PubMed  CAS  Google Scholar 

  • Martini N, Egen M, Runtz I, Strittmatter G (1993) Promoter sequences of a potato pathogenesis-related gene mediate transcriptional activation selectively upon fungal infection. Mol Gen Genet 236:179–186

    Article  PubMed  CAS  Google Scholar 

  • Matton DP, Prescott G, Bertrand C, Camirand A, Brisson N (1993) Identification of cis-acting elements involved in the regulation of the pathogenesis-related gene STH-2 in potato. Plant Mol Bio 22:279–291

    Article  CAS  Google Scholar 

  • Mohanty B, Krishnan SPT, Swarup S, Bajic VB (2005) Detection and preliminary analysis of motifs in promoters of anaerobically induced genes of different plant species. Ann Bot 96:669–681

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nischiuchi T, Shinshi H, Suzuki K (2004) Rapid and transient activation of transcription of the ERF3 gene by wounding in tobacco leaves—possible involvement of NtWRKYs and autorepression. J Biol Chem 279:55355–55361

    Article  Google Scholar 

  • Park HC, Kim ML, Kang YH, Jeon JM, Yoo JH, Kim MC, Park CY, Jeong JC, Moon BC, Lee JH, Yoon HW, Lee SH, Chung WS, Lim CO, Lee SY, Hong JC, Cho MJ (2004) Pathogen- and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor. Plant Physiol 135:2150–2161

    Article  PubMed  CAS  Google Scholar 

  • Pastuglia M, Roby D, Dumas C, Cock JM (1997) Rapid induction by wounding and bacterial infection of an S gene family receptor-like kinase gene in Brassica oleracea. Plant Cell 9:49–60

    Article  PubMed  CAS  Google Scholar 

  • Pena-Cortes H, Sanchez-Serrano JJ, Rocha-Sosa M, Willmitzer L (1988) Systemic induction of proteinase-inhibitor-Il gene expression in potato plants by wounding. Planta 174:84–89

    Article  CAS  Google Scholar 

  • Petersen CL, Workmann JL (2000) Promoter targeting and chromatin remodeling by the SWI/SNF complex. Curr Opin Genet Dev 10:187–192

    Article  Google Scholar 

  • Prasad AM, Sivanandan C, Resminath R, Thakare DR, Bhat SR, Srinivasan (2005) Cloning and characterization of a pentatricopeptide protein encoding gene (LOJ) that specifically expressed in lateral organ junctions in Arabidopsis thaliana. Gene 353:67–79

    Article  PubMed  CAS  Google Scholar 

  • Resminath R, Prasad AM, Thakare DR, Sivanadan C, Bhat SR, Srinivasan (2005) Promoter trapping in Arabidopsis using T-DNA insertional mutagenesis. J Plant Biochem Biotechnol 14:1–8

    CAS  Google Scholar 

  • Rouster J, Leah R, Mundy J, Cameron-Mills V (1997) Identification of a methyl jasmonate-responsive region in the promoter of a lipoxygenase 1 gene expressed in barley grain. Plant J 11:513–523

    Article  PubMed  CAS  Google Scholar 

  • Rowland O, Zheng H, Hepworth SR, Lam P, Jetter R, Kunst L (2006) CER4 encodes an alcohol-forming fatty acyl-coenzyme A reductase involved in cuticular wax production in Arabidopsis. Plant Physiol 142:866–877

    Article  PubMed  CAS  Google Scholar 

  • Rushton PJ, Somssich IE (1998) Transcriptional control of plant genes responsive to pathogens. Curr Opin Plant Biol 1:311–315

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Serrano JJ, Keil M, O’Connor A, Schell J, Willmitzer L (1987) Wound-induced expression of a potato proteinase inhibitor II gene in transgenic tobacco plants. EMBO J 6:303–306

    PubMed  CAS  Google Scholar 

  • Schindler U, Beckmann H, Cashmore AR (1992) TGA1 and G-box binding factors: two distinct classes of Arabidopsis leucine zipper proteins compete for the G-box-like element TGACGTGG. Plant Cell 4:1309–1319

    Article  PubMed  CAS  Google Scholar 

  • Siebertz B, Logemann J, Willmitzer L, Schell J (1989) cis-Analysis of the wound-inducible promoter wun1 in transgenic tobacco plants and histochemical localization of its expression. Plant Cell 1:961–968

    Article  PubMed  CAS  Google Scholar 

  • Sivanandan C, Sujatha TP, Prasad AM, Resminath R, Thakare DR, Bhat SR, Srinivasan R (2005) T-DNA tagging and characterization of a cryptic root-specific promoter in Arabidopsis. Biochim Biophys Acta 1731:202–208

    PubMed  CAS  Google Scholar 

  • Stanford AC, Bevan MW, Northcote DC (1989) Differential expression within a family of novel wound-induced genes in potato. Mol Gen Genet 215:200–208

    Article  PubMed  CAS  Google Scholar 

  • Suh MC, Samuels AL, Jetter R, Kunst L, Pollard M, Ohlrogge J, Beisson F (2005) Cuticular lipid composition, surface structure, and gene expression in Arabidopsis stem epidermis. Plant Physiol 139:1649–1665

    Article  PubMed  CAS  Google Scholar 

  • Topping JF, Agyeman F, Henricot B, Lindsey K (1994) Functional tagging of regulatory elements in the plant genome. Development 112:1009–1019

    Google Scholar 

Download references

Acknowledgments

We acknowledge Dr. K.V. Prabhu and the staff of National Phytotron Facility, IARI, New Delhi-110012, India, for their help in growing Arabidopsis in the growth chambers and greenhouses. We also acknowledge Dr. G.J. Randhawa for providing facility for fluorometric analysis. Financial support from Department of Biotechnology, Ministry of Science and Technology, India, and Council of Scientific and Industrial Research, India, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Srinivasan.

Additional information

Communicated by P. Ozias-Akins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, N.C., Jain, P.K., Bhat, S.R. et al. Upstream sequence of fatty acyl-CoA reductase (FAR6) of Arabidopsis thaliana drives wound-inducible and stem-specific expression. Plant Cell Rep 31, 839–850 (2012). https://doi.org/10.1007/s00299-011-1205-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-011-1205-9

Keywords

Navigation