Skip to main content

Antarctic Psychrophilic Microorganisms and Biotechnology: History, Current Trends, Applications, and Challenges

  • Chapter
  • First Online:
Microbial Models: From Environmental to Industrial Sustainability

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 1))

Abstract

The potential use of psychrophilic (i.e., cold-loving) microorganisms as biotechnological tools remained a promise for decades. This vision changed in the early 1990s when scientists began to seriously guess on their usefulness for the industry and the medical field, among many others. Nowadays, most of these expectations have been confirmed, and psychrophiles are considered as sustainable and invaluable resources for the development of diverse biotechnological processes and/or products, many of which have already been patented or are protected by industrial secrecy. Besides, some new and unexpected applications of psychrophiles are starting to emerge as scientists discover new species in the most extreme environments. Antarctica is such an extraordinary place to prospect for this kind of microorganisms: it is the coldest and driest continent on Earth, with different climatic regions and many different ecosystems (both terrestrial and aquatic). Antarctic microbes have been investigated for more than a century. Currently, more than two hundreds patents have been filed related to actual or potential commercial biotechnological applications based on Antarctic genetic resources; many of them concern microorganisms and their metabolites. This chapter highlights recent reports dealing with products and/or processes derived from the study of Antarctic psychrophilic or psychrotolerant microorganisms, with emphasis on their applications in the fields of medicine, nanotechnology, energy production, and agriculture. It also focuses on the specific problems of bioprospecting in Antarctic pristine environments, under the light of past and present experiences

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abyzov SS, Philipova SN, Kuznetsov VD (1983) Nocardiopsis antarcticus, a new species of actinomycetes, isolated from the ice sheet of the central Antarctic glacier. Izv Akad Nauk SSSR Biol 4:559–568

    Google Scholar 

  • Alvarado-Cuevas ZD, López-Hidalgo AM, Ordoñez LG et al (2015) Biohydrogen production using psychrophilic bacteria isolated from Antarctica. Int J Hydrogen Energy 40(24):7586–7592

    Article  CAS  Google Scholar 

  • An M, Mou S, Zhang X et al (2013) Temperature regulates fatty acid desaturases at a transcriptional level and modulates the fatty acid profile in the Antarctic microalga Chlamydomonas sp. ICE-L. Bioresour Technol 134:151–157

    Article  CAS  PubMed  Google Scholar 

  • Arenas FA, Pugin B, Henríquez NA et al (2014) Isolation, identification and characterization of highly tellurite-resistant, tellurite-reducing bacteria from Antarctica. Polar Sci 8(1):40–52

    Article  Google Scholar 

  • Asencio G, Lavin P, Alegría K et al (2014) Antibacterial activity of the Antarctic bacterium Janthinobacterium sp. SMN 33.6 against multi-resistant Gram-negative bacteria. Electron J Biotechnol 17:1–5

    Article  CAS  Google Scholar 

  • ASOC (2013) Biological prospecting and the Antarctic environment. Information Paper submitted by ASOC XXXVI ATCM Brussels. http://www.asoc.org/storage/documents/Meetings/ATCM/XXXVI/Biological_prospecting_and_the_Antarctic_environment.pdf

  • Babalola OO, Kirby BM, Le Roes-Hill M et al (2009) Phylogenetic analysis of actinobacterial populations associated with Antarctic Dry Valley mineral soils. Environ Microbiol 11:566–576

    Article  CAS  PubMed  Google Scholar 

  • Bakermans C (2012) Psychrophiles: life in the cold. In: Anitori RP (ed) Extremophiles microbiology and biotechnology. Caister Academic Press, Norfolk, pp 53–75

    Google Scholar 

  • Baltz RH (2007) Antimicrobials from actinomycetes. Back to the future. Microbe 2:125–131

    Google Scholar 

  • Baross JA, Morita RY (1978) Microbial life at low temperatures: ecological aspects. In: Kushner DJ (ed) Microbial life in extreme environments. Academic Press, London/New York/San Francisco, pp 10–57

    Google Scholar 

  • Barrientos-Díaz L, Gidekel M, Gutiérrez-Moraga A (2008) Characterization of rhizospheric bacteria isolated from Deschampsia antarctica Desv. World J Microbiol Biotechnol 24:2289–2296

    Article  Google Scholar 

  • Berardesca E, Bertona M, Altabas K et al (2012) Reduced ultraviolet-induced DNA damage and apoptosis in human skin with topical application of a photolyase-containing DNA repair enzyme cream: clues to skin cancer prevention. Mol Med Rep 5:570–574

    CAS  PubMed  Google Scholar 

  • Berríos G, Cabrera G, Gidekel M et al (2013) Characterization of a novel Antarctic plant growth-promoting bacterial strain and its interaction with Antarctic hair grass (Deschampsia antarctica Desv). Polar Biol 36:349–362

    Article  Google Scholar 

  • Bhattarai HD, Kim T, Oh H et al (2013) A new pseudodepsidone from the Antarctic lichen Stereocaulon alpinum and its antioxidant, antibacterial activity. J Antibiot (Tokyo) 66:559–561

    CAS  Google Scholar 

  • Boetius A, Anesio AM, Deming JW et al (2015) Microbial ecology of the cryosphere: sea ice and glacial habitats. Nat Rev Microbiol 13:677–690

    Article  CAS  PubMed  Google Scholar 

  • Buzzini P, Branda E, Goretti M, Turchetti B (2012) Psychrophilic yeasts from worldwide glacial habitats: diversity, adaptation strategies and biotechnological potential. FEMS Microbiol Ecol 82:217–241

