Skip to main content

Advertisement

Log in

Biological control of postharvest diseases of fruit

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Postharvest decay in harvested fruit causes considerable economical losses. Fungicides are the primary means to control these losses. Public concern in food safety and environmental issues and the increase of pathogen resistant populations have enhanced the interest in developing alternative methods to fungicides to control postharvest fruit decay. During the last two decades a huge information and advances concerning the selection of antagonists, mode of action, different approaches to enhance biocontrol activity, formulation and production have been achieved, and some biofungicides are already in the market. It is likely that several more products will enter the market in the near future, as the result of the biological control research programs worldwide. Nonetheless, it is necessary to continue finding new potential microorganisms, better understanding the mode of action, and pathogen, antagonist and host interactions, to increase the potential of biocontrol helping to become a real alternative to synthetic postharvest fungicides. This article presents an overview of postharvest biological control approaches and explores new research possibilities to improve biocontrol activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abadias, M., Benabarre, A., Teixidó, N., Usall, J., & Viñas, I. (2001). Effect of freeze drying and protectans on viability of the biocontrol yeast Candida sake. International Journal of Food Microbiology, 65, 173–182.

    PubMed  CAS  Google Scholar 

  • Abadias, M., Teixidó, N., Usall, J., & Viñas, I. (2003). Optimization of growth conditions of the postharvest biocontrol agent Candida sake CPA-1 in a lab-scale fermenter. Journal of Applied Microbiology, 95, 301–309.

    PubMed  CAS  Google Scholar 

  • Abadias, M., Usall, J., Teixidó, N., & Viñas, I. (2003). Liquid formulation of the postharvest biocontrol agent Candida sake CPA-1 in isotonic solutions. Phytopathology, 93, 436–442.

    PubMed  Google Scholar 

  • Abadias, M., Teixidó, N., Usall, J., Solsona, C., & Viñas, I. (2005). Survival of the postharvest biocontrol yeast Candida sake CPA-1 after dehydratation by spray-drying. Biocontrol Science and Technology, 15, 835–846.

    Google Scholar 

  • Adaskaveg, J. E., & Förster, H. (2010). New developments in postharvest fungicide registrations for edible horticultural crops and use strategies in the United States. In D. Prusky & M. L. Gullino (Eds.), Post-harvest pathology Series: Plant pathology in the 21st century, (vol. 2: pp. 107–111). Springer.

  • Alabouvette, C., Olivain, C., & Steinberger, C. (2006). Biological control of plant diseases: the European situation. European Journal of Plant Pathology, 114, 329–341.

    Google Scholar 

  • Andrews, J. H. (1985). Strategies for selecting antagonistic microorganisms for the phylloplane. In C. E. Windels & S. E. Lindow (Eds.), Biological Control of the Phylloplane (pp. 31–44). St Paul: APS Press.

    Google Scholar 

  • Arras, G. (1996). Mode of action of an isolate of Candida famata in biological control of Penicillium digitatum in orange fruit. Postharvest Biology and Technology, 8, 191–198.

    Google Scholar 

  • Arras, G., De Cicco, V., Arru, S., & Lima, G. (1998). Biocontrol by yeasts of blue mould of citrus fruit and the mode of action of an isolate of Pichia guilliermondii. Journal of Horticultural Science & Biotechnology, 73, 413–418.

    Google Scholar 

  • Arras, G., Scherm, B., & Migheli, Q. (2002). Improving biocontrol activity of Pichia guillermondii against post-harvest decay oranges in commercial packing-houses by reduced concentrations of fungicides. Biocontrol Science and Technology, 12, 547–553.

    Google Scholar 

  • Barkai-Goland, R. (2001). Postharvest diseases of fruit and vegetables. Development and control. Amsterdam: Elsevier.

    Google Scholar 

  • Bencheqroun, S. K., Bajji, M., Massart, S., Labhilili, M., Jaafari, S., & Jijakli, H. (2007). In vitro and in situ study of postharvest apple blue mold biocontrol by Aureobasidium pullulans: evidence for the involvement of competition for nutrients. Postharvest Biology and Technology, 46, 128–135.

    CAS  Google Scholar 

  • Berny, J. F., & Hennebert, G. L. (1991). Viability and stability of yeast cells and filamentous fungus spores during freeze-drying: effects of protectants and cooling rates. Mycologia, 83, 805–815.

    CAS  Google Scholar 

  • Brent, K. J., & Hollomon, D. W. (2007). Fungicide resistance in crop pathogens: how can it be managed? FRAC Monograph No. 1 (second, revised edition). Brussels: Published by Global Crop Protection Federation; 2007, 56pp.

  • Bull, C. T., Wadsworth, M. L., Sorensen, K. N., Takemoto, J. Y., Austin, R. K., & Smilanick, J. (1998). Syringomycin E produced by biological control agents controls green mold on lemons. Biological Control, 12, 89–95.

