Skip to main content

Consequences of Salinity Stress on the Quality of Crops and Its Mitigation Strategies for Sustainable Crop Production: An Outlook of Arid and Semi-arid Regions

  • Chapter
  • First Online:
Environment, Climate, Plant and Vegetation Growth

Abstract

One of the key tasks of the Sustainable Development Goals connected to Agriculture, Safety and nutritional quality of food is to raise crop production per unit area without compromising the sustainability of agricultural resources and environmental security. Along with environmental constraints, soil salinization has become one of the major threats that restricts agricultural potential and is closely related to mishandling of agricultural resources and overexploitation of water resources, particularly in arid regions. The effect of salinity on the quality of various agricultural crops has not yet been much explored. Presently, this information is very important due to the increasing use of saline water for irrigation worldwide which has given rise to as soil salinity has become a critical around the world and the situation has been worsening over the last 20 years in arid and semi-arid regions particularly in Mediterranean area. Salinity stress significantly affect the nutritional properties and quality traits of crops due to physiological and biochemical alterations in plants at different growth stage. During salinity stress, plants tend to activate different physiological and biochemical mechanisms to cope with the stress through altering their morphology, anatomy, water relations, photosynthesis, protein synthesis, primary and secondary metabolism and biochemical adaptations such as the antioxidative metabolism response. Therefore, it is important for breeders and producers to understand the influence of salinity on the composition of crops, for improvement of protein and oil quality (amino and fatty acid) under the salinity conditions. The aims of present review is to quantify the adverse effects of salinity on quality parameters of crops and management approaches for ameliorating the adverse effects of salinity stress to enhance the yield and grain quality of crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas A, Khan S, Hussain N, Hanjra MA, Akbar S (2013) Characterizing soil salinity in irrigated agriculture using a remote sensing approach. Phys Chem Earth Parts A/B/C 55:43–52. https://doi.org/10.1016/j.pce.2010.12.004

    Article  Google Scholar 

  • Abdel Latef AAH, Miransari M (2014) The role of arbuscular mycorrhizal fungi in alleviation of salt stress. In: Miransari M (ed) Use of microbes for the alleviation of soil stresses. Springer, New York

    Google Scholar 

  • Abdelaal AAK, Hafez YM, EL Sabagh A, Saneoka H (2017) Ameliorative effects of abscisic acid and yeast on morpho-physiological and yield characters of maize (Zea mays L.) plants under water deficit conditions. Fresenius Environ Bull 26(12):7372–7383

    CAS  Google Scholar 

  • Acosta-Motos JR, Díaz-Vivancos P, Álvarez S, Fernández-García N, Sánchez-Blanco MJ, Hernández JA (2015) Physiological and biochemical mechanisms of the ornamental Eugenia myrtifolia L. plants for coping with NaCl stress and recovery. Planta 242:829–846. https://doi.org/10.1007/s00425-015-2315-3

    Article  CAS  PubMed  Google Scholar 

  • Adnan M, Zahir S, Fahad S, Arif M, Mukhtar A, Imtiaz AK, Ishaq AM, Abdul B, Hidayat U, Muhammad A, Inayat-Ur R, Saud S, Muhammad ZI, Yousaf J, Amanullah Hafiz MH, Wajid N (2018) Phosphate-solubilizing bacteria nullify the antagonistic effect of soil calcification on bioavailability of phosphorus in alkaline soils. Sci Rep 8:4339. https://doi.org/10.1038/s41598-018-22653-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad K, Saqib M, Akhtar J, Ahmad R (2012) Evaluation and characterization of genetic variation in maize (Zea mays L.) for salinity tolerance. Pak J Agric Sci 49:521–526

    Google Scholar 

  • Ahmad M, Zahir Zahir A, Nazli F, Akram F, Arshad MKM (2013) Effectiveness of halo-tolerant, auxin producing pseudomonas and Rhizobium strains to improve osmotic stress tolerance in mung bean (Vigna radiata L.). Braz J Microbiol 44(4):1341–1348. https://doi.org/10.1590/s1517-83822013000400045

    Article  PubMed  Google Scholar 

  • Akbari G, Sanavy SA, Yousefzadeh S (2007) Effect of auxin and salt stress (NaCl) on seed germination of wheat cultivars (Triticum aestivum L.). Pak J Biol Sci 10(15):2557–2561. https://doi.org/10.3923/pjbs.2007.2557.2561

    Article  CAS  PubMed  Google Scholar 

  • Akram R, Turan V, Hammad HM, Ahmad S, Hussain S, Hasnain A, Maqbool MM, Rehmani MIA, Rasool A, Masood N, Mahmood F, Mubeen M, Sultana SR, Fahad S, Amanet K, Saleem M, Abbas Y, Akhtar HM, Waseem F, Murtaza R, Amin A, Zahoor SA, ul Din MS, Nasim W (2018a) Fate of organic and inorganic pollutants in paddy soils. In: Hashmi MZ, Varma A (eds) Environmental pollution of paddy soils, soil biology. Springer, Cham, pp 197–214

    Chapter  Google Scholar 

  • Akram R, Turan V, Wahid A, Ijaz M, Shahid MA, Kaleem S, Hafeez A, Maqbool MM, Chaudhary HJ, Munis MFH, Mubeen M, Sadiq N, Murtaza R, Kazmi DH, Ali S, Khan N, Sultana SR, Fahad S, Amin A, Nasim W (2018b) Paddy land pollutants and their role in climate change. In: Hashmi MZ, Varma A (eds) Environmental pollution of paddy soils, soil biology. Springer, Cham, pp 113–124

    Chapter  Google Scholar 

  • Al-Ashkar IM, Zaazaa EI, EL Sabagh A, Barutçular C (2016) Physio-biochemical and molecular characterization for drought tolerance in rice genotypes at early seedling stage. J Exp Biol Agri Sci 4:675–687. https://doi.org/10.18006/2016.4(Issue6).675.687

    Article  CAS  Google Scholar 

  • Ali Q, Anwar F, Ashraf M, Saari N, Perveen R (2013) Ameliorating effects of exogenously applied proline on seed composition, seed oil quality and oil antioxidant activity of maize (Zea mays L.) under drought stress. Int J Mol Sci 14(1):818-35

    Google Scholar 

  • Ali S, Liu Y, Ishaq M, Shah T, Abdullah Ilyas A, Din IU (2017) Climate change and its impact on the yield of major food crops: evidence from Pakistan. Foods 6(6):39. https://doi.org/10.3390/foods6060039

    Article  PubMed Central  Google Scholar 

  • Al-Khatib M, McNeilly T, Collins JC (1992) The potential of selection and breeding for improved salt tolerance in lucerne (Medicago sativa L.). Euphytica 65:43–51. https://doi.org/10.1007/BF00022198

    Article  CAS  Google Scholar 

  • Allakhverdiev SI, Kinoshita M, Inaba M, Suzuki I, Murata N (2001) Unsaturated fatty acids in membrane lipids protect the photosynthetic machinery against salt-induced damage in Synechococcus. Plant Physiol 125:1842–1853. https://doi.org/10.1104/pp.125.4.1842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altenbach SB, DuPont FM, Kothari KM, Chan R, Johnson EL, Lieu D (2003) Temperature, water and fertilizer influence the timing of key events during grain development in a US spring wheat. J Cereal Sci 37:9–20. https://doi.org/10.1006/jcrs.2002.0483