    Article  CAS  PubMed  Google Scholar 

  • Buzzini P, Margesin R (2014) Cold-adapted yeasts: a lesson from the cold and a challenge for the XXI century. In: Buzzini P, Margesin R (eds) Cold-adapted yeasts. Springer, Berlin/Heidelberg, pp 3–22. doi:10.1007/978-3-642-39681-6_1

    Chapter  Google Scholar 

  • Carrasco M, Rozas JM, Barahona S et al (2012) Diversity and extracellular enzymatic activities of yeasts isolated from King George Island, the sub-Antarctic region. BMC Microbiol 12:251, http://www.biomedcentral.com/1471-2180/12/251

    Article  PubMed  PubMed Central  Google Scholar 

  • Cavicchioli R, Charlton T, Ertan H et al (2011) Biotechnological uses of enzymes from psychrophiles. Microb Biotechnol 4(4):449–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chávez R, Fierro F, García-Rico R et al (2015) Filamentous fungi from extreme environments as a promising source of novel bioactive secondary metabolites. Front Microbiol 6:903, http://dx.doi.org/10.3389/fmicb.2015.00903

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Z, He C, Hu H (2012a) Temperature responses of growth, photosynthesis, fatty acid and nitrate reductase in Antarctic and temperate Stichococcus. Extremophiles 16:127–133

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Gong Y, Fang X et al (2012b) Scenedesmus sp. NJ-1 isolated from Antarctica: a suitable renewable lipid source for biodiesel production. World J Microbiol Biotechnol 28:3219–3225

    Article  CAS  PubMed  Google Scholar 

  • Chong C-W, Pearce DA, Convey P (2015) Emerging spatial patterns in Antarctic prokaryotes. Front Microbiol 6:1058, http://dx.doi.org/10.3389/fmicb.2015.01058

    Article  PubMed  PubMed Central  Google Scholar 

  • Chown SL, Clarke A, Fraser CI et al (2015) The changing form of Antarctic biodiversity. Nature 522:431–438

    Article  CAS  PubMed  Google Scholar 

  • Convey P, Chown SL, Clarke A et al (2014) The spatial structure of Antarctic biodiversity. Ecol Monogr 84:203–244

    Article  Google Scholar 

  • Cowan DA (2014) Introduction. In: Cowan D (ed) Antarctic terrestrial microbiology. Physical and biological properties of Antarctic soils. Springer, Berlin/Heidelberg, pp 1–8

    Chapter  Google Scholar 

  • Cowan DA, Makhalanyane T, Dennis P, Hopkins D (2014) Microbial ecology and biogeochemistry of continental Antarctic soils. Front Microbiol 5:154, http://dx.doi.org/10.3389/fmicb.2014.00154

    Article  PubMed  PubMed Central  Google Scholar 

  • D’Amico S, Collins T, Marx J-C et al (2006) Psychrophilic microorganisms: challenges for life. EMBO Rep 7:385–389

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  CAS  PubMed  Google Scholar 

  • Darling CA, Siple PA (1941) Bacteria of Antarctica. J Bacteriol 42:83–98

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dimitrova S, Pavlova K, Lukanov L et al (2010) Synthesis of coenzyme Q10 and β-carotene by yeasts isolated from Antarctic soil and lichen in response to ultraviolet and visible radiations. Appl Biochem Biotechnol 162:795–804

    Article  CAS  PubMed  Google Scholar 

  • Dimitrova S, Pavlova K, Lukanov L et al (2013a) Production of metabolites with antioxidant and emulsifying properties by Antarctic strain Sporobolomyces salmonicolor AL1. Appl Biochem Biotechnol 169:301–311

    Article  CAS  PubMed  Google Scholar 

  • Dimitrova D, Dorkov P, Gocheva B (2013b) Antibiotic complex, produced by an Antarctic actinomycete strain Streptomyces anulatus 39 LBG09. Bulg J Agric Sci 19:72–76

    Google Scholar 

  • Droby S, Wisniewski M, Macarisin D et al (2009) Twenty years of postharvest biocontrol research: is it time for a new paradigm? Postharvest Biol Technol 52:137–145

    Article  Google Scholar 

  • Duarte AW, Dayo-Owoyemi I, Nobre FS et al (2013) Taxonomic assessment and enzymes production by yeasts isolated from marine and terrestrial Antarctic samples. Extremophiles 17(6):1023–1035

    Article  CAS  PubMed  Google Scholar 

  • Duran N, Justo GZ, Ferreira CV et al (2007) Violacein: properties and biological activities. Biotechnol Appl Biochem 48:127–133

    Article  CAS  PubMed  Google Scholar 

  • Ekelöf E (1908) Bakteriologische studien während der Schwedischen Südpolar Expedition 1901–1903, vol 4. Stockholm

    Google Scholar 

  • Elbein AD, Pan YT, Pastuszak I et al (2003) New insights on trehalose: a multifunctional molecule. Glycobiology 13(4):17R–27R

    Article  CAS  PubMed  Google Scholar 

  • Encheva M, Zaharieva N, Kenarova A et al (2013) Abundance and activity of soil actinomycetes from Livingston Island, Antarctica. Bulg J Agric Sci 19:68–71

    Google Scholar 

  • Encheva-Malinova M, Stoyanova M, Avramova H et al (2014) Antibacterial potential of streptomycete strains from Antarctic soils. Biotechnol Biotechnol Equip 28(4):721727, http://dx.doi.org/10.1080/13102818.2014.947066