    Google Scholar 

  • Calvente, V., Benuzzi, D., & de Tosetti, M. (1999). Antagonistic action of siderophores from Rhodotorula glutinis upon the postharvest pathogen Penicillium expansum. International Biodeterioration & Biodegradation, 43, 167–172.

    CAS  Google Scholar 

  • Calvo, J., Calvente, V., De Orellano, M., Benuzzi, D., & De Tosetti, M. (2003). Improvement in the biocontrol of postharvest diseases of apples with the use of yeast mixtures. BioControl, 48, 579–593.

    Google Scholar 

  • Calvo, J., Calvente, V., De Orellano, M., Benuzzi, D., & Sanz, M. (2011). Control of Penicillium expansum and Botrytis cinerea on apple fruit by mixtures of bacteria and yeast. Food and Bioprocess Technology, 3, 644–650.

    Google Scholar 

  • Cañamas, T. P., Viñas, I., Usall, J., Casals, C., Solsona, C., & Teixidó, N. (2008). Control of postharvest disease on citrus fruit by preharvest application of the biocontrol agent Pantoea agglomerans CPA-2. Part I. Study of different formulation strategies to improve survival of cells in unfavourable environmental conditions. Postharvest Biology and Technology, 49, 86–95.

    Google Scholar 

  • Cañamas, T. P., Viñas, I., Usall, J., Anguera, M., & Teixidó, N. (2008). Control of postharvest disease on citrus fruit by preharvest application of biocontrol agent Pantoea agglomerans CPA-2. Part II. Effectiveness of different cell formulations. Postharvest Biology and Technology, 49, 96–106.

    Google Scholar 

  • Castoria, R., De Curtis, F., Lima, G., & De Cicco, V. (1997). β-1,3-glucanase activity of two saprophytic yeast and possible mode of action as biocontrol agent against postharvest diseases. Postharvest Biology and Technology, 12, 293–300.

    CAS  Google Scholar 

  • Chalutz, E., & Droby, S. (1997). Biological control of postharvest diseases. In G. J. Boland & L. D. Kuykendall (Eds.), Plant–microbe interactions and biological control (pp. 157–170). New York: Dekker.

    Google Scholar 

  • Chalutz, E., Ben-Arie, R., Droby, S., Cohen, L., Weiss, B., & Wilson, C. L. (1988). Yeasts as biocontrol agents of postharvest diseases of fruit. Phytoparasitica, 16, 69–75.

    Google Scholar 

  • Chan, Z., & Tian, S. (2005). Interaction of antagonistic yeasts against postharvest pathogens of apple fruit and possible mode of action. Postharvest Biology and Technology, 36, 215–223.

    CAS  Google Scholar 

  • Cho, S. J., Lee, S. K., Cha, B. J., Kim, Y. H., & Shin, K. S. (2003). Detection and characterization of the Gloeosporium gloeosporioides growth inhibitory compound iturin A from Bacillus subtilis strain KS03. Federation of European Microbiological Societies, 223, 47–51.

    CAS  Google Scholar 

  • Churchill, B. W. (1982). Mass production of microorganisms for biological control. In R. Charudattan & H. L. Walker (Eds.), Biological control of weeds with plant pathogens (pp. 139–156). New York: Wiley.

    Google Scholar 

  • Conway, W. S., Janisiewicz, W. J., Leverentz, B., Saftner, R. A., & Camp, M. J. (2007). Control of blue mold of apple by combining controlled atmosphere, an antagonist mixture, and sodium bicarbonate. Postharvest Biology and Technology, 45, 326–332.

    CAS  Google Scholar 

  • Costa, E., Usall, J., Teixidó, N., Garcia, N., & Viñas, I. (2000). Effect of protective agents, rehydratation media and initial cell concentration on viability of Pantoea agglomerans strain CPA-2 subjected to freeze-drying. Journal of Applied Microbiology, 89, 793–800.

    PubMed  CAS  Google Scholar 

  • Costa, E., Teixidó, N., Usall, J., Atarés, E., & Viñas, I. (2001). Production of the biocontrol agent Pantoea agglomerans strain CPA-2 using commercial products by-products. Applied Microbiology and Biotechnology, 56, 367–371.

    PubMed  CAS  Google Scholar 

  • Costa, E., Teixidó, N., Usall, J., Fons, E., Gimeno, V., Delgado, J., et al. (2002). Survival of Pantoea agglomerans strain CPA-2 in a spray-drying process. Journal of Food Protection, 65, 185–191.

    PubMed  CAS  Google Scholar 

  • Crowe, J. H., Carpenter, J. F., Crowe, L. M., & Anchordoguy, T. J. (1990). Are freezing and dehydration similar stress vector? A comparison of modes of interaction of stabilizing solutes with biomolecules. Cryobiology, 27, 219–231.

