Skip to main content
Log in

Production of enzymes and antimicrobial compounds by halophilic Antarctic Nocardioides sp. grown on different carbon sources

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

This study demonstrated the potential of microbial isolates from Antarctic soils to produce hydrolytic enzymes by using specific substrates. The results revealed potential of the strains to produce a broad spectrum of hydrolytic enzymes. Strain A-1 isolated from soil samples in Casey Station, Wilkes Land, was identified as Nocardioides sp. on the basis of morphological, biochemical, physiological observations and also chemotaxonomy analysis. Enzymatic and antimicrobial activities of the cell-free supernatants were explored after growth of strain A-1 in mineral salts medium supplemented with different carbon sources. It was found that the carbon sources favored the production of a broad spectrum of enzymes as well as compounds with antimicrobial activity against Gram-positive and Gram-negative bacteria, especially Staphylococcus aureus and Xanthomonas oryzae. Preliminary analysis showed that the compounds with antimicrobial activity produced by the strain A-1 are mainly glycolipids and/or lipopeptides depending on the used carbon source. The results revealed a great potential of the Antarctic Nocardioides sp. strain A-1 for biotechnological, biopharmaceutical and biocontrol applications as a source of industrially important enzymes and antimicrobial/antifungal compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdel-Mawgoud AM, Lépine F, Déziel E (2010) Rhamnolipids: diversity of structures, microbial origins and roles. Appl Microbiol Biotechnol 86:1323–1336

    Article  CAS  Google Scholar 

  • Ahimou F, Jacques P, Deleu M (2000) Surfactin and iturin A effects on Bacillus subtilis surface hydrophobicity. Enzyme Microb Technol 27:749–754

    Article  CAS  Google Scholar 

  • Arutchevi J, Doble M (2010) Characterization of glycolipid surfactant from Pseudomonas aeruginosa CPCL isolated from petroleum-contaminated soil. Lett Appl Microbiol 51:75–82

    Google Scholar 

  • Bauer AW, Kirby WMM, Sherris JC, Ture KM (1966) Antibiotic susceptibility testing a standardized single disk method. Am J Clin Pathol 45:493–496

    CAS  Google Scholar 

  • Boschker HTS, Cappenberg TE (1998) Patterns of extracellular enzyme activities in litorall sediments of Lake Gooimeer, The Netharlands. FEMS Microbiol Ecol 25:79–86

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analyt Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Broady R, Given D, Greenfield L, Thomson K (1987) The biota and environment of fumaroles on Mt Melbourne, Nortern Victoria Land. Polar Biol 7:97–113

    Article  Google Scholar 

  • Cavicchioli R, Charlton T, Ertan H, Mohd Omar S, Siddiqui KS, Williams TJ (2011) Biotechnological uses of enzymes from psychrophiles. Microb Biotechnol 4:449–460

    Article  CAS  Google Scholar 

  • Collins MD, Cockcroft S, Wallbanks S (1994) Phylogenetic analysis of a new LL-diaminopimelic acid-containing coryneform bacterium from herbage, Nocardioides plantarum sp. nov. Int J Syst Bacteriol 44:523–526

    Article  CAS  Google Scholar 

  • D’Amico S, Collins T, Marx JC, Feller G, Gerday C (2006) Psychrophilic microorganisms: challenges for life. EMBO Rep 7:385–389

    Article  Google Scholar 

  • Franzetti A, Gandolfi I, Bestetti G, Smyth TJP, Banat IM (2010) Production and applications of trehalose lipid biosurfactants. Eur J Lipid Sci Technol 112:617–627

    Article  CAS  Google Scholar 

  • Gerday C, Aittaleb M, Bentahir M, Chessa JP, Claverie P, Collins T, D’Amico S, Dumont J, Garsoux G, Georlette D, Hoyoux A, Lonhienne T, Meuwis MA, Feller G (2000) Cold-adapted enzymes: from fundamentals to biotechnology. Trends Biotechnol 18:103–107

    Article  CAS  Google Scholar 

  • Gesheva V (2005) Microbiota of subantarctic soils from South Georgia Island. Cyprus J Sci 3:75–81

    Google Scholar 

  • Gesheva V (2009a) Distribution of psychrophilic microorganisms in soils of Terra Nova Bay and Edmonson Point, Victoria Land and their biosynthetic capabilities. Polar Biol 32:1287–1291