    Article  CAS  Google Scholar 

  • Encheva-Malinova M, Vancheva T, Badzhinerov N, Koleva V, Tishkov S, Bogatzevska N, Moncheva P (2015) Antimicrobial activity of Antarctic Streptomycetes against pepper bacterial spot causing agents. Annuaire de l’Université de Sofia “St Kliment Ohridski” Faculte de Biologie 100(4):216–222

    Google Scholar 

  • Feller G (2013) Psychrophilic enzymes: from folding to function and biotechnology. Scientifica, Article ID 512840, 28 pages. http://dx.doi.org/10.1155/2013/512840

  • Feller G, Margesin R (2012) Polar microorganisms and biotechnology. In: Miller RV, Whyte LG (eds) Polar microbiology: life in a deep freeze. ASM Press, Washington, DC, pp 166–180

    Chapter  Google Scholar 

  • Figueroa L, Jiménez C, Rodríguez J et al (2015) 3-Nitroasterric acid derivatives from an Antarctic sponge-derived Pseudogymnoascus sp. fungus. J Nat Prod 78:919–923

    Article  CAS  PubMed  Google Scholar 

  • Fondi M, Orlandini V, Maida I et al (2012) The draft genome of the VOCs-producing Antarctic bacterium Arthrobacter sp. TB23 able to inhibit Cystic Fibrosis pathogens belonging to the Burkholderia cepacia complex. J Bacteriol 194:6334–6335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fondi M, Orlandini V, Perrin E et al (2014) Draft genomes of three Antarctic Psychrobacter strains known to have antimicrobial activity against Burkholderia cepacia complex opportunistic pathogens. Mar Genomics 13:37–38

    Article  PubMed  Google Scholar 

  • Forster J (1887) Ueber einige Eigenschaften leuchtender Bakterien. Zentralbl Bakteriol 2:337–340

    Google Scholar 

  • Friedmann EI (1993) Antarctic microbiology. Wiley, New York, p 634. ISBN o-471-50776-8

    Google Scholar 

  • Friedmann EI, Ocampo R (1976) Endolithic blue-green algae in the dry valleys: primary producers in the Antarctic desert system. Science 193:1247–1249

    Article  CAS  PubMed  Google Scholar 

  • Fukuda W, Kimura T, Araki S et al (2013) Lysobacter oligotrophicus sp. nov., isolated from an Antarctic freshwater lake in Antarctica. Int J Syst Evol Microbiol 63:3313–3318

    Article  CAS  PubMed  Google Scholar 

  • Furbino LE, Godinho VM, Santiago IF et al (2014) Diversity patterns, ecology and biological activities of fungal communities associated with the endemic macroalgae across the Antarctic Peninsula. Microb Ecol 67(4):775–787

    Article  PubMed  Google Scholar 

  • Gallardo C, Monrás JP, Plaza DO et al (2014) Low-temperature biosynthesis of fluorescent semiconductor nanoparticles (CdS) by oxidative stress resistant Antarctic bacteria. J Biotechnol 187:108–115

    Article  CAS  PubMed  Google Scholar 

  • Gazert H (1912) Untersuchugen über Meeresbakterien und ihren Einfluss auf den Stoffwechsel im Meere. Deutsche Suidpolar-Exped 1901–1903(7):268–296

    Google Scholar 

  • Gesheva V (2010) Production of antibiotics and enzymes by soil microorganisms from the windmill islands region, Wilkes Land, East Antarctica. Polar Biol 33:1351–1357

    Article  Google Scholar 

  • Gesheva V, Vasileva-Tonkova E (2012) Production of enzymes and antimicrobial compounds by halophilic Antarctic Nocardioides sp. grown on different carbon sources. World J Microbiol Biotechnol 28:2069–2076

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica, Article ID 963401, 15 pages. http://dx.doi.org/10.6064/2012/963401

  • Godinho VM, Furbino LE, Santiago IF et al (2013) Diversity and bioprospecting of fungal communities associated with endemic and cold-adapted macroalgae in Antarctica. ISME J 7(7):1434–1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godinho VM, Gonçalves VN, Santiago IF et al (2015) Diversity and bioprospection of fungal community present in oligotrophic soil of continental Antarctica. Extremophiles 19(3):585–596

    Article  PubMed  Google Scholar 

  • Goncalves VN, Carvalho CR, Johann S et al (2015) Antibacterial, antifungal and antiprotozoal activities of fungal communities present in different substrates from Antarctica. Polar Biol 38(8):1143–1152

    Article  Google Scholar 

  • Gounot AM (1986) Psychrophilic and psychrotrophic microorganisms. Experentia 42(1192–1):197

    Google Scholar 

  • Gounot AM (1991) Bacterial life at low temperature: physiological aspects and biotechnological implications. J Appl Bacteriol 71:386–397

    Article  CAS  PubMed  Google Scholar 

  • Henríquez M, Vergara K, Norambuena J et al (2014) Diversity of cultivable fungi associated with Antarctic marine sponges and screening for their antimicrobial, antitumoral and antioxidant potential. World J Microbiol Biotechnol 30(1):65–76

    Article  PubMed  CAS  Google Scholar 

  • Herbert R (1986) Psychrophilic organisms. In: Herbert R, Codd G (eds) Microbes in extreme environments. Academic, London, pp 1–23

    Google Scholar 

  • Herrera LM, García-Laviña CX, Marizcurrena JJ et al (2016) Hydrolytic enzyme-producing microbes in the Antarctic oligochaete Grania sp..(Annelida). Polar Biol. doi:10.1007/s00300-016-2012-0