    CAS  Google Scholar 

  • De Cal, A., Larena, I. & Melgarejo, P. (2001). (Inventors), Spain, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (assignee). Procedimiento para la producción de conidias de un hongo filamentoso en fermentación sólida. Patent number 2001100758.

  • De Cal, A., Larena, I., Guijarro, B., & Melgarejo, P. (2002). Solid state fermentation to produce conidia of Penicillium frequentans, a biocontrol agent against brown rot on stone fruits. Biocontrol Science and Technology, 12, 715–725.

    Google Scholar 

  • Droby, S., & Chalutz, E. (1994). Mode of action of biocontrol agents of postharvest diseases. In C. L. Wilson & M. E. Wisniewski (Eds.), Biological control of postharvest diseases: theory and practice, pp. 63–76. CRC Press, Inc.

  • Droby, S., Chalutz, E., Wilson, C. L., & Wisniewski, M. E. (1992). Biological control of postharvest diseases: a promising alternative to the use of synthetic fungicides. Phytoparasitica, 20, 149–153.

    Google Scholar 

  • Droby, S., Wisniewski, M., Cohen, L., Weiss, B., Eilam, Y., & Chalutz, E. (1997). Influence of CaCl2 on Penicillium digitatum, grapefruit peel tissue, and biocontrol activity of Pichia guillermondii. Phytopathology, 87, 310–315.

    PubMed  CAS  Google Scholar 

  • Droby, S., Cohen, L., Daus, A., Weiss, B., Horev, B., Chalutz, E., et al. (1998). Commercial testing of Aspire: a yeast preparation for the biological control of postharvest decay of citrus. Biological Control, 12, 97–101.

    Google Scholar 

  • Droby, S., Vinokur, V., Weiss, B., Cohen, L., Daus, A., Goldschmidt, E. E., et al. (2002). Induction of resistance to Penicillium digitatum in grapefruit by the yeast biocontrol agent Candida oleophila. Phytopathology, 92, 393–399.

    PubMed  CAS  Google Scholar 

  • Droby, S., Wisniewski, M., Macarisin, D., & Wilson, C. (2009). Twenty years of postharvest biocontrol research: is it time for new paradigm? Postharvest Biology and Technology, 52, 137–145.

    Google Scholar 

  • Eckert, J. W. (1990). Recent development in the chemical control of postharvest diseases. Acta Horticulturae, 269, 477–494.

    Google Scholar 

  • El-Ghaouth, A., Smilanick, J., Wisniewski, M., & Wilson, C. (2000). Improved control of apple and citrus fruit decay with a combination of Candida saitoana and 2-deoxy-D-glucose. Plant Disease, 84, 249–253.

    CAS  Google Scholar 

  • Fan, Q., Tian, S. P., Li, Y.-Y., Xu, Y., & Wang, Y. (2000). Biological control of postharvest brown rot in peach and nectarine fruit by Bacillus subtilis (B-912). Acta Botanica Sinica, 42, 1137–1143.

    Google Scholar 

  • Filonow, A. B., Vishniac, H. S., Anderson, J. A., & Janisiewicz, W. (1996). Biological control of Botrytis cinerea in apple by yeasts from various habitats and their putative mechanisms of antagonism. Biological Control, 7, 212–220.

    Google Scholar 

  • Fravel, D. R., Rhodes, D. J., & Larkin, R. P. (1999). Production and commercialization of biocontrol products. In R. Albajes, M. L. Gullino, J. C. van Lenteren, & Y. Elad (Eds.), Integrated pest and disease management in greenhouse crops (pp. 365–376). Dordrecht: Kluwer.

    Google Scholar 

  • Gamagae, S. U., Sivakumar, D., & Wijesundera, R. L. (2004). Evaluation of post-harvest application of sodium bicarbonate-incorporated wax formulation and Candida oleophila for the control of anthracnose of papaya. Crop Protection, 23, 575–579.

    CAS  Google Scholar 

  • Guetsky, R., Shtienberg, D., Elad, Y., & Dinoor, A. (2001). Combining biocontrol agents to reduce the variability of biological control. Phytopathology, 91, 621–627.

    PubMed  CAS  Google Scholar 

  • Guijarro, B., Melgarejo, P., Torres, R., Lamarca, N., Usall, J., & De Cal, A. (2007). Effects of biological formulations of Penicillium frequentans on brown rot of peaches. Biological Control, 42, 86–96.

    Google Scholar 

  • Gutter, Y., & Littauer, P. (1953). Antagonistis action of Bacillus subtilis against citrus fruit pathogens. Bulletin of the Research Council of Israel, 3, 192–196.