    Article  Google Scholar 

  • Anwar F, Hussain AI, Ashraf M, Jamail A, Iqbal S (2006) Effect of salinity on yield and quality of Moringaoleifera seed oil. Grasas Aceites 57(4):394–401. https://doi.org/10.3989/gya.2006.v57.i4.65

    Article  CAS  Google Scholar 

  • Aquastat. FAO’s Information System on Water and Agriculture; Food and Agriculture Organization (FAO) of the United Nation: Roma, Italy; Available online: http://www.fao.org/nr/water/aquastat. Accessed on 1 June 2016

  • Aref F, Rad HE (2012) Physiological characterization of rice under salinity stress during vegetative and reproductive stages. Indian J Sci Technol 5(4):2578–2586

    Article  CAS  Google Scholar 

  • Ashraf M, Akram NA (2009) Improving salinity tolerance of plants through conventional breeding and genetic engineering: an analytical comparison. Biotechnol Adv 27(6):744-52

    Google Scholar 

  • Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16. https://doi.org/10.1016/j.plantsci.2003.10.024

    Article  CAS  Google Scholar 

  • Ashraf M, Harris PJC (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51:163–190. https://doi.org/10.1007/s11099-013-0021-6

    Article  CAS  Google Scholar 

  • Ashraf M, Athar HR, Harris PJC, Kwon TR (2008) Some prospective strategies for improving crop salt tolerance. Adv Agron 97:45–110. https://doi.org/10.1016/S0065-2113(07)00002-8

    Article  CAS  Google Scholar 

  • Athar HUR, Khan A, Ashraf M (2009) Inducing salt tolerance in wheat by exogenously applied ascorbic acid through different modes. J Plant Nutr 32(11):1799–1817. https://doi.org/10.1080/01904160903242334

    Article  CAS  Google Scholar 

  • Aziz A, Martin-Tanguy J, Larher F (1999) Salt stress–induced proline accumulation and changes in tyramine and polyamine levels are linked to ionic osmotic adjustment in tomato leaf discs. Plant Sci 145:83–91. https://doi.org/10.1016/S0168-9452(99)00071-0

    Article  CAS  Google Scholar 

  • Aziz K, Daniel KYT, Fazal M, Muhammad ZA, Farooq S, Fan W, Fahad S, Ruiyang Z (2017a) Nitrogen nutrition in cotton and control strategies for greenhouse gas emissions: a review. Environ Sci Pollut Res 24:23471–23487. https://doi.org/10.1007/s11356-017-0131-y

    Article  CAS  Google Scholar 

  • Aziz K, Daniel KYT, Muhammad ZA, Honghai L, Shahbaz AT, Mir A, Fahad S (2017b) Nitrogen fertility and abiotic stresses management in cotton crop: a review. Environ Sci Pollut Res 24:14551–14566. https://doi.org/10.1007/s11356-017-8920-x

    Article  CAS  Google Scholar 

  • Bakry BA, Taha MH, Abdelgawad ZA, Abdallah MM (2014) The role of humic acid and proline on growth, chemical constituents and yield quantity and quality of three flax cultivars grown under saline soil conditions. Agric Sci 5(14):1566. https://doi.org/10.4236/as.2014.514168

  • Balestrini R, Chitarra W, Fotopoulos V, Ruocco M (2017) Potential role of beneficial soil microorganisms in plant tolerance to abiotic stress factors. In: Soil biological communities and ecosystem resilience. Springer, Cham, pp 191–207

    Chapter  Google Scholar 

  • Balla K, Rakszegi M, Li Z, Bekes F, Bencze S, Veisz O (2011) Quality of winter wheat in relation to heat and drought shock after anthesis. Czech J Food Sci 29:117–128. https://doi.org/10.17221/227/2010-CJFS

    Article  CAS  Google Scholar 

  • Bano A, Fatima M (2009) Salt tolerance in Zea mays (L.) following inoculation with Rhizobium and Pseudomonas. Biol Fertil Soils 45:405–413. https://doi.org/10.1007/s00374-008-0344-9

    Article  Google Scholar 

  • Barutcular C, Yildirim M, Koc M, Dizlek H, Akinci C, EL Sabagh A, Albayrak AT (2016) Quality traits performance of bread wheat genotypes under drought and heat stress conditions. Fresenius Environ Bull 25(12a):6159–6165

    CAS  Google Scholar 

  • Beltagi MS (2008) Exogenous ascorbic acid (vitamin C) induced anabolic changes for salt tolerance in chick pea (Cicer arietinum L.) plants. Afr J Plant Sci 2(10):118-23

    Google Scholar 

  • Ben Ahmed C, Ben Rouina B, Sensoy S, Boukhriss M, Ben Abdullah F (2010) Exogenous proline effects on photosynthetic performance and antioxidant defense system of young olive tree. J Agric Food Chem 58(7):4216-22

    Google Scholar 

  • Bhonsle SJ, Krishnan S (2011) Traditionally cultivated salt tolerant rice varieties grown in khazan lands of Goa, India and their grain quality characteristics. J Phytol 3:11–17

    Google Scholar 

  • Borrelli GM, Ficco DBM, Giuzio L, Pompa M, Cattivelli L, Flagella Z (2011) Durum wheat salt tolerance in relation to physiological, yield and quality characters. Cereal Res Commun 39:525–534. https://doi.org/10.1556/CRC.39.2011.4.7

    Article  CAS  Google Scholar 

  • Bridges EM, Oldeman LR (1999) Global assessment of human-induced soil degradation. Arid Soil Res Rehabil 13:319–325. https://doi.org/10.1080/089030699263212

    Article  Google Scholar 

  • Bybordi A, Jalal Tabatabaei S, Ahmadev A (2010) Effects of salinity on fatty acid composition of canola (Brassica napus L.). J Food Agri Environ 8(1):113–115

    CAS  Google Scholar 

  • Cameron RK (2000) Salicylic acid and its role in plant defense responses: what do we really know?. Physiol Mol Plant Pathol 56(3):91-94

    Google Scholar 

  • Chang P, Gerhardt KE, Huang X-D, Yu X-M, Glick BR, Gerwing PD, Greenberg BM (2014) Plant growth-promoting bacteria facilitate the growth of barley and oats in salt-impacted soil: implications for phytoremediation of saline soils. Int J Phytorem 16(11):1133–1147. https://doi.org/10.1080/15226514.2013.821447

    Article  CAS  Google Scholar 

  • Chen M, Chen Q, Niu X, Zhang R, Lin H, Xu C, Wang X, Wang G, Chen J (2007) Expression of OsNHX1 gene in maize confers salt tolerance and promotes plant growth in the field. Plant Soil Environ 53(11):490–498