    Google Scholar 

  • Hopkins DW, Sparrow AD, Novis PM et al (2006) Controls on the distribution of productivity and organic resources in Antarctic Dry Valley soils. Proc Biol Sci 273:2687–2695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horowitz NH, Cameron RE, Hubbard JS (1972) Microbiology of the dry valleys of Antarctica. Science 176(4032):242–245

    Article  CAS  PubMed  Google Scholar 

  • Hua MX, Chi Z, Liu GL et al (2010) Production of a novel and cold-active killer toxin by Mrakia frigida 2E00797 isolated from sea sediment in Antarctica. Extremophiles 14:515–521

    Article  CAS  PubMed  Google Scholar 

  • Huang JP, Mojib N, Goli RR et al (2012) Antimicrobial activity of PVP from an Antarctic bacterium, Janthinobacterium sp. Ant5-2, on multi-drug and methicillin resistant Staphylococcus aureus. Nat Prod Bioprospect 2:104–110

    Article  CAS  PubMed Central  Google Scholar 

  • Hughes KA, Cowan DA, Wilmotte A (2015) Protection of Antarctic microbial communities – ‘out of sight, out of mind’. Front Microbiol 6:151. doi:10.3389/fmicb.2015.00151

    Article  PubMed  PubMed Central  Google Scholar 

  • Inniss WE (1975) Interaction of temperature and psychrophilic microorganisms. Annu Rev Microbiol 29:445–465

    Article  CAS  PubMed  Google Scholar 

  • Inniss WE, Ingraham JL (1978) Microbial life at low temperatures: mechanisms and molecular aspects. In: Kushner DJ (ed) Microbial life in extreme environments. Academic, London, pp 73–104

    Google Scholar 

  • Iravani S (2014) Bacteria in nanoparticle synthesis: current status and future prospects. International Scholarly Research Notices. Hindawi Publishing Corporation, vol 2014, Article ID 359316, 18 pages. http://dx.doi.org/10.1155/2014/359316

  • Jabour J (2010) Biological prospecting: the ethics of exclusive reward from Antarctic activity. Ethics Sci Environ Polit 10:19–29

    Article  Google Scholar 

  • Jia Z, Davies PL (2002) Antifreeze proteins: an unusual receptor–ligand interaction. Trends Biochem Sci 27:101–106

    Article  CAS  PubMed  Google Scholar 

  • Kapdan IK, Kargi F (2006) Bio-hydrogen production from waste materials. Enzyme Microb Technol 38(5):569–582

    Article  CAS  Google Scholar 

  • Kennicutt II MC, Chown SL, Cassano JJ et al (2015) A roadmap for Antarctic and Southern Ocean science for the next two decades and beyond. Antarctic Sci 27(1):3–18

    Google Scholar 

  • Kennicutt MC II, Chown SL, Cassano JJ et al (2014) Polar research: six priorities for Antarctic science. Nature 512(7512):23–25

    Article  CAS  PubMed  Google Scholar 

  • Kim OS, Chae N, Lim HS et al (2012) Bacterial diversity in ornithogenic soils compared to mineral soils on King George Island, Antarctica. J Microbiol 50(6):1081–1085

    Article  CAS  PubMed  Google Scholar 

  • Kimura T, Fukuda W, Sanada T, Imanaka T (2014) Characterization of water-soluble dark-brown pigment from Antarctic bacterium Lysobacter oligotrophicus. J Biosci Bioeng 120(1):58–61

    Article  PubMed  CAS  Google Scholar 

  • Korbekandi H, Iravani S, Abbasi S (2009) Production of nanoparticles using organisms. Crit Rev Biotechnol 29(4):279–306

    Article  CAS  PubMed  Google Scholar 

  • Krishnan A, Alias SA, Wong CMVL et al (2011) Extracellular hydrolase enzyme production by soil fungi from King George Island, Antarctica. Polar Biol 34(10):1535–1542

    Article  Google Scholar 

  • Krishnan A, Convey P, Gonzalez-Rocha G et al (2016) Production of extracellular hydrolase enzymes by fungi from King George Island. Polar Biol 39(1):65–76

    Article  Google Scholar 

  • Leary D (2008) Bi-polar disorder? Is bioprospecting an emerging issue for the Arctic as well as for Antarctica? RECIEL 17(1):41–45

    Google Scholar 

  • Lee SG, Koh HY, Oh H et al (2010) Human dermal fibroblast proliferation activity of usimine-C from Antarctic lichen Ramalina terebrata. Biotechnol Lett 32:471–475

    Article  CAS  PubMed  Google Scholar 

  • Lee LH, Cheah YK, Mohd Sidik S et al (2012) Molecular characterization of Antarctic actinobacteria and screening for antimicrobial metabolite production. World J Microbiol Biotechnol 28:2125–2137

    Article  CAS  PubMed  Google Scholar 

  • Li C, Ma L, Mou S et al (2015) Cyclobutane pyrimidine dimers photolyase from extremophilic microalga: remarkable UVB resistance and efficient DNA damage repair. Mutation Res 773:37–42

    Article  CAS  PubMed  Google Scholar 

  • Libkind D, Moliné M, Sampaio JP, Van Broock M (2009) Yeasts from high-altitude lakes: influence of UV radiation. FEMS Microbiol Ecol 69(3):353–362

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Huang X, Wang X, Zhang X, Li G (2006) Phylogenetic studies on two strains of Antarctic ice algae based on morphological and molecular characteristics. Phycologia 45:190–198

    Article  Google Scholar 

  • Liu G-L, Wang K, Hua M-X et al (2012) Purification and characterization of the cold-active killer toxin from the psychrotolerant yeast Mrakia frigida isolated from sea sediments in Antarctica. Process Biochem 47(5):822–827

