Skip to main content

Cold-Adapted Yeasts: A Lesson from the Cold and a Challenge for the XXI Century

  • Chapter
  • First Online:
Cold-adapted Yeasts

Abstract

Yeasts are a versatile group of eukaryotic organisms and widely distributed in worldwide microbiomes. The literature on cold-adapted yeasts considerably increased in the last two decades. For some decades, Antarctica has been the geographical area preferred by microbiologists for studying the diversity of cold-adapted microorganisms including yeasts. However, in more recent years, the biodiversity and the ecology of cold-adapted yeast populations colonizing worldwide non-Antarctic cold habitats have attracted an increasing number of scientists. Like other microbial taxa, yeasts inhabiting cold ecosystems have evolved a set of structural and functional adaptation strategies to overcome the negative effects of cold (sometimes associated with other limiting conditions) that make such extreme habitats very inhospitable for microbial life. Due to their singular phenotypic traits, cold-adapted yeasts have also been studied in recent years for their biotechnological potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abyzov SS (1993) Microorganisms in the Antarctic ice. In: Friedman EI (ed) Antarctic microbiology. Wiley, New York, pp 265–295

    Google Scholar 

  • Alchihab M, Destain J, Aguedo M, Majad L, Ghalfi H, Wathelet JP, Thonart P (2009) Production of γ-decalactone by a psychrophilic and a mesophilic strain of the yeast Rhodotorula aurantiaca. Appl Biochem Biotechnol 158:41–50

    Article  CAS  PubMed  Google Scholar 

  • Arenz BE, Held BW, Jurgens JA, Farrell RL, Blanchette RA (2006) Fungal diversity in soils and historic wood from the Ross Sea Region of Antarctica. Soil Biol Biochem 38:3057–3064

    Article  CAS  Google Scholar 

  • Arthur H, Watson K (1976) Thermal adaptation in yeast: growth temperatures, membrane lipid, and cytochrome composition of psychrophilic, mesophilic, and thermophilic yeasts. J Bacteriol 128:56–68

    CAS  PubMed  Google Scholar 

  • Babyeva IP, Golubev WI (1969) Psychrophilic yeasts in the Antarctic oases. Microbiology 38:436–440

    Google Scholar 

  • Bakermans C (2008) Limits for microbial life at subzero temperatures. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin Heidelberg, pp 17–28

    Chapter  Google Scholar 

  • Bej AK, Mojib N (2010) Cold adaptation in Antarctic biodegradative microorganisms. In: Bej AK, Aislabie J, Atlas RM (eds) Polar microbiology: the ecology, biodiversity and bioremediation potential of microorganisms in extremely cold environments. CRC Press, Boca Raton, FL, pp 157–178

    Google Scholar 

  • Bej AK, Aislabie J, Atlas RM (eds) (2010) Polar microbiology: the ecology, biodiversity and bioremediation potential of microorganisms in extremely cold environments. CRC Press, Boca Raton, FL

    Google Scholar 

  • Bergauer P, Fonteyne PA, Nolard N, Schinner F, Margesin R (2005) Biodegradation of phenol and phenol-related compounds by psychrophilic and cold-tolerant alpine yeasts. Chemosphere 59:909–918

    Article  CAS  PubMed  Google Scholar 

  • Bridge PD, Newsham KK (2009) Soil fungal community composition at Mars Oasis, a southern maritime Antarctic site, assessed by PCR amplification and cloning. Fungal Ecol 2:66–74

    Article  Google Scholar 

  • Butinar L, Spencer-Martins I, Gunde-Cimerman N (2007) Yeasts in high Arctic glaciers: the discovery of a new habitat for eukaryotic microorganisms. A van Leeuwenhoek 91:277–289

    Article  Google Scholar 

  • Buzzini P, Vaughan-Martini A (2006) Yeast biodiversity and biotechnology. In: Rosa CA, Peter G (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 533–559

    Chapter  Google Scholar 

  • Buzzini P, Branda E, Goretti M, Turchetti B (2012) Psychrophilic yeasts from worldwide glacial habitats: diversity, adaptation strategies and biotechnological potential. FEMS Microbiol Ecol 82:217–241

    Article  CAS  PubMed  Google Scholar 

  • Cameron RE (1971) Antarctic soil microbial and ecological investigations. In: Quam LO, Porter HD (eds) Research in the Antarctic. AAAS, Washington, DC, pp 137–189