    Google Scholar 

  • Chen LH, Zhang B, Xu ZQ (2008) Salt tolerance conferred by overexpression of Arabidopsis vacuolar Na+/H+ antiporter gene AtNHX1 in common buckwheat (Fagopyrum esculentum). Transgen Res 17(1):121. https://doi.org/10.1007/s11248-007-9085-z

  • Chawla S, Jain S, Jain V (2013) Salinity induced oxidative stress and antioxidant system in salt-tolerant and salt-sensitive cultivars of rice (Oryza sativa L.). J Plant Biochem Biotechnol 22:27–34. https://doi.org/10.1007/s13562-012-0107-4

    Article  CAS  Google Scholar 

  • Chu YH, Luo S (1994) Effects of sugar, salt and water on soybean oil quality during deep-frying. J Am Oil Chem Soc 71(8):897–900. https://doi.org/10.1007/BF02540470

    Article  CAS  Google Scholar 

  • Cirillo C, Rouphael Y, Caputo R, Raimondi G, Sifola MI, De Pascale S (2016) Effects of high salinity and the exogenous of an osmolyte on growth, photosynthesis and mineral composition in two ornamental shrubs. J Hortic Sci Biotechnol 91:14–22. https://doi.org/10.1080/14620316.2015.1110988

    Article  CAS  Google Scholar 

  • Colla G, Rouphael Y, Leonardi C, Bie Z (2010) Role of grafting in vegetable crops grown under saline conditions. Sci Hortic 127:147–155. https://doi.org/10.1016/j.scienta.2010.08.004

    Article  Google Scholar 

  • Compant S, Van Der Heijden MG, Sessitsch A (2010) Climate change effects on beneficial plant–microorganism interactions. FEMS Microbiol Ecol 73(2):197–214. https://doi.org/10.1111/j.1574-6941.2010.00900.x

    Article  CAS  PubMed  Google Scholar 

  • Daba A, Qureshi A, Nisaren B (2019) Evaluation of some Rhodes grass (Chloris gayana) genotypes for their salt tolerance, biomass yield and nutrient composition. Appl Sci 9(1):143. https://doi.org/10.3390/app9010143

    Article  CAS  Google Scholar 

  • Dai A (2011) Drought under global warming: a review. Wiley Inter discip Rev Clim Change 2:45–65. https://doi.org/10.1002/wcc.81

    Article  Google Scholar 

  • Daliakopoulos IN, Tsanis IK, Koutroulis AG, Kourgialas N, Varouchakis EA, Karatzas GP, Ritsema CJ (2016) The threat of soil salinity: a European scale review. Sci Total Environ 573:727–739. https://doi.org/10.1016/j.scitotenv.2016.08.177

    Article  CAS  PubMed  Google Scholar 

  • Darvey NL, Naeem H, Gustafson JP (2000) Triticale: production and utilization. In: Kulp K, Ponte J (Eds) Chapter 9 in: Handbook of Cereal Science and Technology, 2nd edn. Marcel Dekker, New York, pp. 257–274

    Google Scholar 

  • Datnoff LE, Rodrigues FA, Seebold KW (2007) Silicon and plant disease. In: Datnoff LE, Elmer WH, Huber DM (eds) Mineral nutrition and plant disease. The American Phytopathological Society, St Paul, pp 233–246

    Google Scholar 

  • Debolt S, Melino V, Ford CM (2007) Ascorbate as a biosynthetic precursor in plants. Ann Bot 99(1):3-8

    Google Scholar 

  • Desoky ESM, Merwad ARM (2015) Improving the salinity tolerance in wheat plants using salicylic and ascorbic acids. J Agric Sci 7(10):203. https://doi.org/10.5539/jas.v7n10p203

  • Dhar S, Kibria MG, Rahman MM, Hoque MA (2016) Mitigation of the adverse effects of soil salinity in rice using exogenous proline and organic manure. Asian J Med Biol Res 1(3):478-86

    Google Scholar 

  • Dimkpa C, Weinand T, Ash F (2009) Plant-rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ 32:1682–1694. https://doi.org/10.1111/j.1365-3040.2009.02028.x

    Article  CAS  PubMed  Google Scholar 

  • El-Fouly MM, Moubarak ZM, Salama ZA (2000) Micronutrient foliar application increases salt tolerance of tomato seedlings. In: International Symposium on Techniques to Control Salination for Horticultural Productivity. pp 467-474

    Google Scholar 

  • EL Sabagh A, Sorour S, Ueda A, Saneoka H (2015a) Evaluation of salinity stress effects on seed yield and quality of three soybean cultivars. Azarian J Agri 2(5):138–141

    Google Scholar 

  • EL Sabagh A, Omar A, Saneoka H, Barutçular C (2015b) Comparative physiological study of soybean (Glycine max L.) cultivars under salt stress. YYU J AGR SCI 25(3):269–248

    Google Scholar 

  • EL Sabagh A, Hossain A, Barutçular C, Islam MS, Ratnasekera D, Kumar N, Meena RS, Gharib HS, Saneoka H, Teixeira da Silva JA (2019a) Drought and salinity stress management for higher and sustainable canola (Brassica napus L.) production: a critical review. Aust J Crop Sci 13(01):88–97. https://doi.org/10.21475/ajcs.19.13.01.p1284

    Article  CAS  Google Scholar 

  • EL Sabagh A, Hossain A, Islam MS, Barutçular C, Ratnasekera D, Kumar N, Meena RS, Gharib HS, Saneoka H, Teixeira da Silva JA (2019b) Salinity stress management for sustainable soybean production using foliar application of compatible antioxidants and soil application of organic fertilizers: a critical review. Aust J Crop Sci 13(02):228–236

    Article  CAS  Google Scholar 

  • EL Sabagh A, Hossain A, Barutçular C, Gormus O, Ahmad Z, Hussain S, Islam MS, Alharby H, Bamagoos A, Kumar N, Akdeniz A, Fahad S, Meena RS, Abdelhamid M, Wasaya A, Hasanuzzaman M, Sorour S, Saneoka H (2019c) Effects of drought stress on the quality of major oilseed crops: implications and possible mitigation strategies–a review. Appl Ecol Environ Res 17(2):4019–4043. https://doi.org/10.15666/aeer/1702_40194043

    Article  Google Scholar 

  • El-Samad HA, Shaddad MA, Barakat N (2011) Improvement of plants salt tolerance by exogenous application of amino acids. J Med Plants Res 5(24):5692-9

    Google Scholar 

  • El–Bassiouny HMS, Bekheta MA (2005) Effect of salt stress on relative water content, lipid peroxidation, polyamines, amino acids and ethylene of two wheat cultivars. Int J Agric Biol 7(3):363–368

    Google Scholar 

  • Erdei L, Stuiver GEC, Kupier PJC (1980) The effect of salinity on lipid composition and on activity of Ca2+ and Mg2+ simulated ATPase in salt-sensitive and salt tolerant Plantago Species. Physiol Plant 49:315–319. https://doi.org/10.1111/j.1399-3054.1980.tb02670.x