    Article  CAS  Google Scholar 

  • Lo Giudice A, Fani R (2015) Cold-adapted bacteria from a coastal area of the Ross Sea (Terra Nova Bay, Antarctica): linking microbial ecology to biotechnology. Hydrobiologia 761:417–441

    Article  Google Scholar 

  • Lohan D, Johnston S (2005) UNU-IAS report: bioprospecting in Antarctica. http://www.ias.unu.edu/

  • Loperena L, Soria V, Varela H, Lupo S, Bergalli A, Guigou M, Pellegrino A, Bernardo A, Calviño A, Rivas F, Batista S (2012) Extracellular enzymes produced by microorganisms isolated from maritime Antarctica. World J Microbiol Biotechnol 28:2249–2256. doi:10.1007/s11274-012-1032-3

    Article  CAS  PubMed  Google Scholar 

  • Loque CP, Medeiros AO, Pellizzari FM, Oliveira EC, Rosa CA, Rosa LH (2010) Fungal community associated with marine macroalgae from Antarctica. Polar Biol 33:641–648. doi:10.1007/s00300-009-0740-0

    Article  Google Scholar 

  • Maida I, Fondi M, Papaleo MC et al (2014) Phenotypic and genomic characterization of the Antarctic bacterium Gillisia sp. CAL575, a producer of antimicrobial compounds. Extremophiles 18:35–49. doi:10.1007/s00792-013-0590-0

    Article  CAS  PubMed  Google Scholar 

  • Maida I, Bosi E, Fondi M et al (2015) Antimicrobial activity of Pseudoalteromonas strains isolated from Ross Sea (Antarctica) versus cystic fibrosis opportunistic pathogens. Hydrobiologia 761(1):443–457. doi:10.1007/s10750-015-2190-8

    Article  CAS  Google Scholar 

  • Makhalanyane TP, Valverde A, Birkeland N-K et al (2013) Evidence for successional development in Antarctic hypolithic bacterial communities. ISME J 7:2080–2090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mancuso Nichols CA, Guezennec J, Bowman JP (2005) Bacterial exopolysaccharides from extreme marine environments with special consideration of the southern ocean, sea ice, and deep-sea hydrothermal vents: a review. Mar Biotechnol 7:253–271

    Article  CAS  Google Scholar 

  • Margesin R, Feller G (2010) Biotechnological applications of psychrophiles. Environ Technol 31(8–9):835–844. doi:10.1080/09593331003663328

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Rosales C, Fullana N, Musto H, Castro-Sowinski S (2012) Antarctic DNA moving forward: genomic plasticity and biotechnological potential. FEMS Microbiol Lett 331:1–9. doi:10.1111/j.1574-6968.2012.02531.x

    Article  PubMed  CAS  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14(1):217–232

    Article  CAS  Google Scholar 

  • McLean AL (1918) Bacteria of ice and snow in Antarctica. Nature 102:35–39

    Article  Google Scholar 

  • Meixner M, Schöll E, Shchukin VA, Bimberg D (2001) Self-assembled quantum dots: crossover from kinetically controlled to thermodynamically limited growth. Phys Rev Lett 87(23):236101

    Article  CAS  PubMed  Google Scholar 

  • Melo IS, Zucchi TD, Silva RE et al (2014) Isolation and characterization of cellulolytic bacteria from the Stain house Lake, Antarctica. Folia Microbiol (Praha) 59(4):303–306. doi:10.1007/s12223-013-0295-x

    Article  CAS  Google Scholar 

  • Mojib N, Philpott R, Huang JP, Niederweis M, Bej AK (2010) Antimycobacterial activity in vitro of pigments isolated from Antarctic bacteria. Antonie Van Leeuwenhoek 98:531–540

    Article  CAS  PubMed  Google Scholar 

  • Mojib N, Nasti TH, Andersen DT et al (2011) The antiproliferative function of violacein-like purple violet pigment (PVP) from an Antarctic Janthinobacterium sp. Ant5-2 in UV-induced 2237 fibrosarcoma. Int J Dermatol 50:1223–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mojib N, Farhoomand A, Andersen DT, Bej AK (2013) UV and cold tolerance of a pigment-producing Antarctic Janthinobacterium sp. Ant5-2. Extremophiles 17:367–378. doi:10.1007/s00792-013-0525-9

    Article  CAS  PubMed  Google Scholar 

  • Morita RY (1975) Psychrophilic bacteria. Bacteriol Rev 39(2):144–167

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mou S, Xu D, Ye N et al (2012) Rapid estimation of lipid content in an Antarctic ice alga (Chlamydomonas sp.) using the lipophilic fluorescent dye BODIPY505/515. J Appl Phycol 24:1169–1176. doi:10.1007/s10811-011-9746-4

    Article  CAS  Google Scholar 

  • Niederberger TD, McDonald IR, Hacker AL et al (2008) Microbial community composition in soils of Northern Victoria Land, Antarctica. Environ Microbiol 10(7):1713–1724. doi:10.1111/j.1462-2920.2008.01593.x

    Article  CAS  PubMed  Google Scholar 

  • Nunes CA (2012) Biological control of postharvest diseases of fruit. Eur J Plant Pathol 133:181–196

    Article  Google Scholar 

  • Orlandini V, Maida I, Fondi M et al (2014) Genomic analysis of three sponge-associated Arthrobacter Antarctic strains, inhibiting the growth of Burkholderia cepacia complex bacteria by synthesizing volatile organic compounds. Microbiol Res 169:593–601