    Google Scholar 

  • Cameron RE, King J, David CN (1970) Microbiology, ecology, and microclimatology of soil sites in dry valleys of Southern Victoria Land, Antarctica. In: Holdgate M (ed) Antarctic ecology, vol 2. Academic Press, New York, pp 702–716

    Google Scholar 

  • Campbell IB, Claridge GGC (2000) Soil temperature, moisture and salinity patterns in Transantarctic Mountain cold desert ecosystems. In: Davidson W, Howard-Williams C, Broady P (eds) Antarctic ecosystems: models for wider understanding. Caxton Press, Christchurch, pp 2332–2340

    Google Scholar 

  • Canganella F, Wiegel J (2011) Extremophiles: from abyssal to terrestrial ecosystems and possibly beyond. Naturwissenschaften 98:253–279

    Article  CAS  PubMed  Google Scholar 

  • Carpenter EJ, Lin S, Capone DG (2000) Bacterial activity in South Pole snow. Appl Environ Microbiol 66:4514–4517

    Article  CAS  PubMed  Google Scholar 

  • Cavicchioli R (2006) Cold-adapted archaea. Nat Rev 4:331–343

    Article  CAS  Google Scholar 

  • Cavicchioli R, Tortsen T (2000) Extremophiles. Inmederberg J (ed) Encyclopedia of microbiology. Academic Press, San Diego, pp 317–337

    Google Scholar 

  • Cavicchioli R, Siddiqui KS, Andrews D, Sowers KR (2002) Low-temperature extremophiles and their applications. Curr Opin Biotechnol 13:253–261

    Article  CAS  PubMed  Google Scholar 

  • Claridge GG, Campbell IB (1977) The salts in Antarctic soils, their distribution and relationship to soil processes. Soil Sci 123:337–384

    Article  Google Scholar 

  • Connell LB, Redman R, Craig S, Scorzetti G, Iszard M, Rodriguez R (2008) Diversity of soil yeasts isolated from South Victoria Land, Antarctica. Microb Ecol 56:448–459

    Article  CAS  PubMed  Google Scholar 

  • D’Amico S, Collins T, Marx JC, Feller G, Gerday C (2006) Psychrophilic microorganisms: challenges for life. EMBO Rep 7:385–389

    Article  PubMed  CAS  Google Scholar 

  • de Maria PD, Carboni-Oerlemans C, Tuin B, Bargeman G, van der Meer AB, van Gemert R (2005) Biotechnological applications of C. antarctica lipase A: state of the art. J Mol Catal B Enzym 37:36–46

    Article  CAS  Google Scholar 

  • Deegenaars ML, Watson K (1998) Heat-shock response in psychrophilic and psychrotrophic yeast from Antarctica. Extremophiles 2:41–49

    Article  CAS  PubMed  Google Scholar 

  • Deming JW (2002) Psychrophiles and polar regions. Curr Opin Microbiol 5:301–309

    Article  CAS  PubMed  Google Scholar 

  • Deming JW (2009) Extremophiles: cold environments. In: Schaechter M (ed) Encyclopedia of microbiology. Elsevier, Oxford, pp 147–158

    Chapter  Google Scholar 

  • di Menna ME (1960) Yeasts from Antarctica. J Gen Microbiol 23:295–300

    Article  CAS  PubMed  Google Scholar 

  • di Menna ME (1966a) Three new species from Antarctic soil: Candida nivalis, Candida gelida and Candida frigida spp. nov. A van Leeuwenhoek 32:25–28

    Article  Google Scholar 

  • di Menna ME (1966b) Yeasts in Antarctic soil. A van Leeuwenhoek 32:29–38

    Article  Google Scholar 

  • Eddy BP (1960) The use and meaning of the term psychrophilic. J Appl Bacteriol 23:189–190

    Article  Google Scholar 

  • Fell JW, Boekhout T, Fonseca A, Scorzetti G, Statzell-Tallman A (2000) Biodiversity and systematics of basidiomycetous yeasts as determined by large-subunits rDNA D1/D2 domain sequence analysis. Int J Syst Evol Microbiol 50:1351–1371

    Article  CAS  PubMed  Google Scholar 

  • Feller G (2007) Life at low temperatures: is disorder the driving force? Extremophiles 11:211–216

    Article  CAS  PubMed  Google Scholar 

  • Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1:200–208

    Article  CAS  PubMed  Google Scholar 

  • Fleet GH (2011) Yeast spoilage of foods and beverages. In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts. A taxonomy study, vol 1. Elsevier, New York, pp 53–63