    Google Scholar 

  • Hofstein, R., & Chapple, A. (1998). Commercial development of biofungicides. In F. R. Hall & J. J. Menn (Eds.), Biopesticides: Use and delivery (pp. 77–102). Totowa: Humana Press.

    Google Scholar 

  • Huang, Y., Deverall, B. J., & Morris, S. C. (1995). Postharvest control of green mould on oranges by a strain of Pseudomonas glathei and enhancement of its biocontrol by heat treatment. Postharvest Biology and Technology, 5, 129–137.

    Google Scholar 

  • Ippolito, A., & Nigro, F. (2000). Impact of preharvest application of biological control agents on postharvest diseases of fresh fruit and vegetables. Crop Protection, 19, 715–723.

    Google Scholar 

  • Ippolito, A., Schena, L., Pentimone, I., & Nigro, F. (2005). Control of postharvest rots of sweet cherries by pre- and postharvest applications of Aureobasidium pullulans in combination with calcium chloride or sodium bicarbonate. Postharvest Biology and Technology, 36, 245–252.

    CAS  Google Scholar 

  • Jamalizadeh, M., Etebarian, H., Aminian, H., & Alizadeh, A. (2011). A review of mechanisms of action of biological control organisms against post-harvest fruit spoilage. Bulletin OEPP/EPPO, 41, 65–71.

    Google Scholar 

  • Janisiewicz, W. (1987). Postharvest biological control of blue mold on apples. Phytopathology, 77, 481–485.

    Google Scholar 

  • Janisiewicz, W. (1988). Biocontrol of postharvest diseases of apples with antagonist mixtures. Phytopathology, 78, 194–198.

    Google Scholar 

  • Janisiewicz, W. (1997). Biocontrol of postharvest diseases of temperate fruit. In G. J. Boland & L. D. Kuykendall (Eds.), Plant–microbe interactions and biological control (pp. 171–198). New York: Marcel Dekker.

    Google Scholar 

  • Janisiewicz, W., & Bors, B. (1995). Development of a microbial community of bacterial and yeast antagonists to control wound-invading postharvest pathogens of fruit. Applied and Environmental Microbiology, 61, 3261–3267.

    PubMed  CAS  Google Scholar 

  • Janisiewicz, W., & Korsten, L. (2002). Biological control of postharvest diseases of fruit. Annual Review Phytopathology, 40, 411–441.

    CAS  Google Scholar 

  • Janisiewicz, W., Conway, W., Glenn, D., & Sams, C. (1998). Integrating biological control and calcium treatment for controlling postharvest decay of apples. HortScience, 33, 105–109.

    CAS  Google Scholar 

  • Janisiewicz, W., Pereira, I. B., Almeida, M. S., Roberts, D. P., Wisniewski, M., & Kurtenbach, E. (2008). Improved biocontrol of fruit decay fungi with Pichia pastoris recombinant strains expressing Psd1 antifungal peptide. Postharvest Biology and Technology, 47, 218–225.

    CAS  Google Scholar 

  • Jijakli, H., & Lepoivre, L. (1998). Characterization of an exo-beta-1,3-glucanase produced by Pichia anomala strain K, antagonist of Botrytis cinerea on apples. Phytopathology, 88, 335–343.

    PubMed  CAS  Google Scholar 

  • Jijakli, H., Lepoivre, L., & Grevsse, C. (1999). Yeast species for biocontrol of apple postharvest diseases: an encouraging case of study for practical use. In K. G. Mukerji, B. P. Chamola, & R. K. Upadhyay (Eds.), Biotechnological approach in biocontrol of plant pathogens (pp. 31–49). New York: Kluwer/Plenum.

    Google Scholar 

  • Jones, R. W., & Prusky, D. (2002). Expression of an antifungal peptide in Saccharomyces: a new approach for biological control of the postharvest disease caused by Colletotrichum coccodes. Phytopathology, 92, 33–37.

    PubMed  CAS  Google Scholar 

  • Karabulut, O., Lurie, S., & Droby, S. (2001). Evaluation of the use of sodium bicarbonate, potassium sorbate and yeast antagonists for decreasing postharvest decay of sweet cherries. Postharvest Biology and Technology, 23, 233–236.

    CAS  Google Scholar 

  • Kloepper, J. W., Tuzun, S., & Kuc, J. A. (1992). Proposed definition related to induced disease resistance. Biocontrol Science Technology, 2, 349–351.

    Google Scholar 

  • Korsten, L., Havenga, W., Zeeman, K., & Regnier, T. (2007). Mode of action of Bacillus subtilis as a biocontrol agent of fruit diseases. Bulletin OILB, 30, 107–111.

    Google Scholar 

  • Larena, I., De Cal, A., Linán, M., & Melgarejo, P. (2003). Drying of Epicoccum nigrum conidia for obtaining a shelf-stable biological product against brown rot disease. Journal of Applied Microbiology, 94, 508–514.