    Article  CAS  Google Scholar 

  • Esfahan EZ, Assareh MH, Jafari M, Jafari AA, Javadi SA, Karimi G (2010) Phenological effects on forage quality of two halophyte species Atriplexleucoclada and Suaedavermiculata in four saline rangelands of Iran. J Food Agri Environ 8:999–1003

    CAS  Google Scholar 

  • Estrada B, Aroca R, Maathuis FJ, Barea JM, Ruiz-Lozano JM (2013) Arbuscular mycorrhizal fungi native from a Mediterranean saline area enhance maize tolerance to salinity through improved ion homeostasis. Plant Cell Environ 36(10):1771–1782. https://doi.org/10.1111/pce.12082

    Article  CAS  PubMed  Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104(7):1263–1280. https://doi.org/10.1093/aob/mcp251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fahad S, Bano A (2012) Effect of salicylic acid on physiological and biochemical characterization of maize grown in saline area. Pak J Bot 44:1433–1438

    Google Scholar 

  • Fahad S, Chen Y, Saud S, Wang K, Xiong D, Chen C, Wu C, Shah F, Nie L, Huang J (2013) Ultraviolet radiation effect on photosynthetic pigments, biochemical attributes, antioxidant enzyme activity and hormonal contents of wheat. J Food Agri Environ 11(3&4):1635–1641

    CAS  Google Scholar 

  • Fahad S, Hussain S, Bano A, Saud S, Hassan S, Shan D, Khan FA, Khan F, Chen Y, Wu C, Tabassum MA, Chun MX, Afzal M, Jan A, Jan MT, Huang J (2014a) Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. Environ Sci Pollut Res 22(7):4907–4921. https://doi.org/10.1007/s11356-014-3754-2

    Article  Google Scholar 

  • Fahad S, Hussain S, Matloob A, Khan FA, Khaliq A, Saud S, Hassan S, Shan D, Khan F, Ullah N, Faiq M, Khan MR, Tareen AK, Khan A, Ullah A, Ullah N, Huang J (2014b) Phytohormones and plant responses to salinity stress: A review. Plant Growth Regul 75(2):391–404. https://doi.org/10.1007/s10725-014-0013-y

    Article  CAS  Google Scholar 

  • Fahad S, Hussain S, Saud S, Tanveer M, Bajwa AA, Hassan S, Shah AN, Ullah A, Wu C, Khan FA, Shah F, Ullah S, Chen Y, Huang J (2015a) A biochar application protects rice pollen from high-temperature stress. Plant Physiol Biochem 96:281–287

    Article  CAS  PubMed  Google Scholar 

  • Fahad S, Nie L, Chen Y, Wu C, Xiong D, Saud S, Hongyan L, Cui K, Huang J (2015b) Crop plant hormones and environmental stress. Sustain Agric Rev 15:371–400

    Article  Google Scholar 

  • Fahad S, Hussain S, Saud S, Hassan S, Chauhan BS, Khan F et al (2016a) Responses of rapid viscoanalyzer profile and other rice grain qualities to exogenously applied plant growth regulators under high day and high night temperatures. PLoS One 11(7):e0159590. https://doi.org/10.1371/journal.pone.0159590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fahad S, Hussain S, Saud S, Khan F, Hassan S, Jr A, Nasim W, Arif M, Wang F, Huang J (2016b) Exogenously applied plant growth regulators affect heat-stressed rice pollens. J Agron Crop Sci 202:139–150

    Article  CAS  Google Scholar 

  • Fahad S, Hussain S, Saud S, Hassan S, Ihsan Z, Shah AN, Wu C, Yousaf M, Nasim W, Alharby H, Alghabari F, Huang J (2016c) Exogenously applied plant growth regulators enhance the morphophysiological growth and yield of rice under high temperature. Front Plant Sci 7:1250. https://doi.org/10.3389/fpls.2016.01250

    Article  PubMed  PubMed Central  Google Scholar 

  • Fahad S, Hussain S, Saud S, Hassan S, Tanveer M, Ihsan MZ, Shah AN, Ullah A, Nasrullah KF, Ullah S, Alharby HNW, Wu C, Huang J (2016d) A combined application of biochar and phosphorus alleviates heat-induced adversities on physiological, agronomical and quality attributes of rice. Plant Physiol Biochem 103:191–198

    Article  CAS  PubMed  Google Scholar 

  • Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, Sadia S, Nasim W, Adkins S, Saud S, Ihsan MZ, Alharby H, Wu C, Wang D, Huang J (2017) Crop production under drought and heat stress: Plant responses and Management Options. Front Plant Sci 8:1147. https://doi.org/10.3389/fpls.2017.01147

    Article  PubMed  PubMed Central  Google Scholar 

  • Fahad S, Muhammad ZI, Abdul K, Ihsanullah D, Saud S, Saleh A, Wajid N, Muhammad A, Imtiaz AK, Chao W, Depeng W, Jianliang H (2018) Consequences of high temperature under changing climate optima for rice pollen characteristics-concepts and perspectives. Arch Agron Soil Sci. https://doi.org/10.1080/03650340.2018.1443213

  • Fahad S, Rehman A, Shahzad B, Tanveer M, Saud S, Kamran M, Ihtisham M, Khan SU, Turan V, Rahman MHU (2019a) Rice responses and tolerance to metal/metalloid toxicity. In: Hasanuzzaman M, Fujita M, Nahar K, Biswas JK (eds) Advances in rice research for abiotic stress tolerance. Woodhead Publ Ltd., Cambridge, pp 299–312

    Chapter  Google Scholar 

  • Fahad S, Adnan M, Hassan S, Saud S, Hussain S, Wu C, Wang D, Hakeem KR, Alharby HF, Turan V, Khan MA, Huang J (2019b) Rice responses and tolerance to high temperature. In: Hasanuzzaman M, Fujita M, Nahar K, Biswas JK (eds) Advances in rice research for abiotic stress tolerance. Woodhead Publ Ltd., Cambridge, pp 201–224

    Chapter  Google Scholar 

  • Farhangi-Abriz S, Ghassemi-Golezani K (2016) Improving amino acid composition of soybean under salt stress by salicylic acid and jasmonic acid. J Appl Bot Food Qual 89:243–248. https://doi.org/10.5073/JABFQ.2016.089.031

    Article  CAS  Google Scholar 

  • Farissi M, Ghoulam C, Bouizgaren A (2014) The effect of salinity on yield and forage quality of alfalfa populations in the Marrakech region (Morocco). Fourrages 219:271–275

    Google Scholar 

  • Feng G, Zhang Z, Wan C, Lu P, Bakour A (2017) Effects of saline water irrigation on soil salinity and yield of summer maize (Zea mays L.) in subsurface drainage system. Agric Water Manag 193:205–213. https://doi.org/10.1016/j.agwat.2017.07.026

    Article  Google Scholar 

  • Ferreira JF, Cornacchione MV, Liu X, Suarez DL (2015) Nutrient composition, forage parameters, and antioxidant capacity of alfalfa (Medicago sativa L.) in response to saline irrigation water. Agriculture 5(3):577–597. https://doi.org/10.3390/agriculture5030577