    Google Scholar 

  • Friedmann EI (1982) Endolithic microorganisms in the Antarctic cold desert. Science 215:1045–1053

    Article  CAS  PubMed  Google Scholar 

  • Gerday C, Aittaleb M, Arpigny JL, Baise E, Chessa JP, Garsoux G, Petrescu I, Feller G (1997) Psychrophilic enzymes: a thermodynamic challenge. Biochim Biophys Acta 1342:119–131

    Article  CAS  PubMed  Google Scholar 

  • Gerday C, Aittaleb M, Bentahir M, Chessa JP, Claverie P, Collins T, D’Amico S, Dumont J, Garsoux G, Georlette D, Hoyoux A, Lonhienne T, Meuwis MA, Feller G (2000) Cold-adapted enzymes: from fundamentals to biotechnology. Trend Biotechnol 18:103–107

    Article  CAS  Google Scholar 

  • Gilbert JA, Hill PJ, Dodd CER, Laybourn-Parry J (2004) Demonstration of antifreeze protein activity in Antarctic lake bacteria. Microbiology 150:171–180

    Article  CAS  PubMed  Google Scholar 

  • Gilbert JA, Davies PL, Laybourn-Parry J (2005) A hyperactive, Ca2+ dependent antifreeze protein in an Antarctic bacterium. FEMS Microbiol Lett 245:67–72

    Article  CAS  PubMed  Google Scholar 

  • Glansdorff N, Xu Y (2002) Microbial life at low temperatures: mechanisms of adaptation and extreme biotopes. Implications for exobiology and the origin of life. Recent Res Dev Microbiol 6:1–21

    CAS  Google Scholar 

  • Gostincar C, Grube M, de Hoog S, Zalar P, Gunde-Cimerman N (2010) Extremotolerance in fungi: evolution on the edge. FEMS Microbiol Ecol 71:2–11

    Article  CAS  PubMed  Google Scholar 

  • Goto S, Sugiyama J, Iizuka H (1969) A taxonomic study of Antarctic yeasts. Mycologia 61:748–774

    Article  CAS  PubMed  Google Scholar 

  • Gounot AM (1986) Psychrophilic and psychrotrophic microorganisms. Experientia 42:1192–1197

    Article  CAS  PubMed  Google Scholar 

  • Gounot AM, Russell NJ (1999) Physiology of cold-adapted microorganisms. In: Margesin R, Schinner F (eds) Cold-adapted organisms: ecology, physiology, enzymology and molecular biology. Springer, Berlin, pp 33–55

    Google Scholar 

  • Hawksworth DL (2004) Fungal diversity and its implications for genetic resource collections. Stud Mycol 50:9–18

    Google Scholar 

  • Holdgate MV (1977) Terrestrial ecosystems in the Antarctic. Philos Trans Royal Soc B 279:5–25

    Article  Google Scholar 

  • Johnson EA, Echavarri-Erasun C (2011) Yeast biotechnology. In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts. A taxonomy study, vol 1. Elsevier, New York, pp 21–44

    Google Scholar 

  • Joseph B, Ramteke PW, Thomas G (2008) Cold active microbial lipases: some hot issues and recent developments. Biotechnol Adv 26:457–470

    Article  CAS  PubMed  Google Scholar 

  • Julseth CR, Inniss WE (1990a) Heat shock protein induction and the acquisition of thermotolerance in the psychrotrophic yeast Trichosporon pullulans. Curr Microbiol 20:391–396

    Article  CAS  Google Scholar 

  • Julseth CR, Inniss WE (1990b) Induction of protein synthesis in response to cold shock in the psychrotrophic yeast Trichosporon pullulans. Can J Microbiol 36:519–524

    Article  CAS  Google Scholar 

  • Krallish I, Gonta S, Savenkova L, Bergauer P, Margesin R (2006) Phenol degradation by immobilized cold-adapted yeast strains of Cryptococcus terreus and Rhodotorula creatinivora. Extremophiles 10:441–449

    Article  CAS  PubMed  Google Scholar 

  • Kurtzman CP (2011) Discussion of teleomorphic and anamorphic ascomycetous yeasts and yeast-like taxa. In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts. A taxonomy study, vol 1. Elsevier, New York, pp 292–307

    Google Scholar 

  • Kurtzman CP, Robnett CJ (1998) Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. A van Leeuwenhoek 73:331–371

    Article  CAS  Google Scholar 

  • Kurtzman CP, Fell JW, Boekhout T (2011a) The yeasts. A taxonomy study, vol 1–3. Elsevier, New York