    PubMed  CAS  Google Scholar 

  • Larena, I., De Cal, A., & Melgarejo, P. (2004). Solid substrate production of Epicoccum nigrum conidia for biological control of brown rot on stone fruits. International Journal of Food Microbiology, 94, 161–167.

    PubMed  CAS  Google Scholar 

  • Larena, I., Torres, R., De Cal, A., Liñán, M., Melgarejo, P., Domenichini, P., et al. (2005). Biological control of postharvest brown rot (Monilinia spp.) of peaches by field applications of Epicoccum nigrum. Biological Control, 32, 305–310.

    Google Scholar 

  • Lewis, J. A., & Papavizas, G. C. (1991). Biocontrol of plant diseases: the approach for tomorrow. Crop Protection, 10, 95–102.

    Google Scholar 

  • Li, B., & Tian, S. (2006). Effects of trehalose on stress tolerance and biocontrol efficacy of Cryptococcus laurentii. Journal of Applied Microbiology, 100, 854–861.

    PubMed  CAS  Google Scholar 

  • Macarisin, D., Droby, S., Bauchan, G., & Wisniewski, M. (2010). Superoxide anion and hydrogen peroxide in the yeast antagonist-fruit interaction: a new role for reactive oxygen species in postharvest biocontrol? Postharvest Biology and Technology, 58, 194–202.

    CAS  Google Scholar 

  • Manso, T., & Nunes, C. (2011). Metschnikowia andauensis as a new biocontrol agent of fruit postharvest diseases. Postharvest Biology and Technology, 61, 64–71.

    Google Scholar 

  • Manso, T., Nunes, C., Raposo, S., & Costa, M. E. (2010a). Production of the biocontrol agent Pantoea agglomerans PBC-1 in a stirred tank reactor by batch and fed-batch cultures. World Journal of Microbiology and Biotechnology, 26, 725–735.

    CAS  Google Scholar 

  • Manso, T., Nunes, C., Raposo, S., & Costa, M. E. (2010b). Carob pulp as raw material to produce the biocontrol agent P agglomerans PBC-1. Journal of Industrial Microbiology & Biotechnology, 11, 1145–1155.

    Google Scholar 

  • Massart, S., De Clercq, D., Salmon, M., Dickburt, C., & Jijakli, M. H. (2005). Development of real-time PCR using Minor Groove Binding probe monitor the biological control agent Candida oleophila (strain O). Journal of Microbiology Methods, 60, 73–82.

    CAS  Google Scholar 

  • Massart, S., & Jijakli, H. (2007). Use of molecular techniques to elucidate the mechanisms of action of fungal biocontrol agents: a review. Journal of Microbiology Methods, 69, 229–234.

    CAS  Google Scholar 

  • Mercier, J., & Jiménez, J. I. (2004). Control of fungal decay of apples and peaches by the biofumigant fungus Muscor albus. Postharvest Biology and Technology, 31, 1–8.

    Google Scholar 

  • Meziane, H., Gavriel, S., Ismailov, Z., Chet, I., Chernin, L., & Hofte, M. (2006). Control of green mould on orange fruit by Serratia plymuthica strains IC14 and IC1270 and putative modes of action. Postharvest Biology and Technology, 39, 125–133.

    CAS  Google Scholar 

  • Mounir, R., Durieux, A., Bodo, E., Allard, C., Simon, J.-P., Achbani, E.-H., et al. (2007). Production, formulation and antagonistic activity of the biocontrol like-yeast Aureobasidium pullulans against Penicillium expansum. Biotechnology Letters, 29, 553–559.

    PubMed  CAS  Google Scholar 

  • Nunes, C. (2010). New developments in safety methods to control postharvest fruit decays. In C. Nunes (Ed.), Environmentally friendly and safe technologies for quality of fruits and vegetables (pp. 133–145). ISBN: 978-989-8472-01-4. Faro: Universidade do Algarve.

  • Nunes, C., Usall, J., Teixidó, N., & Viñas, I. (2001). Biological control of postharvest pear diseases using a bacterium, Pantoea agglomerans CPA-2. International Journal of Food Microbiology, 70, 53–61.

    PubMed  CAS  Google Scholar 

  • Nunes, C., Usall, J., Teixidó, N., Miró, M., & Viñas, I. (2001). Nutritional enhancement of biocontrol activity of Candida sake (CPA-1) against Penicillium expansum on apples and pears. European Journal of Plant Pathology, 107, 543–551.

    CAS  Google Scholar 

  • Nunes, C., Usall, J., Teixidó, N., Fons, E., & Viñas, I. (2002). Post-harvest biological control by Pantoea agglomerans (CPA-2) on Golden Delicious apples. Journal of Applied Microbiology, 92, 247–255.