    Article  Google Scholar 

  • Flagella Z, Giuliani MM, Rotunno T, Caterina RD, Caro AD (2004) Effect of saline water on oil yield and quality of a high oleic sunflower (Helianthus annuus L.) hybrid. Eur J Agron 21:267–272. https://doi.org/10.1016/j.eja.2003.09.001

    Article  Google Scholar 

  • Fougere F, Le Rudulier D, Streeter JG (1991) Effect of salt stress on amino acid, organic acid, and carbohydrate composition of roots, bacteroids and cytosol of alfalfa (Medicago sativa). Plant Physiol 96:1228–1236. https://doi.org/10.1104/pp.96.4.1228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155:2–18. https://doi.org/10.1104/pp.110.167569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Francois LE, Mass EV, Donovan TJ, Young VL (1986) Effect of salinity on grain yield and quality, vegetative growth and germination of semi-dwarf and durum wheat. Agron J 78:1053–1058. https://doi.org/10.2134/agronj1986.00021962007800060023x

    Article  CAS  Google Scholar 

  • Francois LE, Grieve CM, Maas EV, Lesch SM (1994) Time of salt stress affects growth and yield components of irrigated wheat. Agron J 86(1):100–107. https://doi.org/10.2134/agronj1994.00021962008600010019x

    Article  Google Scholar 

  • Fukuda A, Nakamura A, Tagiri A, Tanaka H, Miyao A, Hirochika H, Tanaka Y (2004) Function, intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+ antiporter from rice. Plant Cell Physiol 45:149–159. https://doi.org/10.1093/pcp/pch014

    Article  Google Scholar 

  • Gao X, Zou CH, Wang L, Zhang F (2006) Silicon decreases transpiration rate and conductance from stomata of maize plants. J Plant Nutr 29:1637–1647. https://doi.org/10.1080/01904160600851494

    Article  CAS  Google Scholar 

  • Ghassemi-Golezani K, Farhangi-Abriz S (2018) Changes in oil accumulation and fatty acid composition of soybean seeds under salt stress in response to salicylic acid and jasmunic acid. Russ J Plant Physiol 65:229–236. https://doi.org/10.1134/S1021443718020115

    Article  CAS  Google Scholar 

  • Ghassemi-Golezani K, Taifeh-Noori M, Oustan S, Moghaddam M, Seyyed-Rahmani S (2010) Oil and protein accumulation in soybean grains under salinity stress. Notulae Scientia Biologicae 2(2):64–67. https://doi.org/10.15835/nsb224590

    Article  CAS  Google Scholar 

  • Ghassemi-Golezani K, Lotfi R, Najafi N (2015) Some physiological responses of mungbean to salicylic acid and silicon under salt stress. Adv Biores 6:7-13

    Google Scholar 

  • Gormus O, Harun R, EL Sabagh A (2017a) Impact of defoliation timings and leaf Pubescence on yield and fiber quality of cotton. J Agric Sci Technol 19(4):903–915

    Google Scholar 

  • Gormus O, EL Sabagh A, Harun R, Islam MS (2017b) Enhancement of productivity and fiber quality by defining ideal defoliation and harvesting timing in cotton. Romanian Agri Res 34:226–232

    Google Scholar 

  • Grattan SR, Grieve CM, Poss JA, Robinson PH, Suarez DL, Benes SE (2004) Evaluation of salt-tolerant forages for sequential water reuse systems: I. Biomass production. Agric Water Manag 70:109–120. https://doi.org/10.1016/j.agwat.2004.04.010

    Article  Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signalling processes. Soil Biol Biochem 37:395–412. https://doi.org/10.1016/j.soilbio.2004.08.030

    Article  CAS  Google Scholar 

  • Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical and molecular characterization. Int J Genomics 2014:7015961–7015918. https://doi.org/10.1155/2014/701596

    Article  CAS  Google Scholar 

  • Habib ur R, Ashfaq A, Aftab W, Manzoor H, Fahd R, Wajid I, Md. Aminul I, Vakhtang S, Muhammad A, Asmat U, Abdul W, Syeda RS, Shah S, Shahbaz K, Fahad S, Manzoor H, Saddam H, Wajid N (2017) Application of CSM-CROPGRO-Cotton model for cultivars and optimum planting dates:evaluation in changing semi-arid climate. Field Crop Res. https://doi.org/10.1016/j.fcr.2017.07.007

  • Hafiz MH, Wajid F, Farhat A, Fahad S, Shafqat S, Wajid N, Hafiz FB (2016) Maize plant nitrogen uptake dynamics at limited irrigation water and nitrogen. Environ Sci Pollut Res 24(3):2549–2557. https://doi.org/10.1007/s11356-016-8031-0

    Article  CAS  Google Scholar 

  • Hafiz MH, Muhammad A, Farhat A, Hafiz FB, Saeed AQ, Muhammad M, Fahad S, Muhammad A (2019) Environmental factors affecting the frequency of road traffic accidents: a case study of sub-urban area of Pakistan. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-019-04752-8

  • Haghighi M, Pourkhaloee A (2013) Nanoparticles in agricultural soils: their risks and benefits for seed germination. Minerva Biotecnologica 25(2):123–132

    Google Scholar 

  • Haghighi M, Afifipour Z, Mozafarian M (2012) The effect of N–Si on tomato seed germination under salinity levels. Int J Environ Sci 6:87–90

    Google Scholar 

  • Hayat Q, Hayat S, Irfan M, Ahmad A (2010a) Effect of exogenous salicylic acid under changing environment: a review. Environ Exp Bot 68:14–25. https://doi.org/10.1016/j.envexpbot.2009.08.005

    Article  CAS  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010b) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598. https://doi.org/10.1007/s13213-010-0117-1

    Article  Google Scholar 

  • He Z, He C, Zhang Z, Zou Z, Wang H (2007) Changes of antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress. Colloids Surf B: Biointerfaces 59(2):128–133. https://doi.org/10.1016/j.colsurfb.2007.04.023

    Article  CAS  PubMed  Google Scholar 

  • Idrees M, Naeem M, Aftab T, Khan MM (2011) Salicylic acid mitigates salinity stress by improving antioxidant defence system and enhances vincristine and vinblastine alkaloids production in periwinkle [Catharanthus roseus (L.) G. Don]. Acta Physiol Plant 33(3):987-99

    Google Scholar 

  • Idrees M, Naeem M, Khan MN, Aftab T, Khan MM (2012) Alleviation of salt stress in lemongrass by salicylic acid. Protoplasma 249(3):709-20

    Google Scholar 

  • IPCC (2014) In: Pachauri RK et al (eds) Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, pp 56–73

    Google Scholar 

  • Irving DW, Shannon MC, Breda VA, Mackey BE (1988) Salinity effects on yield and oil quality of high-linoleate and high-oleate cultivars of safflower (Carthamus tinctorius L.). J Agric Food Chem 36:37–42. https://doi.org/10.1021/jf00079a009

    Article  CAS  Google Scholar 

  • Islam MS (2012) Nutrio-physiological studies on saline and alkaline toxicities and tolerance in Foxtail millet (Setaria italica L.) and Proso millet (Panicum miliaceum L.). Ph D thesis, Departement of Environmental Dynamics and Management, Graduate School of Biosphere Science, Hiroshima University, Japan.