    Article  CAS  PubMed  Google Scholar 

  • Papaleo MC, Fondi M, Maida I et al (2012) Sponge-associated microbial Antarctic communities exhibiting antimicrobial activity against Burkholderia cepacia complex bacteria. Biotechnol Adv 30:272–293

    Article  CAS  PubMed  Google Scholar 

  • Papaleo MC, Romoli R, Bartolucci G et al (2013) Bioactive volatile organic compounds from Antarctic (sponges) bacteria. New Biotechnol 30:824–838

    Article  CAS  Google Scholar 

  • Paudel B, Bhattarai HD, Koh HY et al (2011) Ramalin, a novel nontoxic antioxidant compound from the Antarctic lichen Ramalina terebrata. Phytomedicine 18:1285–1290

    Article  CAS  PubMed  Google Scholar 

  • Payne CM, Knott BC, Mayes HB et al (2015) Fungal cellulases. Chem Rev 115(3):1308–1448. doi:10.1021/cr500351c

    Article  CAS  PubMed  Google Scholar 

  • Pereyra V, Martinez A, Rufo C, Vero S (2014) Oleaginous yeasts form Uruguay and Antarctica as renewable raw material for biodiesel production. Am J BioSci 2(6):251–257

    Article  CAS  Google Scholar 

  • Pugin B, Cornejo FA, Muñoz-Díaz P et al (2014) Glutathione reductase-mediated synthesis of tellurium-containing nanostructures exhibiting antibacterial properties. Appl Environ Microbiol 80(22):7061–7070. doi:10.1128/AEM.02207-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Puig-Marcó R (2014) Access and benefit sharing of Antarctica’s biological material. Mar Genomics 17:73–78. doi:10.1016/j.margen.2014.04.008

    Article  PubMed  Google Scholar 

  • Ramanathan R, O’Mullane AP, Parikh RY et al (2011) Bacterial kinetics-controlled shape-directed biosynthesis of silver nanoplates using Morganella psychrotolerans. Langmuir 27:714–719

    Article  CAS  PubMed  Google Scholar 

  • Reddy GS, Matsumoto GI, Schumann P et al (2004) Psychrophilic pseudomonads from Antarctica: Pseudomonas antarctica sp. nov., Pseudomonas meridiana sp. nov. and Pseudomonas proteolytica sp. nov. Int J Syst Evol Microbiol 54:713–719

    Article  CAS  PubMed  Google Scholar 

  • Rodrígues DF, Tiedje JM (2008) Coping with our cold planet. Appl Environ Microbiol 74(6):1677–1686

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rodríguez-Marconi S, De la Iglesia R, Díez B et al (2015) Characterization of bacterial, archaeal and eukaryote symbionts from Antarctic sponges reveals a high diversity at a three-domain level and a particular signature for this ecosystem. PLoS ONE 10(9):e0138837. doi:10.1371/journal.pone.0138837

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Romoli R, Papaleo MC, de Pascale D et al (2011) Characterization of the volatile profile of Antarctic bacteria by using solid-phase microextraction – gas chromatography mass spectrometry. J Mass Spectrosc 46:1051–1059

    Article  CAS  Google Scholar 

  • Romoli R, Papaleo MC, de Pascale D et al (2014) GC-MS volatolomic approach to study the antimicrobial activity of the Antarctic bacterium Pseudoalteromonas sp. TB41. Metabolomics 10:42–51

    Article  CAS  Google Scholar 

  • Rosa LH, Vaz ABM, Caligiorne RB et al (2009) Endophytic fungi associated with the Antarctic Grass Deschampsia antarctica Desv. (Poaceae). Polar Biol 32:161–167

    Article  Google Scholar 

  • Rosa LH, Vieira MLA, Santiago IF, Rosa CA (2010) Endophytic fungi community associated with the dicotyledonous plant Colobanthus quitensis (Kunth) Bartl. (Caryophyllaceae) in Antarctica. FEMS Microbiol Ecol 73:178–189

    CAS  PubMed  Google Scholar 

  • Rose AH (1968) Physiology of micro-organisms at low temperatures. J Appl Bacteriol 31:1–11

    Article  CAS  PubMed  Google Scholar 

  • Russell NJ (1990) Cold adaptation of microorganisms. Philos Trans R Soc Lond B 329:595–611

    Article  Google Scholar 

  • Russell NJ (1997) Psychrophilic bacteria—molecular adaptations of membrane lipids. Comp Biochem Physiol Physiol 118:489–493

    Article  CAS  Google Scholar 

  • Salata OV (2004) Application of nanoparticles in biology and medicine. J Nanobiotechnol 2:3–9

    Article  Google Scholar 

  • Santiago IF, Alves TMA, Rabello A et al (2012) Leishmanicidal and antitumoral activities of endophytic fungi associated with the Antarctic angiosperms Deschampsia antarctica Desv. and Colobanthus quitensis (Kunth) Bartl. Extremophiles 16:95–103

    Article  PubMed  Google Scholar 

  • Santos SN, Kavamura VN, Taketani RG et al (2015) Draft genome sequence of Bacillus sp. strain CMAA 1185, a cellullolytic bacterium isolated from Stain House Lake, Antarctic Peninsula. Genome Announc 3(3):e00436-15. doi:10.1128/genomeA.00436-15

    Article  PubMed  PubMed Central  Google Scholar 

  • Sastry M, Ahmad A, Khan MI, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycetes. Curr Sci 85(2):162–170