    PubMed  CAS  Google Scholar 

  • Nunes, C., Usall, J., Teixidó, N., Torres, R., & Viñas, I. (2002). Control of Penicillium expansum and Botrytis cinerea on apples and pears with the combination of Candida sake (CPA-1) and Pantoea agglomerans (CPA-2). Journal of Food Protection, 65, 178–184.

    PubMed  Google Scholar 

  • Nunes, C., Usall, J., Teixidó, N., & Viñas, I. (2002). Improvement of Candida sake biocontrol activity against postharvest decay by the addition of ammonium molybdate. Journal of Applied Microbiology, 92, 927–935.

    PubMed  CAS  Google Scholar 

  • Nunes, C., Usall, J., Manso, T., Teixidó, N., & Viñas, I. (2005). Biocontrol of postharvest blue mould on pear and apple fruit with the combination of Candida sake (CPA-1) and Pseudomonas syringae (CPA-5). Acta Horticulturae, 682, 2101–2108.

    Google Scholar 

  • Nunes, C., Usall, J., Teixidó, N., Abadias, I., Asensio, A., & Viñas, I. (2007). Biocontrol of postharvest decay using a new strain of Pseudomonas syringae CPA-5 in different cultivars of pome fruit. Agricultural and Food Science, 16, 56–65.

    Google Scholar 

  • Nunes, C., Bajji, M., Stepien, V., Manso, T., Torres, R., Usall, J., et al. (2008). Development and application of a SCAR marker to monitor and quantify populations of the postharvest biocontrol agent Pantoea agglomerans CPA-2. Postharvest Biology and Technology, 47, 422–428.

    CAS  Google Scholar 

  • Nunes, C., Manso, T., & Lima-Costa, E. (2009). Postharvest biological control of citrus fruit. Tree and Forestry Science and Biotechnology, 3, 116–126.

    Google Scholar 

  • Obagwu, J., & Korsten, L. (2003). Integrated control of citrus green and blue molds using Bacillus subtilis in combination with sodium bicarbonate or hot water. Postharvest Biology and Technology, 28, 187–194.

    Google Scholar 

  • Palou, L. (2009). Control of citrus postharvest diseases by physical means. Tree and Forestry Science and Biotechnology, 3, 127–142.

    Google Scholar 

  • Pascual, S., Magan, N., & Melgarejo, P. (1996). Improved biocontrol of peach twig blight by physiological manipulation of Epicoccum nigrum. Proceedings of British Crop Protection Conference, Pests Disease, 4D, 411–412.

  • Patiño-Vera, M., Jiménez, B., Balderas, K., Ortiz, M., Allende, R., Carrillo, A., et al. (2005). Pilot-scale production and liquid formulation of Rhodotorula minuta, a potential biocontrol agent of mango anthracnose. Journal of Applied Microbiology, 99, 540–550.

    PubMed  Google Scholar 

  • Peighami-Ashnaei, S., Sharifi-Tehrani, A., Ahmadzadeh, M., & Behboudi, K. (2009). Interaction of different media on production and biocontrol efficacy of Pseudomonas fluorescens P-35 and Bacillus subtilis B-3 against grey mould apple. Journal of Plant Pathology, 91, 65–70.

    Google Scholar 

  • Pertot, I., & Gessler, C. (2007). Is it possible to improve biocontrol efficacy in some plant/pathogen systems? IOBC/WPRS Bulletin, 30, 3–9.

    Google Scholar 

  • Peypoux, F., Guimand, M., Michel, G., Delcambe, L., Das, B. C., & Lederec, E. (1978). Structure of iturin A, a peptidolipid antibiotic from Bacillus subtilis. Biochemistry, 17, 3992–3996.

    PubMed  CAS  Google Scholar 

  • Peypoux, F., Bonmatin, J. M., & Wallach, J. (1999). Recent trends in the biochemistry of surfactin. Applied Microbiology and Biotechnology, 51, 553–563.

    PubMed  CAS  Google Scholar 

  • Plaza, P., Usall, J., Smilanick, J. L., Lamarca, N., & Viñas, I. (2004). Combining Pantoea agglomerans (CPA-2) and curing treatments to control established infections of Penicillium digitatum on lemons. Journal of Food Protection, 67, 781–786.

    PubMed  Google Scholar 

  • Poppe, L., Vanhoutte, S., & Hofte, M. (2003). Modes of action of Pantoea agglomerans CPA-2, an antagonist of postharvest pathogens on fruits. European Journal of Plant Pathology, 109, 963–973.