    Google Scholar 

  • Kurtzman CP, Fell JW, Boekhout T (2011b). Definition, classification and nomenclature of the yeasts In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts. A taxonomy study, vol 1. Elsevier, New York, pp 3–5

    Google Scholar 

  • Kurtzman CP, Fell JW, Boekhout T (2011c) Gene sequence analyses and other DNA-based methods for yeast species recognition. In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts. A taxonomy study, vol 1. Elsevier, New York, pp 137–144

    Google Scholar 

  • Lachance MA (2006) Yeast biodiversity: how many and how much? In: Rosa CA, Peter G (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 1–9

    Chapter  Google Scholar 

  • Lainioti GC, Kapolos J, Koliadima A, Karaiskakis G (2012) The study of the influence of temperature and initial glucose concentration on the fermentation process in the presence of S. cerevisiae yeast strain immobilized on starch gels by reversed-flow gas chromatography. Prep Biochem Biotechnol 42:489–506

    Article  CAS  PubMed  Google Scholar 

  • Los DA, Murata N (2004) Membrane fluidity and its roles in the perception of environmental signals. Biochim Biophys Acta 1666:142–157

    Article  CAS  PubMed  Google Scholar 

  • Margesin R (2009a) Effect of temperature on growth parameters of psychrophilic bacteria and yeasts. Extremophiles 13:257–262

    Article  PubMed  Google Scholar 

  • Margesin R (ed) (2009b) Permafrost soils. Springer, Berlin

    Google Scholar 

  • Margesin R, Feller G (2010) Biotechnological applications of psychrophiles. Environ Technol 31:835–844

    Article  CAS  PubMed  Google Scholar 

  • Margesin R, Miteva V (2011) Diversity and ecology of psychrophilic microorganisms. Res Microbiol 162:346–361

    Article  PubMed  Google Scholar 

  • Margesin R, Schinner F (eds) (1999) Biotechnological applications of cold-adapted organisms. Springer, Berlin

    Google Scholar 

  • Margesin R, Gander S, Zacke G, Gounot AM, Schinner F (2003) Hydrocarbon degradation and enzyme activities of cold-adapted bacteria and yeasts. Extremophiles 7:451–458

    Article  CAS  PubMed  Google Scholar 

  • Margesin R, Fonteyne PA, Schinner F, Sampaio JP (2007) Rhodotorula psychrophila sp. nov., Rhodotorula psychrophenolica sp. nov. and Rhodotorula glacialis sp. nov., novel psychrophilic basidiomycetous yeast species isolated from alpine environments. Int J Syst Evol Microbiol 57:2179–2184

    Article  CAS  PubMed  Google Scholar 

  • Margesin R, Schinner F, Marx JC, Gerday C (eds) (2008) Psychrophiles. From biodiversity to biotechnology. Springer, Berlin

    Google Scholar 

  • McMurrough I, Rose AH (1973) Effects of temperature variation on the fatty acid composition of a psychrophilic Candida species. J Bacteriol 114:451–452

    CAS  PubMed  Google Scholar 

  • Miller RV, Whyte LG (eds) (2012) Polar microbiology. Life in a deep freeze. ASM Press, Washington, DC

    Google Scholar 

  • Montes MJ, Belloch C, Galiana M, Garcia MD, Andrés C, Ferrer S, Torres-Rodriguez JM, Guinea J (1999) Polyphasic taxonomy of a novel yeast isolated from Antarctic environment: description of C. victoriae sp. nov. Syst Appl Microbiol 22:97–105

    Article  CAS  PubMed  Google Scholar 

  • Morgan-Kiss RM, Priscu JC, Pocock T, Gudynaite-Savitch L, Huner NP (2006) Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiol Mol Biol R 70:222–252

    Article  CAS  Google Scholar 

  • Morita RY (1975) Psychrophilic bacteria. Bacteriol Rev 39:144–167

    CAS  PubMed  Google Scholar 

  • Moyer CL, Morita RY (2007) Psychrophiles and psychrotrophs. Encyclopedia of life sciences. Wiley, New York, pp 1–6

    Google Scholar 

  • Nagahama T (2006) Yeast biodiversity in freshwater, marine and deep-sea environments. In: Rosa CA, Peter G (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 241–262

    Chapter  Google Scholar 

  • Onofri S, Zucconi L, Tosi S (2007) Continental Antarctic fungi. IHW Verlag, Munchen