    Article  Google Scholar 

  • Gesheva V (2009b) Antibiotic biosynthesis by Micromonospora sp. isolated from Dewart Island, Antarctica. Cyprus J Sci 7:47–52

    Google Scholar 

  • Gesheva V (2010) Production of antibiotics and enzymes by soil microorganisms from the windmill islands region, Wilkes Land, East Antarctica. Polar Biol 33:1351–1357

    Article  Google Scholar 

  • Gesheva V, Ivanova V, Gesheva R (2005) Effects of nutrients on production of antifungal AK-111-81 macrolide antibiotic. Microbiol Res 160:243–248

    Article  CAS  Google Scholar 

  • Gesheva V, Stackebrandt E, Vasileva-Tonkova E (2010) Biosurfactant production by Halotolerant Rhodococcus fascians from Casey Station, Wilkes Land, Antarctica. Curr Microbiol 61:112–117

    Article  CAS  Google Scholar 

  • Gianfreda L, Rao MA (2004a) Potential of extra cellular enzymes in remediation of polluted soils: a review. Enzyme Microb Technol 35:339–354

    Article  CAS  Google Scholar 

  • Gianfreda L, Rao MA (2004b) Potential of extra cellular enzymes in remediation of polluted soils: a review. Enzyme Microb Technol 35:339–354

    Article  CAS  Google Scholar 

  • Giudice AL, Bruni V, Michaud L (2007) Characterization of antarctic psychotropic bacteria with antibacterial activities against terrestrial microorganisms. J Basic Microbiol 47:496–505

    Article  Google Scholar 

  • Gounot AM, Russell NJ (1999) Physiology of cold-adapted microorganisms. In: Margesin R, Schinner F (eds) Cold-adapted organisms: ecology, physiology, enzymology, and molecular biology. Springer, Berlin, pp 33–55

    Google Scholar 

  • Greenfield L (1981) Soil microbiology studies. In: Greenfield L, Wilson CW (eds) Univ Canterbury, Antarct Exped No 19. Univ Canterbury, Christchurch, pp 4–22

    Google Scholar 

  • Hamamura N, Arp DJ (2000) Isolation and characterization of alkane-utilizing Nocardioides sp. strain CF8. FEMS Microbiol Lett 186:21–26

    Article  CAS  Google Scholar 

  • Herman DC, Maier RM (2002) Biosynthesis and applications of glycolipid and lipopeptide biosurfactants. In: Harold W, Gardner HW, Kuo TM (eds) Lipid Biotechnology. CRC Press, pp 728

  • Huston AL (2008) Biotechnological aspects of cold-adapted enzymes. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, 4:347–363

  • Kim KM, Lee JY, Kim CK, Ka JS (2009) Isolation and characterization of surfactin produced by Bacillus polyfermenticus KJS-2. Arch Farm Res 32:711–715

    Article  CAS  Google Scholar 

  • Kitamoto D (2001) New findings on glycolipid biosurfactants ranging from biologically active compounds to energy-saving materials. Oleoscience 1:17–31

    Google Scholar 

  • Lawson PA, Collins MD, Schumann P, Tindall BJ, Hirsch P, Labrenz M (2000) New LL-diaminopimelic acid containing Actinomycetes from hypersaline, heliothermal and meromictic Antarctic Ekho Lake: Nocardioides aquaticus sp.nov. and Friedmanniella lacustricus sp. nov. Syst Appl Microbiol 23:219–229

    Article  CAS  Google Scholar 

  • McSweeney CS, Palmer B, Bunch R, Krause DO (2001) Effect of the tropical forage calliandra on microbial protein synthesis and ecology in the rumen. J Appl Microbiol 90:78–88

    Article  CAS  Google Scholar 

  • Mudryk ZJ, Skorczewski P (2006) Enzymatic activity and degradation of organic macromolecules by neustonic and planktonic bacteria in an estuarine lake. Pol J Ecol 54:3–14

    CAS  Google Scholar 

  • Nichols DS, Bowman J, Sanderson K, Nichols CM, Lewis T, McMeekin T, Nichols PD (1999) Developments with Antarctic microorganisms: culture collections, bioactivity screening, taxonomy, PUFA production and cold adapted enzymes. Curr Opin Biotechnol 10:240–246

    Article  CAS  Google Scholar 

  • Prauser H (1976) Nocardioides, a new genus of the order Actinomycetales. Int J Syst Bacteriol 26:58–65