    CAS  Google Scholar 

  • Saravanakumar, D., Clavorella, A., Spadaro, D., Garibaldi, A., & Gullino, M. L. (2008). Metschnikowia pulcherrima strain MACH1 outcompetes Botrytis cinerea, Alternaria alternata and Penicillium expansum in apples through iron depletion. Postharvest Biology and Technology, 49, 121–128.

    CAS  Google Scholar 

  • Schena, L., Ippolito, A., Zahavi, T., Cohen, L., & Droby, S. (2000). Molecular approaches to assist the screening and monitoring of postharvest biocontrol yeasts. European Journal of Plant Pathology, 106, 681–691.

    CAS  Google Scholar 

  • Schena, L., Sialer, M., & Gallitelli, D. (2002). Molecular detection of strain L47 of Aureobasidium pullulans, a biocontrol agent of postharvest diseases. Plant Disease, 86, 54–60.

    CAS  Google Scholar 

  • Schisler, D. A., Slininger, P. J., Behle, R. W., & Jackson, M. A. (2004). Formulation of Bacillus spp. for biological control of plant diseases. Phytopathology, 94, 1267–1271.

    PubMed  CAS  Google Scholar 

  • Sholberg, P. L., Marchi, A., & Bechard, J. (1995). Biocontrol of postharvest diseases of apple using Bacillus spp. isolated from stored apples. Canadian Microbiology, 41, 247–252.

    CAS  Google Scholar 

  • Shweleft, R. L. (1986). Postharvest treatment for extending the shelf-life of fruit and vegetables. Food Technology, 40, 70–80.

    Google Scholar 

  • Smilanick, J., & Denis-Arrue, R. (1992). Control of green mold of lemons with Pseudomonas species. Plant Disease, 76, 481–485.

    Google Scholar 

  • Spadaro, D., & Gullino, M. L. (2004). State of the art and future prospects of the biological control of postharvest fruit diseases. International Journal of Food Microbiology, 91, 185–194.

    PubMed  Google Scholar 

  • Stanbury, P. F., Whitaker, A., & Hall, S. J. (1995). Media for industrial fermentations. In P. F. Stanbury, A. Whitaker, & S. J. Hall (Eds.), Principles of fermentation technology (2nd ed., pp. 93–121). Oxford: Perjamon Press.

    Google Scholar 

  • Stein, T. (2005). Bacillus subtilis antibiotics: structures, syntheses and specific functions. Molecular Microbiology, 56, 845–857.

    PubMed  CAS  Google Scholar 

  • Stockwell, V. O., & Stack, J. P. (2007). Using Pseudomonas spp. for integrated biological control. Phytopathology, 97, 244–249.

    PubMed  Google Scholar 

  • Strobel, G., Dirkse, E., Sears, J., & Markworth, C. (2001). Volatile antimicrobials from Muscodor albus, a novel endophytic fungus. Microbiology, 147, 2943–2950.

    PubMed  CAS  Google Scholar 

  • Teixidó, N., Usall, J., Palou, L., Asensio, A., Nunes, C., & Viñas, I. (2001). Improving control of green and blue molds of oranges by combining Pantoea agglomerans (CPA-2) and sodium bicarbonate. European Journal of Plant Pathology, 107, 685–694.

    Google Scholar 

  • Teixidó, N., Cañamás, T. P., Usall, J., Torres, R., Magan, N., & Viñas, I. (2005). Accumulation of the compatible solutes, glycine-betaine and ectoine, in osmotic stress adaptation and heat shock cross-protection in the biocontrol agent Pantoea agglomerans CPA-2. Letters in Applied Microbiology, 41, 248–252.

    PubMed  Google Scholar 

  • Teixidó, N., Cañamás, T. P., Abadias, M., Usall, J., Solsona, C., Casals, C., et al. (2006). Improving low water activity and desiccation tolerance of the biocontrol agent Pantoea agglomerans CPA-2 by osmotic treatments. Journal of Applied Microbiology, 101, 927–937.

    PubMed  Google Scholar 

  • Teixidó, N., Cañamás, T. P., Torres, R., Usall, J., & Viñas, I. (2010a). Is it possible to improve biocontrol agents to practical applications? The Pantoea agglomerans CPA-2 example. In C. Nunes (Ed.), Environmentally friendly and safe technologies for quality of fruits and vegetables (pp. 153–161). ISBN: 978-989-8472-01-4. Faro: Universidade do Algarve

  • Teixidó, N., Usall, J., Nunes, C., Torres, R., Abadias, M., & Viñas, I. (2010b). Pre-harvest strategies to control post-harvest diseases in pome fruits. In D. Prusky & M. L. Gullino (Eds.), Post-harvest pathology Series: Plant Pathology in the 21st Century, (Vol. 2: pp. 89–106). Springer.