    CAS  Google Scholar 

  • Schmidt-Nielsen S (1902) Ueber einige pychorphile Mikroorganismen und ihr Vorkommen. Zentr Bakteriol Parasitenkd 9:145–147

    Google Scholar 

  • Sepúlveda B, Chamy MC, Piovano M, Areche C (2013) Lichens: might be considered as a source of gastroprotective molecules? J Chil Chem Soc 58(2):1750–1752

    Article  Google Scholar 

  • Sharp RJ, Munster MJ (1986) Biotechnological implications for microorganisms from extreme environments. In: Herbert RA, Codd GA (eds) Microbes in extreme environments. Academic, London, pp 215–295

    Google Scholar 

  • Shivaji S, Ray MK, Seshu Kumar G et al (1991) Identification of Janthinobacterium lividum from the soils of the islands of Scotia Ridge and from Antarctic peninsula. Polar Biol 11:267–271, http://dx.doi.org/10.1007/BF00238461

    Article  Google Scholar 

  • Shivaji S, Madhu S, Singh S (2011) Extracellular synthesis of antibacterial silver nanoparticles using psychrophilic bacteria. Process Biochem 46(9):1800–1807

    Article  CAS  Google Scholar 

  • Siamak J, Marín I, Amils R, Abad JP (2015) Four psychrophilic bacteria from Antarctica extracellularly biosynthesize at low temperature highly stable silver nanoparticles with outstanding antimicrobial activity. Colloids Surf A Physicochem Eng Aspects 483:60–69, http://dx.doi.org/10.1016/j.colsurfa.2015.07.028

    Article  CAS  Google Scholar 

  • Singh A, Nigam PS, Murphy JD (2011) Renewable fuels from algae: an answer to debatable land based fuels. Bioresour Technol 102:10–16

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Shedbalkar UU, Wadhwani SA, Chopade BA (2015) Bacteriagenic silver nanoparticles: synthesis, mechanism, and applications. Appl Microbiol Biotechnol 99:4579–4593. doi:10.1007/s00253-015-6622-1

    Article  CAS  PubMed  Google Scholar 

  • Smith JJ, Tow LA, Stafford W et al (2006) Bacterial diversity in three different Antarctic cold desert mineral soils. Microbiol Ecol 51:413–421

    Article  Google Scholar 

  • Soares FL Jr, Soares Melo I, Franco Dias AC, Dini Andreote F (2012) Cellulolytic bacteria from soils in harsh environments. World J Microbiol Biotechnol 28:2195–2203. doi:10.1007/s11274-012-1025-2

    Article  CAS  PubMed  Google Scholar 

  • Soliev AB, Hosokawa K, Enomoto K (2011) Bioactive pigments from marine bacteria: applications and physiological roles. Evid Based Complement Alternat Med 670349. doi:10.1155/2011/670349

    Google Scholar 

  • Spizek J, Novotna J, Rezanka T, Demain AL (2010) Do we need new antibiotics? The search for new targets and new compounds. J Ind Microbiol Biotechnol 37:1241–1248

    Article  CAS  PubMed  Google Scholar 

  • Stege H, Roza L, Vink AA et al (2000) Enzyme plus light therapy to repair DNA damage in ultraviolet-B-irradiated human skin. Proc Natl Acad Sci U S A 97:1790–1795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stokes JL (1963) General biology and nomenclature of psychrophilic micro-organisms. In: Gibbons NE (ed) Recent progress in microbiology, Symposia VIII international congress for microbiology, Montreal, 1962. University of Toronto Press, Toronto, pp 187–192

    Google Scholar 

  • Svahn KS, Chryssanthou E, Olsen B et al (2015) Penicillium nalgiovense Laxa isolated from Antarctica is a new source of the antifungal metabolite amphotericin B. Fungal Biol Biotechnol 2:1. doi:10.1186/s40694-014-0011-x

    Article  Google Scholar 

  • Tan T, Lu J, Nie K, Deng L, Wang F (2010) Biodiesel production with immobilized lipase: a review. Biotechnol Adv 28:628–634

    Article  CAS  PubMed  Google Scholar 

  • Teixeira LC, Peixoto RS, Cury JC et al (2010) Bacterial diversity in rhizosphere soil from Antarctic vascular plants of Admiralty Bay, maritime Antarctica. ISME J 4(8):989–1001. doi:10.1038/ismej.2010.35

    Article  PubMed  Google Scholar 

  • Teixeira LC, Yeargeau E, Balieiro FC et al (2013) Plant and bird presence strongly influences the microbial communities in soils of Admiralty Bay, Maritime Antarctica. PLoS One 8(6):e66109. doi:10.1371/journal.pone.0066109

    Google Scholar 

  • Thomas-Hall SR, Turchetti B, Buzzini P et al (2010) Cold-adapted yeasts from Antarctica and the Italian Alps-description of three novel species: Mrakia robertii sp. nov., Mrakia blollopis sp. nov. and Mrakiella niccombsii sp. nov. Extremophiles 14:47–59. doi:10.1007/s00792-009-0286-7

    Article  CAS  PubMed  Google Scholar 

  • Tsiklinsky M (1908) Flore Microbienne. Expedition Antarctique Francaise 1903–1905. Masson et Cie., Paris.