    Article  Google Scholar 

  • Prauser H (1984) Nocardioides luteus sp. nov. Zeit Allgem Mikrobiol 24:647–648

    Article  Google Scholar 

  • Rampelotto PH (2010) Resistance of microorganisms to extreme environmental conditions and its contribution to astrobiology. Sustainability 2:1602–1623

    Article  CAS  Google Scholar 

  • Rothschild LJ, Manchinetti RZ (2001) Life in extreme environments. Nature 409:1092–1104

    Article  CAS  Google Scholar 

  • Russell NJ (1998) Molecular adaptations in psychrophilic bacteria: potential for biotechnological applications. Adv Biochem Eng Biotechnol 61:1–21

    CAS  Google Scholar 

  • Sanchez S, Demain A (2002) Metabolic regulation of fermentation processes. Enz Microb Technol 31:895–906

    Article  CAS  Google Scholar 

  • Sarin S, Khamsri B, Sarin C (2011) Isolation of biosurfactant–producing bacteria with antimicrobial activity against bacterial pathogens. Environ Asia 4:1–5

    Google Scholar 

  • Shah V, Badia D (2007) Sophorolipids having enhanced antibacterial activity. Antimicrob Agents Chemother 51:397–400

    Article  CAS  Google Scholar 

  • Siebert J, Hirsch P, Hoffmann B, Gliesche CG, Peissik K, Jendrach M (1996) Cryptoendolitic microorganisms from Antarctic sandstone of Linnaeus terrace (Asgard range): diversity properties and interactions. Biodivers Conserv 5:1337–1363

    Article  Google Scholar 

  • Solyanikova IP, Travkin VM, Rybkina D, Plotnikova EG, Golovleva LA (2008) Variability of enzyme system of Nocardioform bacteria as a basis of their metabolic activity. J Environ Sci Health Part B 43:241–252

    Article  CAS  Google Scholar 

  • Vasileva-Tonkova E, Gesheva V (2004) Potential for biodegradation of hydrocarbons by microorganisms isolated from Antarctic soils. Z Naturforsch 59c:140–145

    Google Scholar 

  • Vasileva-Tonkova E, Gesheva V (2005) Glycolipids produced by antarctic Nocardioides sp. during growth on n-paraffin. Process Biochem 40:2387–2391

    Article  CAS  Google Scholar 

  • Vasileva-Tonkova E, Gesheva V (2007) Biosurfactant production by antarctic facultative anaerobe Pantoea sp. during growth on hydrocarbons. Curr Microbiol 54:136–141

    Article  CAS  Google Scholar 

  • Vatsa P, Sanchez L, Clement C, Baillieul F, Dorey S (2010) Rhamnolipid biosurfactants as new players in animal and plant defense against microbes. Int J Mol Sci 11:5095–5108

    Article  CAS  Google Scholar 

  • Vitullo D, Di Pietro A, Romano A, Lanzotti V, Lima G (2011) Role of new bacterial surfactins in the antifungal interaction between Bacillus amyloliquefaciens and Fusarium oxysporum. doi:10.1111/j.1365-3059.2011.02561.x

  • Yakimov MM, Timmis KN, Wray V, Fredrickson HL (1995) Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface Bacillus licheniformis BAS50. Appl Environ Microbiol 61:1706–1713

    CAS  Google Scholar 

  • Yoon JH, Rhee SK, Lee JS, Park YH, Lee ST (1997) Nocardioides pyridinolyticus sp. nov., a pyridine-degrading bacterium from the oxic zone of an oil shale column. Int J Syst Bacteriol 47:933–938

    Article  CAS  Google Scholar 

  • Yoon JH, Kim IG, Kang KH, Oh TK, Park JH (2004) Nocardioides aquiterrae sp. nov. isolated from groundwater in Korea. Int J Syst Evol Microbiol 54:71–75

    Article  CAS  Google Scholar 

  • Zecchinon Z, Claverie P, Collins T, D’Amigo S, Delille D, Feller G, Georlette D, Gratia E, Hoyoux A, Meuwis M, Sonan G, Gerday C (2000) Did psychrophilic enzymes really win the chalenge? Extremophiles 5:303–311

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgenia Vasileva-Tonkova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gesheva, V., Vasileva-Tonkova, E. Production of enzymes and antimicrobial compounds by halophilic Antarctic Nocardioides sp. grown on different carbon sources. World J Microbiol Biotechnol 28, 2069–2076 (2012). https://doi.org/10.1007/s11274-012-1009-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-012-1009-2

Keywords

Navigation