Skip to main content
Log in

Temperature responses of growth, photosynthesis, fatty acid and nitrate reductase in Antarctic and temperate Stichococcus

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Stichococcus, a genus of green algae, distributes in ice-free areas throughout Antarctica. To understand adaptive strategies of Stichococcus to permanently cold environments, the physiological responses to temperature of two psychrotolerants, S. bacillaris NJ-10 and S. minutus NJ-17, isolated from rock surfaces in Antarctica were compared with that of one temperate S. bacillaris FACHB753. Two Antarctic Stichococcus strains grew at temperature from 4 to 25°C, while the temperate strain could grow above 30°C but could not survive at 4°C. The photosynthetic activity of FACHB753 at lower than 10°C was less than that of Antarctic algae. Nitrate reductase in NJ-10 and NJ-17 had its optimal temperature at 20°C, in comparison, the maximal activity of nitrate reductase in FACHB753 was found at 25°C. When cultured at 4–15°C a large portion of unsaturated fatty acids in the two Antarctic species was detected and the regulation of the degree of unsaturation of fatty acids by temperature was observed only above 15°C, though the content of the major unsaturated fatty acid αC18:3 in FACHB753 decreased with the temperatures elevated from 10 to 25°C. Elevated nitrate reductase activity and photosynthetic rates at low temperatures together with the high proportion of unsaturated fatty acids contribute to the ability of the Antarctic Stichococcus to thrive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Broady PA (1996) Diversity, distribution and dispersal of Antarctic terrestrial algae. Biodivers Conserv 5:1307–1335

    Article  Google Scholar 

  • Coles JF, Jones RC (2000) Effect of temperature on photosynthesis-light response and growth of four phytoplankton species isolated from a tidal freshwater river. J Phycol 36:7–16

    Article  CAS  Google Scholar 

  • Di Martino Rigano V, Vona V, Lobosco O, Carillo P, Lunn JE, Carfagna S, Esposito S, Caiazzo M, Rigano C (2006) Temperature dependence of nitrate reductase in the psychrophilic unicellular alga Koliella antarctica and the mesophilic alga Chlorella sorokiniana. Plant Cell Environ 29:1400–1409

    Article  Google Scholar 

  • Ding Y, Miao JL, Wang QF, Zheng Z, Li GY, Jian JC, Wu ZH (2007) Purification and characterization of a psychrophilic glutathione reductase from Antarctic ice microalgae Chlamydomonas sp. Strain ICE-L. Polar Biol 31:23–30

    Article  Google Scholar 

  • Ettl H, Gärtner G (1995) Syllabus der Boden-, Luft-, und Flechtenalgen. Gustav Fischer Verlag, Stuttgart

    Google Scholar 

  • Feller G, Gerday C (1997) Psychrophilic enzymes: molecular basis of cold adaptation. Cell Mol Life Sci 53:830–841

    Article  PubMed  CAS  Google Scholar 

  • Handa S, Nakahara M, Tsubota H, Deguchi H, Nakano T (2003) A new aerial alga, Stichococcus ampulliformis sp. nov. (Trebouxiophyceae, Chlorophyta) from Japan. Phycol Res 51:203–210

    Article  Google Scholar 

  • Hu H, Li H, Xu X (2008) Alternative cold response modes in Chlorella (Chlorophyta, Trebouxiophyceae) from Antarctica. Phycologia 47:28–34

    Article  CAS  Google Scholar 

  • Hughes KA (2006) Solar UV-B radiation, associated with ozone depletion, inhibits the Antarctic terrestrial microalga, Stichococcus bacillaris. Polar Biol 29:327–336

    Article  Google Scholar 

  • Li H, Liu X, Wang Y, Hu H, Xu X (2009) Enhanced expression of antifreeze protein genes drives the development of freeze tolerance in an Antarctica isolate of Chlorella. Prog Nat Sci 19:1059–1062

    Article  CAS  Google Scholar 

  • Lu Y, Chi X, Yang Q, Li Z, Liu S, Gan Q, Qin S (2009) Molecular cloning and stress-dependent expression of a gene encoding Δ12-fatty acid desaturase in the Antarctic microalga Chlorella vulgaris NJ-7. Extremophiles 13:875–884

    Article  PubMed  CAS  Google Scholar 

  • Massalski A, Mroziiiska T, Olech M (2001) Ultrastructural observations on five pioneer soil algae from ice denuded areas (King George Island, West Antarctica). Polar Biosci 14:61–70

    Google Scholar 

  • McKnight DM, Howes BL, Taylor CD, Goehringer DD (2000) Phytoplankton dynamics in a stably stratified Antarctic lake during winter darkness. J Phycol 36:852–861