    Google Scholar 

  • Tsuji M, Yokota Y, Shimohara K, Kudoh S, Hoshino T (2012) An application of wastewater treatment in a cold environment and stable lipase production of Antarctic basidiomycetous yeast Mrakia blollopis. PLoS ONE 8(3):e59376

    Article  CAS  Google Scholar 

  • Tsuji M, Fujiu S, Xiao N et al (2013a) Cold adaptation of fungi obtained from soil and lake sediment in the Skarvsnes ice-free area, Antarctica. FEMS Microbiol Lett 346:121–130

    Article  CAS  PubMed  Google Scholar 

  • Tsuji M, Singh SM, Yokota Y, Kudoh S, Hoshino T (2013b) Influence of initial pH on ethanol production by the Antarctic basidiomycetous yeast Mrakia blollopis. Biosci Biotechnol Biochem 77(12):2483–2485

    Article  CAS  PubMed  Google Scholar 

  • Tsuji M, Goshima T, Matsushika A et al (2013c) Direct ethanol fermentation from lignocellulosic biomass by Antarctic basidiomycetous yeast Mrakia blollopis under a low temperature condition. Cryobiology 67(2):241–243

    Article  CAS  PubMed  Google Scholar 

  • Tsuji M, Yokota Y, Kudoh S, Hoshino T (2014) Improvement of direct ethanol fermentation from woody biomasses by the Antarctic basidiomycetous yeast, Mrakia blollopis, under a low temperature condition. Cryobiology 68(2):303–305. doi:10.1016/j.cryobiol.2013.12.008

    Article  CAS  PubMed  Google Scholar 

  • UNEP (2012) An update on biological prospecting in Antarctica and recent policy developments at the international level. ATCM XXXV Meeting. http://www.unep.org/dewa/Portals/67/pdf/ATCM35_ip063_e.pdf

  • UNU IAS (2007) Biological prospecting in Antarctica: review, update and proposed tool to support a way forward. http://www.unep.org/dewa/Portals/67/pdf/Atcm30_ip067_e.pdf

  • UNU UNEP (2009) Biological prospecting: an update on recent policy developments at the international level. ATCM XXXII meeting. http://www.unep.org/dewa/Portals/67/pdf/Atcm32_ip091_e.pdf

  • Vaca I, Faúndez C, Maza F et al (2013) Cultivable psychrotolerant yeasts associated with Antarctic marine sponges. World J Microbiol Biotechnol 29:183–189. doi:10.1007/s11274-012-1159-2

    Article  CAS  PubMed  Google Scholar 

  • Vaz ABM, Rosa LH, Vieira MLA et al (2011) The diversity, extracellular enzymatic activities and photoprotective compounds of yeasts isolated in Antarctica. Braz J Microbiol 42:937–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vero S, Garmendia G, González MB et al (2013) Evaluation of yeasts obtained from Antarctic soil samples as biocontrol agents for the management of postharvest diseases of apple (Malus × domestica). FEMS Yeast Res 13(2):189–199. doi:10.1111/1567-1364.12021

    Article  CAS  PubMed  Google Scholar 

  • Vishniac HS, Hempfling WP (1979) Evidence of an indigenous microbiota (yeasts) in the dry valleys of Antarctica. J Gen Microbiol 112:301–314

    Article  Google Scholar 

  • Vishniac VW, Mainzer SE (1972) Soil microbiology studied in situ in the dry valleys of Antarctica. Antarct J USA 7:88–89

    Google Scholar 

  • Vollú RE, Jurelevicius D, Ramos LR et al (2014) Aerobic endospore-forming bacteria isolated from Antarctic soils as producers of bioactive compounds of industrial interest. Polar Biol 37(8):1121–1131. doi:10.1007/s00300-014-1505-y

    Article  Google Scholar 

  • Wang N, Zang J, Ming K et al (2013) Production of cold-adapted cellulase by Verticillium sp. isolated from Antarctic soils. Electron J Biotechnol 16(4):12. doi:10.2225/vol16-issue4-fulltext-12

  • Westlake DW, Jobson A, Phillippe R, Cook FD (1974) Biodegradability and crude oil composition. Can J Microbiol 20:915–928

    Article  CAS  PubMed  Google Scholar 

  • White PA, Oliveira RC, Oliveira AP et al (2014) Antioxidant activity and mechanisms of action of natural compounds isolated from lichens: a systematic review. Molecules 19:14496–14527. doi:10.3390/molecules190914496

    Article  PubMed  CAS  Google Scholar 

  • Wilkins D, Yau S, Williams TJ, Allen MA et al (2013) Key microbial drivers in Antarctic aquatic environments. FEMS Microbiol Rev 37:303–335

    Article  CAS  PubMed  Google Scholar 

  • Williams RS Jr, Ferrigno JG (2012) State of the Earth’s cryosphere at the beginning of the 21st century–Glaciers, global snow cover, floating ice, and permafrost and periglacial environments: U.S. Geological Survey Professional Paper 1386–A. http://pubs.usgs.gov/pp/p1386a

  • Zlatanov M, Pavlova K, Antova G et al (2010) Biomass production by Antarctic yeast strains: an investigation on the lipid composition. Biotechnol Biotechnol Equip 24(4):2096–2101. doi:10.2478/V10133-010-0084-5

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author is thankful to Drs. Eduardo Chica, David Donoso, and Lenys Buela for their critical reading of the manuscript and many helpful comments. The author also acknowledges Proyecto Prometeo of the National Secretary of Science, Technology and Innovation of Ecuador (SENESCYT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Andrés Yarzábal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Yarzábal, L.A. (2016). Antarctic Psychrophilic Microorganisms and Biotechnology: History, Current Trends, Applications, and Challenges. In: Castro-Sowinski, S. (eds) Microbial Models: From Environmental to Industrial Sustainability. Microorganisms for Sustainability, vol 1. Springer, Singapore. https://doi.org/10.1007/978-981-10-2555-6_5

Download citation

Publish with us

Policies and ethics