  • Torres, R., Nunes, C., García, J. M., Abadias, M., Viñas, I., Manso, T., et al. (2007). Application of Pantoea agglomerans CPA-2 in combination with heated sodium bicarbonate solutions to control the major postharvest diseases affecting citrus fruit at several Mediterranean locations. European Journal of Plant Pathology, 118, 73–83.

    CAS  Google Scholar 

  • Torres, R., Teixidó, N., Usall, J., Abadias, M., Mir, N., Larrigaudiere, C., et al. (2011). Anti-oxidant activity of oranges after infection with the pathogen Penicillium digitatum or treatment with the biocontrol agent Pantoea agglomerans CPA-2. Biological control, 57, 103–109.

    CAS  Google Scholar 

  • Usall, J., Smilanick, J. L., Palou, L., Denis-Arrue, N., Teixidó, N., Torres, R., et al. (2008). Preventive and curative activity of combined treatments of sodium carbonates and Pantoea agglomerans CPA-2 to control postharvest green mold of citrus fruit. Postharvest Biology and Technology, 50, 1–7.

    CAS  Google Scholar 

  • van Loon, L. C. (1997). Induced resistance in plants and the role of pathogenesis-related proteins. European Journal of Plant Pathology, 103, 753–765.

    Google Scholar 

  • Verma, M., Brar, S. K., Tyagi, R. D., Surampalli, R. Y., & Valero, J. R. (2007). Industrial wastewaters and dewatered sludge: rich nutrient source for production and formulation of biocontrol agent, Trichoderma viride. World Journal of Microbiology & Biotechnology, 23, 1695–1703.

    CAS  Google Scholar 

  • Viñas, I., Usall, J., Teixidó, N., & Sanchis, V. (1998). Biological control of major postharvest pathogens on apple with Candida sake. International Journal of Food Microbiology, 40, 9–16.

    PubMed  Google Scholar 

  • Wilson, C. L., & Wisniewski, M. (1989). Biological control of postharvest diseases of fruits and vegetables: an emerging technology. Annual Review of Phytopathology, 27, 425–441.

    Google Scholar 

  • Wilson, C. L., Wisniewski, M., Droby, S., & Chalutz, E. (1993). A selection strategy for microbial antagonist to control postharvest diseases of fruits and vegetables. Scientia Horticulturae, 53, 183–189.

    Google Scholar 

  • Wisniewski, M., & Wilson, C. L. (1992). Biological control of postharvest diseases of fruit and vegetables: recent advances. HortScience, 27, 94–98.

    Google Scholar 

  • Wisniewski, M., Biles, C., Droby, S., McLaughlin, R., Wilson, C. L., & Chalutz, E. (1991). Mode of action of the postharvest biocontrol yeast. Pichia guilliermondii. I. Characterization of the attachment to Botrytis cinerea. Physiological and Molecular Plant Pathology, 39, 245–258.

    CAS  Google Scholar 

  • Wisniewski, M. E., Bassett, C. L., Artlip, T. S., Janisiewicz, W. J., Norelli, J. L., & Droby, S. (2005). Overexpression of a peach defensin gene can enhance the activity of post harvest biocontrol agents. Acta Horticulturae, 682, 1999–2006.

    CAS  Google Scholar 

  • Wisniewski, M., Wilson, C. L., Droby, S., Chalutz, E., El-Ghaouth, A., & Stevens, C. (2007). Postharvest Biocontrol: new concepts and applications. In C. Vincent, M. S. Goettel, & G. Lazarovits (Eds.), Biological control: A global perspective (pp. 262–273). Oxfordshire: CAB International.

    Google Scholar 

  • Yánez-Mendizábal, V., Usall, J., Viñas, I., Casals, C., Marín, S., Solsona, C., et al. (2011). Potential of a new strain of Bacillus subtilis CPA-8 to control the major postharvest diseases of fruit. Biocontrol Science and Technology, 21, 409–426.

    Google Scholar 

  • Zhang, Z., Jin, B., & Kelly, J. M. (2007). Production of lactic and byproducts from waste potato starch by Rhizopus arrhizus: role of nitrogen sources. World Journal of Microbiology & Biotechnology, 23, 229–236.

    CAS  Google Scholar 

  • Zhang, D., Spadaro, D., Garibaldi, A., & Gullino, M. L. (2011). Potential biocontrol activity of a strain of Pichia guilliermondii against grey mold of apples and its possible modes of action. Biological control, 57, 193–201.

    Google Scholar 

Download references

Acknowledgements

The author thanks to the Postharvest Pathology Group of IRTA, especially to Inmaculada Viñas and Josep Usall for their introduction, guidance and collaboration in postharvest biological control research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Alexandra Nunes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nunes, C.A. Biological control of postharvest diseases of fruit. Eur J Plant Pathol 133, 181–196 (2012). https://doi.org/10.1007/s10658-011-9919-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-011-9919-7

Keywords

Navigation