    Article  CAS  Google Scholar 

  • Morgan-Kiss RM, Priscu JC, Pocock T, Gudynaite-Savitch L, Huner NPA (2006) Adaptation and acclimation of photosynthetic microorganisms to permanently cold environment. Microbiol Mol Biol Rev 70:222–252

    Article  PubMed  CAS  Google Scholar 

  • Morgan-Kiss RM, Ivanov AG, Modla S, Czymmek K, Hüner NPA, Priscu JC, Lisle JT, Hanson TE (2008) Identity and physiology of a new psychrophilic eukaryotic green alga, Chlorella sp., strain BI, isolated from a transitory pond near Bratina Island, Antarctica. Extremophiles 12:701–711

    Article  PubMed  CAS  Google Scholar 

  • Nagashima H, Matsumoto GI, Ohtani S, Momose H (1995) Temperature acclimation and the fatty acid composition of an Antarctic green alga Chlorella. Proc NIPR Symp Polar Biol 8:194–199

    Google Scholar 

  • Neustupa J, Eliáš M, Šejnohová L (2007) A taxonomic study of two Stichococcus species (Trebouxiophyceae, Chlorophyta) with a starch-enveloped pyrenoid. Nova Hedwigia 84:51–63

    Article  Google Scholar 

  • Olivieri G, Marzocchella A, Andreozzi R, Pinto G, Pollio A (2011) Biodiesel production from Stichococcus strains at laboratory scale. J Chem Technol Biotechnol 86:776–783

    Article  CAS  Google Scholar 

  • Pollio A, Aliotta G, Pinto G, Paternò M, Bevilacqua A (1997) Ecophysiological characters and biochemical composition of Stichococcus bacillaris Naegeli strains from low pH environments. Algol Stud/Arch Hydrobiol 84:129–143

    Google Scholar 

  • Priddle J, Hawes I, Ellis-Evans JC (1986) Antarctic aquatic ecosystems as habitats for phytoplankton. Biol Rev 61:199–238

    Article  Google Scholar 

  • Seaburg KG, Parker BC, Wharton RA, Simmons GM (1981) Temperature–growth responses of algal isolates from Antarctic oases. J Phycol 17:353–360

    Article  Google Scholar 

  • Stanier RY, Kunisawa R, Mandel M, Cohen-Bazire G (1971) Purification and properties of unicellular blue-green algae (Order Chroococcales). Bacteriol Rev 35:171–205

    PubMed  CAS  Google Scholar 

  • Stibal M, Elster J (2005) Growth and morphology variation as a response to changing environmental factors in two Arctic species of Raphidonema (Trebouxiophyceae) from snow and soil. Polar Biol 28:558–567

    Article  Google Scholar 

  • Swofford DL (1998) PAUP* 4.0—phylogenetic analysis using parsimony (*and other methods). Sinauer Associates, Sunderland

    Google Scholar 

  • Teoh ML, Chu WL, Marchant H, Phang SM (2004) Influence of culture temperature on the growth, biochemical composition and fatty acid profiles of six Antarctic microalgae. J Appl Phycol 16:421–430

    Article  CAS  Google Scholar 

  • Thompson PA, Guo M, Harrisonp J, Whyte JNC (1992) Effects of variation in temperature. II. On the fatty acid composition of eight species of marine phytoplankton. J Phycol 28:488–497

    Article  CAS  Google Scholar 

  • Vinocur A, Izaguirre I (1994) Freshwater algae (excluding Cyanophyceae) from nine lakes and pools of Hope Bay, Antarctic Peninsula. Antarct Sci 6:483–489

    Article  Google Scholar 

  • Vona V, Di Martino Rigano V, Lobosco O, Carfagna S, Esposito S, Rigano C (2004) Temperature responses of growth, photosynthesis, respiration and NADH: nitrate reductase in cryophilic and mesophilic algae. New Phytol 163:325–331

    Article  CAS  Google Scholar 

  • Wiencke C, Dieck I (1990) Temperature requirements for growth and survival of macroalgae from Antarctica and southern Chile. Mar Ecol Progr Ser 59:157–170

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Key Basic Research Project of China (2011CB200901) and National Natural Science Foundation of China (No. 40606004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanhua Hu.

Additional information

Communicated by S. Albers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Z., He, C. & Hu, H. Temperature responses of growth, photosynthesis, fatty acid and nitrate reductase in Antarctic and temperate Stichococcus . Extremophiles 16, 127–133 (2012). https://doi.org/10.1007/s00792-011-0412-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-011-0412-1

Keywords

Navigation