    Google Scholar 

  • Panikov NS, Sizova MV (2007) Growth kinetics of microorganisms isolated from Alaskan soil and permafrost in solid media frozen down to −5 degrees C. FEMS Microbiol Ecol 59:500–512

    Article  CAS  PubMed  Google Scholar 

  • Pavlova K, Panchev I, Krachanova M, Gocheva M (2009) Production of an exopolysaccharide by Antarctic yeast. Folia Microbiol 54:343–348

    Article  CAS  Google Scholar 

  • Phadtare S, Inouye M (2008) Cold-shock proteins. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, pp 191–209

    Chapter  Google Scholar 

  • Phadtare S, Alsina J, Inouye M (1999) Cold-shock response and cold-shock proteins. Curr Opin Microbiol 2:175–180

    Article  CAS  PubMed  Google Scholar 

  • Poindexter JS (2009) Encyclopedia of microbiology. Elsevier, Amsterdam

    Google Scholar 

  • Price PB, Sowers T (2004) Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. PNAS 101:4631–4636

    Article  CAS  PubMed  Google Scholar 

  • Psenner R, Wille A, Sattler B, Priscu JC, Felip M, Wagenbach D (2002) Ice ecosystems and biodiversity. In: Encyclopedia of life support system. Extremophiles, vol II. UNESCO-EOLSS Publisher

    Google Scholar 

  • Ramli AN, Mahadi NM, Rabu A, Murad AM, Bakar FD, Illias RM (2011) Molecular cloning, expression and biochemical characterisation of a cold-adapted novel recombinant chitinase from G. antarctica PI12. Microb Cell Fact 10:94

    Article  CAS  PubMed  Google Scholar 

  • Raspor P, Zupan J (2006) Yeasts in extreme environments. In: Rosa CA, Peter G (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 371–417

    Chapter  Google Scholar 

  • Robiglio A, Sosa MC, Lutz MC, Lopes CA, Sangorrín MP (2011) Yeast biocontrol of fungal spoilage of pears stored at low temperature. Int J Food Microbiol 147:211–216

    Article  PubMed  Google Scholar 

  • Robinson CH (2001) Cold adaptation in Arctic and Antarctic fungi. New Phytol 151:341–353

    Article  CAS  Google Scholar 

  • Rossi M, Buzzini P, Cordisco L, Amaretti A, Sala M, Raimondi S, Ponzoni C, Pagnoni UM, Matteuzzi D (2009) Growth, lipid accumulation and fatty acid composition in obligate psychrophilic, facultative psychrophilic, and mesophilic yeasts. FEMS Microbiol Ecol 69:363–372

    Article  CAS  PubMed  Google Scholar 

  • Russell NJ (1990) Cold adaptation of microorganisms. Philos Trans R Soc Lond B 326:595–611

    Article  CAS  Google Scholar 

  • Russell NJ (1997) Psychrophilic bacteria. Molecular adaptations of membrane lipids. Comp Biochem Physiol A 118:489–493

    Article  CAS  Google Scholar 

  • Russell NJ (1998) Molecular adaptations in psychrophilic bacteria: potential for biotechnological applications. Adv Biochem Eng Biotechnol 61:1–21

    CAS  PubMed  Google Scholar 

  • Russell NJ (2002) Psychrophily and resistance to low temperature. In: Encyclopedia of life support system. Extremophiles, vol 2. UNESCO-EOLSS Publisher

    Google Scholar 

  • Russo G, Libkind D, Sampaio JP, van Broock M (2008) Yeast diversity at the Volcanic acidic environment of the Lake Caviahue and Rio Agrio (Patagonia, Argentina). FEMS Microbiol Ecol 65:415–424

    Article  CAS  PubMed  Google Scholar 

  • Sabri A, Jacques P, Wekkers F, Bare G, Hiligsmann S, MoussaÏŠf M, Thonart DP (2000) Effect of temperature on growth of psychrophilic and psychrotrophic members of Rhodotorula aurantiaca. Appl Biochem Biotechnol 84–86:391–399

    Article  PubMed  Google Scholar 

  • Schisler DA, Janisiewicz WJ, Boekhout T, Kurtzman CP (2011) Agriculturally important yeasts: biological control of field and postharvest diseases using yeast antagonists, and yeasts as pathogens of plants. In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts. A taxonomy study, vol 1. Elsevier, New York, pp 45–52

    Google Scholar 

  • Shivaji S, Prakash JSS (2010) How do bacteria sense and respond to low temperature? Arch Microbiol 192:85–95