    Google Scholar 

  • Islam MS, Akhter MM, EL Sabagh A, Liu LY, Nguyen NT, Ueda A, Saneoka H (2011) Comparative studies on growth and physiological responses to saline and alkaline stresses of Foxtail millet (Setaria italica L.) and Proso millet (Panicum miliaceum L.). Aust J Crop Sci 5:1269–1277

    CAS  Google Scholar 

  • Jahan MAHS, Hossain A, Da S, EL Sabagh A, Rashid MH, Barutçular C (2019) Effect of naphthaleneacetic acid on root and plant growth and yield of ten irrigated wheat genotypes. Pak J Bot 51(2):451–459. https://doi.org/10.30848/PJB2019-2(11)

    Article  CAS  Google Scholar 

  • Jamshidi A, Javanmard HR (2018) Evaluation of barley (Hordeum vulgare L.) genotypes for salinity tolerance under field conditions using the stress indices. Ain Shams Engineer J 9(4):2093-9

    Google Scholar 

  • Jha Y, Subramanian RB, Patel S (2011) Combination of endophytic and rhizospheric plant growth promoting rhizobacteria in Oryza sativa shows higher accumulation of osmoprotectant against saline stress. Acta Physiol Plant 33:797–802. https://doi.org/10.1007/s11738-010-0604-9

    Article  Google Scholar 

  • Jouyban Z (2012) The effects of salt stress on plant growth. TJEAS J. 2012-2-1/7-10

    Google Scholar 

  • Kang DJ, Seo YJ, Lee JD, Ishii R, Kim KU, Shin DH, Park SK, Jang SW, Lee IJ (2005) Jasmonic acid differentially affects growth, ion uptake and abscisic acid concentration in salt-tolerant and salt-sensitive rice cultivars. J Agron Crop Sci 191:273–282. https://doi.org/10.1111/j.1439-037X.2005.00153.x

    Article  CAS  Google Scholar 

  • Karr-Lilienthal LK, Grieshop CM, Spears JK, Fahey GC (2005) Amino acid, carbohydrate, and fat composition of soybean meals prepared at 55 commercial US soybean processing plants. J Agric Food Chem 53(6):2146-50

    Google Scholar 

  • Katerji N, van Hoorn JW, Fares C, Hamdy A, Mastrorilli M, Oweis T (2005) Salinity effect on grain quality of two durum wheat varieties differing in salt tolerance. Agric Water Manag 75:85–91. https://doi.org/10.1016/j.agwat.2004.12.005

    Article  Google Scholar 

  • Kavitha PG, Miller AJ, Mathew MK, Maathuis FJ (2012) Rice cultivars with differing salt tolerance contain similar cation channels in their root cells. J Exp Bot 63(8):3289-96

    Google Scholar 

  • Khan MIR, Asgher M, Khan NA (2014) Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycinebetaine and ethylene in mungbean (Vigna radiata L.). Plant Physiol Biochem 80:67–74. https://doi.org/10.1016/j.plaphy.2014.03.026

    Article  CAS  PubMed  Google Scholar 

  • Khodary SEA (2004) Effect of salicylic acid on the growth, photosynthesis and carbohydrate metabolism in salt-stressed maize plants. Int J Agric Biol 6:5–8

    CAS  Google Scholar 

  • Kromdijk J, Long SP (2016) One crop breeding cycle from starvation? How engineering crop photosynthesis for rising CO2 and temperature could be one important route to alleviation. Proc R Soc B Biol Sci 283:20152578. https://doi.org/10.1098/rspb.2015.2578

    Article  CAS  Google Scholar 

  • Latef AA, Chaoxing H (2011) Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Sci Hortic 127(3):228–233. https://doi.org/10.1016/j.scienta.2010.09.020

    Article  CAS  Google Scholar 

  • Latef AA, Chaoxing H (2014) Does inoculation with Glomus mosseae improve salt tolerance in pepper plants? J Plant Growth Regul 33(3):644–653. https://doi.org/10.1007/s00344-014-9414-4

    Article  CAS  Google Scholar 

  • Laware SL, Shilpa R (2014) Effect of titanium dioxide nanoparticles on hydrolytic and antioxidant enzymes during seed germination in onion. Int J Curr Microbiol App Sci 3(7):749–760

    CAS  Google Scholar 

  • Lei Z, Mingyu S, Xiao W, Chao L, Chunxiang Q, Liang C, Hao H, Xiaoqing L, Fashui H (2008) Antioxidant stress is promoted by nano-anatase in spinach chloroplasts under UV-B radiation. Biol Trace Elem Res 121(1):69–79. https://doi.org/10.1007/s12011-007-8028-0

    Article  CAS  PubMed  Google Scholar 

  • Leslie CA, Romani RJ (1986) Salicylic acid: a new inhibitor of ethylene biosynthesis. Plant Cell Rep 5:144–146. https://doi.org/10.1007/BF00269255

    Article  CAS  PubMed  Google Scholar 

  • Liang Y, Sun W, Zhu YG, Christie P (2007) Mechanisms of silicon mediated alleviation of abiotic stresses in higher plants: a review. Environ Pollut 147:422–428. https://doi.org/10.1016/j.envpol.2006.06.008

    Article  CAS  PubMed  Google Scholar 

  • Lunde C, Drew PD, Jacobs AK, Tester M (2007) Exclusion of Na+ via sodium ATPase (PpENA1) ensures normal growth of Physcomitrella patens under moderate salt stress. Plant Physiol 144:1786–1796. https://doi.org/10.1104/pp.106.094946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma JF (2004) Role of silicon in enhancing the resistance of plants to biotic and abiotic stress. Soil Sci Plant Nutr 50:11–18. https://doi.org/10.1080/00380768.2004.10408447

    Article  CAS  Google Scholar 

  • Makarana G, Yadav RK, Kumar R, Soni PG, Yadav T, Yadav MR, Datt C, Rathore DK, Kar S, Meenam VK (2017) Fodder yield and quality of pearl millet (Pennisetum glaucum L.) genotypes as influenced by salinity of irrigation water in North Western India. Indian J Anim Nutr 34:56–63. https://doi.org/10.5958/2231-6744.2017.00009.3

    Article  CAS  Google Scholar 

  • Mansour MMF (2000) Nitrogen containing compounds and adaptation of plants to salinity stress. Biol Plant 43:491–500. https://doi.org/10.1023/A:1002873531707

    Article  CAS  Google Scholar 

  • Mantri N, Patade V, Penna S, Ford R, Pang E (2012) Abiotic stress responses in plants: present and future. In: Abiotic stress responses in plants. Springer, New York, pp 1–19

    Google Scholar 

  • Marco F, Bitrián M, Carrasco P, Rajam MV, Alcázar R, Antonio FT (2015) Genetic engineering strategies for abiotic stress tolerance in plants. Plant Biol Biotechnol 2:579–610. https://doi.org/10.1007/978-81-322-2283-5_29

    Article  Google Scholar 

  • Mass EV, Grattan SR (1999) Crop yields as affected by salinity. In: Skaggs RW, van Schilfgaarde J (eds) Agricultural drainage, Agron. Monograph 38. ASA, CSSA, SSA, Madison, pp 55–108

    Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572. https://doi.org/10.1016/j.plaphy.2004.05.009

    Article  CAS  PubMed  Google Scholar 

  • Mbarki S, Sytar O, Cerda A, Zivcak M, Rastogi A, Xiaolan X, Zoghlami A, Abdelly C, Brestic M (2018a) Strategies to mitigate the salt stress effects on photosynthetic apparatus and productivity of crop plants. In: Kumar V, Wani S, Suprasanna P, Tran LS (eds) Salinity responses and tolerance in plants, volume 1. Springer, Cham. https://doi.org/10.1007/978-3-319-75671-4_4

    Chapter  Google Scholar 

  • Mbarki S, Sytar O, Zivcak M, Abdelly C, Cerda A, Brestic M (2018b) Anthocyanins of coloured wheat genotypes in specific response to salt stress. Molecules 23(7):pii: E1518. https://doi.org/10.3390/molecules23071518

    Article  CAS  Google Scholar 

  • Medhat M (2002) Comparative study on growth, yield and nutritive value for some forage plants grown under different levels of salinity. Ph. D. thesis, Faculty of Science, Botany Department, Cairo University, Egypt

    Google Scholar 

  • Milošević NA, Marinković JB, Tintor BB (2012) Mitigating abiotic stress in crop plants by microorganisms. Zbornik Matice srpske za prirodne nauke 123:17–26

    Article  Google Scholar 

  • Molla SH, Nakasathien S, Ali A, Khan A, Alam R, Hossain A, Farooq M, El Sabagh A (2019) Influence of nitrogen application on dry biomass allocation and translocation in two maize varieties under short pre-anthesis and prolonged bracketing flowering periods of drought. Arch Agron Soil Sci 65(7):928–944. https://doi.org/10.1080/03650340.2018.1538557

    Article  CAS  Google Scholar 

  • Morais Neto LBD, Carneiro MSDS, Lacerda CFD, Costa MRGF, Fontenele RM, Feitosa JV (2012) Effect of irrigation water salinity and cutting age on the components of biomass of Echinochloa pyramidalis. Rev Bras Zootec 41(3):550–556. https://doi.org/10.1590/S1516-35982012000300011

    Article  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911

    Article  CAS  PubMed  Google Scholar 

  • Munns R, James RA, Läuchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57(5):1025-43

    Google Scholar 

  • Nadeem SM, Zaheer ZA, Naveed M, Nawaz S (2013) Mitigation of salinity-induced negative impact on the growth and yield of wheat by plant growth-promoting rhizobacteria in naturally saline conditions. Ann Microbiol 63(1):225–232. https://doi.org/10.1007/s13213-012-0465-0

    Article  CAS  Google Scholar 

  • Ohta M, Hayashi Y, Nakashima A, Hamada A, Tanaka A, Nakamura T, Hayakawa T (2002) Introduction of a Na+/H+ antiporter gene from Atriplex gmelini confers salt tolerance to rice. FEBS Lett 532:279–282. https://doi.org/10.1016/s0014-5793(02)03679-7

    Article  CAS  PubMed  Google Scholar 

  • Omar AM, El-Menshawy M, El-Okkiah SA, EL Sabbagh A (2019a) Foliar application of osmoprotectants stimulate cotton (Gossypium barbadense L.) to survive under late sown stress condition. Open Agri 3(1):684–697. https://doi.org/10.1515/opag-2018-0072

    Article  Google Scholar 

  • Omar AM, Hamed OMA, Abolela MFKHA, Islam MS, EL Sabagh A (2019b) Bio-nitrogen fertilization and leaf defoliation increased yield and quality of sugar beet. Asian J Appl Sci 12(1):29–36. https://doi.org/10.3923/ajaps.2019.29.36

    Article  CAS  Google Scholar 

  • Pareek A, Sopory SK, Bohnert HJ, Govindjee (2010) Abiotic stress adaptation in plants: physiological, molecular and genomic foundation. Springer, Berlin

    Book  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349. https://doi.org/10.1016/j.ecoenv.2004.06.010

    Article  CAS  PubMed  Google Scholar 

  • Primomo VS, Falk DE, Ablett GR, Tanner JW, Rajcan I (2002) Genotype × environment interactions, stability, and agronomic performance of soybean with altered fatty acid profiles. Crop Sci 42:37–44. https://doi.org/10.2135/cropsci2002.0037

    Article  CAS  PubMed  Google Scholar 

  • Qadir M, Noble AD, Schubert S, Thomas RJ, Arslan A (2006) Sodicity-induced land degradation and its sustainable management: problems and prospects. Land Degrad Dev 17:661–676. https://doi.org/10.1002/ldr.751

    Article  Google Scholar 

  • Qamar-uz Z, Zubair A, Muhammad Y, Muhammad ZI, Abdul K, Fahad S, Safder B, Ramzani PMA, Muhammad N (2017) Zinc biofortification in rice: leveraging agriculture to moderate hidden hunger in developing countries. Arch Agron Soil Sci 64:147–161. https://doi.org/10.1080/03650340.2017.1338343

    Article  CAS  Google Scholar 

  • Qiu ZJ, Guo A, Zhu L, Zhang M (2014) Exogenous jasmonic acid can enhance tolerance of wheat seedlings to salt stress. Ecotoxicol Environ Saf 104:202–208. https://doi.org/10.1016/j.ecoenv.2014.03.014

    Article  CAS  PubMed  Google Scholar 

  • Raddy R (2014) Efficacy of nano Zinc particle on growth and yield of crop plants. Ph.D. thesis, University of Agricultural Sciences, Bangalore

    Google Scholar 

  • Rakhmankulova ZF, Shuyskaya EV, Shcherbakov AV, Fedyaev VV, Biktimerova GY, Khafisova RR, Usmanov IY (2015) Content of proline and flavonoids in the shoots of halophytes inhabiting the South Urals. Russ J Plant Physiol 62:71–79. https://doi.org/10.1134/S1021443715010112

    Article  CAS  Google Scholar 

  • Rao ACS, Smith JL, Jandhyala VK, Papendick RI, Parr JF (1993) Cultivar and climatic effects on the protein content of soft white winter wheat. Agron J 85:1023–1028. https://doi.org/10.2134/agronj1993.00021962008500050013x

    Article  CAS  Google Scholar 

  • Raven JA (1982) Transport and function of silicon in plants. Biol Rev 58:179–207. https://doi.org/10.1111/j.1469-185X.1983.tb00385.x

    Article  Google Scholar 

  • Rawson HM, Iong MJ, Munns R (1998) Growth and development in NaCl treated plants. J Plant Physiol 15:519–527. https://doi.org/10.1071/PP9880519

    Article  Google Scholar 

  • Rengasamy P (2006) World salinization with emphasis on Australia. J Exp Bot 57:1017–1023. https://doi.org/10.1093/jxb/erj108