    Article  CAS  PubMed  Google Scholar 

  • Shivaji S, Prasad GS (2009) Antarctic yeasts: biodiversity and potential applications. In: Satyanarayana T, Kunze G (eds) Yeast biotechnology: diversity and applications. Springer, Berlin, pp 3–16

    Chapter  Google Scholar 

  • Shivaji S, Bhadra B, Rao RS, Pradhan S (2008) Rhodotorula himalayensis sp. nov., a novel psychrophilic yeast isolated from Roopkund Lake of the Himalayan mountain ranges. India. Extremophiles 12:375–381

    Article  CAS  Google Scholar 

  • Siddiqui KS, Cavicchioli R (2006) Cold-adapted enzymes. Annu Rev Biochem 75:403–433

    Article  CAS  PubMed  Google Scholar 

  • Staley JT, Gosink JJ (1999) Poles apart: biodiversity and biogeography of sea ice bacteria. Annu Rev Microbiol 53:189–215

    Article  CAS  PubMed  Google Scholar 

  • Starmer WT, Lachance MA (2011) Yeast ecology. In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts. A taxonomy study, vol 1. Elsevier, New York, pp 65–83

    Google Scholar 

  • Stratford M (2006) Food and beverage spoilage yeasts. In: Querol A, Fleet G (eds) Yeasts in food and beverages. Springer, Berlin, pp 335–379

    Chapter  Google Scholar 

  • Turkiewicz M, Pazgier M, Kalinowska H, Bielecki S (2003) A cold-adapted extracellular serine proteinase of the yeast Leucosporidium antarcticum. Extremophiles 7:435–442

    Article  CAS  PubMed  Google Scholar 

  • van Uden N (1984) Temperature profiles of yeasts. Advances Microb Physiol 25:195–251

    Article  Google Scholar 

  • Vincent CF (1988) Microbial ecosystems of Antarctica. Cambridge University Press, Cambridge

    Google Scholar 

  • Vishniac HS (1996) Biodiversity of yeasts and filamentous microfungi in terrestrial Antarctic ecosystems. Biodivers Conserv 5:1365–1378

    Article  Google Scholar 

  • Vishniac HS (1999) Psychrophilic yeasts. In: Seckbach J (ed) Enigmatic microorganisms and life in extreme environments. Kluwer Academic Publishers, Amsterdam, pp 317–324

    Google Scholar 

  • Vishniac HS (2006a) Yeast biodiversity in the Antarctic. In: Rosa CA, Peter G (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 420–440

    Google Scholar 

  • Vishniac HS (2006b) A multivariate analysis of soil yeasts isolated from a latitudinal gradient. Microb Ecol 52:90103

    Article  Google Scholar 

  • Vishniac VW, Mainzer SE (1972) Soil microbiology studied in situ in the dry valleys of Antarctica. Antarct J US 7:88–89

    Google Scholar 

  • Walker GM (1998) Yeast physiology and biotechnology. Wiley, New York

    Google Scholar 

  • Watson K (1978) Thermal adaptation in yeasts: correlation of substrate transport with membrane lipid composition in psychrophilic and thermotolerant yeasts. Biochem Soc T 6:293–296

    CAS  Google Scholar 

  • Watson K, Arthur H (1976) Leucosporidium yeasts: obligate psychrophiles which alter membrane-lipid and cytochrome composition with temperature. J Gen Microbiol 97:11–18

    Article  CAS  PubMed  Google Scholar 

  • Watson K, Morton H, Arthur H, Streamer M (1978) Membrane lipid composition: a determinant of anaerobic growth and petite formation in psychrophilic and psychrophobic yeasts. Biochem Soc T 6:380–381

    CAS  Google Scholar 

  • Wolf K, Breunig K, Barth G (2003) Non conventional yeasts in genetics, biochemistry and biotechnology. Springer, Berlin

    Book  Google Scholar 

  • Wynn-Williams DD (1990) Ecological aspects of Antarctic microbiology. Adv Microbial Ecol 11:71–146

    Article  Google Scholar 

  • Yayanos AA (1995) Microbiology to 10,500 m in the deep sea. Annu Rev Microbiol 49:777–805

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Buzzini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Buzzini, P., Margesin, R. (2014). Cold-Adapted Yeasts: A Lesson from the Cold and a Challenge for the XXI Century. In: Buzzini, P., Margesin, R. (eds) Cold-adapted Yeasts. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39681-6_1

Download citation

Publish with us

Policies and ethics