    Article  CAS  PubMed  Google Scholar 

  • Robinson PH, Grattan SR, Getachew G, Grieve CM, Poss JA, Suarez DL, Benes SE (2004) Biomass accumulation and potential nutritive value of some forages irrigated with saline-sodic drainage water. Anim Feed Sci Technol 111:175–189. https://doi.org/10.1016/S0377-8401(03)00213-X

    Article  Google Scholar 

  • Rohila JS, Jain RK, Wu R (2002) Genetic improvement of Basmati rice for salt and drought tolerance by regulated expression of a barley Hva1 cDNA. Plant Sci 163(3):525-32

    Google Scholar 

  • Rowshan V, Khoi MK, Javidnia K (2010) Effects of salicylic acid on quality and quantity of essential oil components in Salvia macrosiphon. J Biol Environ Sci 4(11):77-82

    Google Scholar 

  • Sabaghnia N, Janmohammad M (2015) Effect of nano-silicon particles application on salinity tolerance in early growth of some lentil genotypes. Annales UMCS Biologia 69(2):39–55. https://doi.org/10.1515/umcsbio-2015-0004

    Article  Google Scholar 

  • Sadak MS, Abd-Elhamid EM, Mostafa HM (2013) Alleviation of adverse effects of salt stress in wheat cultivars by foliar treatment with antioxidants i. changes in growth, some biochemical aspects and yield quantity and quality. Am Eurasian J Agric Environ Sci 13(11):1476–1487. https://doi.org/10.4236/as.2014.513135

    Article  Google Scholar 

  • Sajjad H, Muhammad M, Ashfaq A, Waseem A, Hafiz MH, Mazhar A, Nasir M, Asad A, Hafiz UF, Syeda RS, Fahad S, Depeng W, Wajid N (2019) Using GIS tools to detect the land use/land cover changes during forty years in Lodhran district of Pakistan. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-019-06072-3

  • Salehi M, Arzani A (2013) Grain quality traits in triticale influenced by field salinity stress. Aust J Crop Sci 7(5):580

    CAS  Google Scholar 

  • Sankar PD, Saleh MAAM, Selvaraj CI (2011) Rice breeding for salt tolerance. Res Biotechnol 2:1–10

    Google Scholar 

  • Saravanakumar D, Samiyappan R (2007) ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. J Appl Microbiol 102:1283–1292. https://doi.org/10.1111/j.1365-2672.2006.03179.x

    Article  CAS  PubMed  Google Scholar 

  • Saud S, Chen Y, Long B, Fahad S, Sadiq A (2013) The different impact on the growth of cool season turf grass under the various conditions on salinity and draught stress. Int J Agric Sci Res 3:77–84

    Google Scholar 

  • Saud S, Li X, Chen Y, Zhang L, Fahad S, Hussain S, Sadiq A, Chen Y (2014) Silicon application increases drought tolerance of Kentucky bluegrass by improving plant water relations and morph physiological functions. SciWorld J 2014:1–10. https://doi.org/10.1155/2014/368694

    Article  CAS  Google Scholar 

  • Saud S, Chen Y, Fahad S, Hussain S, Na L, Xin L, Alhussien SA (2016) Silicate application increases the photosynthesis and its associated metabolic activities in Kentucky bluegrass under drought stress and post-drought recovery. Environ Sci Pollut Res 23(17):17647–17655. https://doi.org/10.1007/s11356-016-6957-x

    Article  CAS  Google Scholar 

  • Saud S, Fahad S, Yajun C, Ihsan MZ, Hammad HM, Nasim W, Jr A, Arif M, Alharby H (2017) Effects of nitrogen supply on water stress and recovery mechanisms in Kentucky bluegrass plants. Front Plant Sci 8:983. https://doi.org/10.3389/fpls.2017.00983

    Article  PubMed  PubMed Central  Google Scholar 

  • Savvasd G, Giotes D, Chatzieustratiou E, Bakea M, Patakioutad G (2009) Silicon supply in soilless cultivation of Zucchini alleviates stress induced by salinity and powdery mildew infection. Environ Exp Bot 65:11–17. https://doi.org/10.1016/j.envexpbot.2008.07.004

    Article  CAS  Google Scholar 

  • Saxe H, Ellsworth DS, Heath J (1998) Tree and forest functioning in an enriched CO2 atmosphere. New Phytol 139:395–436. https://doi.org/10.1046/j.1469-8137.1998.00221.x

    Article  Google Scholar 

  • Saxena R, Tomar RS, Kumar M (2016) Exploring nanobiotechnology to mitigate abiotic stress in crop plants. J Pharm Sci Res 8(9):974

    CAS  Google Scholar 

  • Schaller F, Schaller A, Stintzi A (2004) Biosynthesis and metabolism of jasmonates. J Plant Growth Regul 23:179–199

    Article  CAS  Google Scholar 

  • Schüßler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105(12):1413–1421. https://doi.org/10.1017/S0953756201005196

    Article  Google Scholar 

  • Shabala S, Munns R (2017) Salinity stress: physiological constraints and adaptive mechanisms. In plant stress physiology. CABI, Boston, pp 24–63. ISBN:9781780647296

    Google Scholar 

  • Shah F, Lixiao N, Kehui C, Tariq S, Wei W, Chang C, Liyang Z, Farhan A, Fahad S, Huang J (2013) Rice grain yield and component responses to near 2°C of warming. Field Crop Res 157:98–110

    Article  Google Scholar 

  • Shakirova FM, Sakhabutdinova AR, Bezrukova MV, Fatkhutdinova RA, Fatkhutdinova DR (2003) Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Sci 164:317–322. https://doi.org/10.1016/S0168-9452(02)00415-6

    Article  CAS  Google Scholar 

  • Shereen A, Mumtaz S, Raza S, Khan MA, Solangi S (2005) Salinity effects on seedling growth and yield components of different inbred rice lines. Pak J Bot 37(1):131–139

    Google Scholar 

  • Shi Q, Bao Z, Zhu Z, Ying Q, Qian Q (2006) Effects of different treatments of salicylic acid on heat tolerance, chlorophyll fluorescence, and antioxidant enzyme activity in seedlings of Cucumis sativa L. Plant Growth Regul 48:127–135. https://doi.org/10.1007/s10725-005-5482-6

    Article  CAS  Google Scholar 

  • Shrivastava P, Kumar R (2014) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22(2):123–131. https://doi.org/10.1016/j.sjbs.2014.12.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH, Faisal M, Al Sahli AA (2014) Nanosilicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L. Environ Toxicol Chem 33(11):2429–2456. https://doi.org/10.1002/etc.2697

    Article  CAS  PubMed  Google Scholar 

  • Singh RK, Mishra B, Singh KN (2004) Salt tolerant rice varieties and their role in reclamation programme in Uttar Pradesh. Indian Farm 2004:6–10

    Google Scholar 

  • Siscar-Lee JJH, Juliano BO, Qureshi RH, Akbar M (1990) Effect of saline soil on grain quality of rice differing in salinity tolerance. Plant Foods Hum Nutr 40:31–36. https://doi.org/10.1007/BF02193777

    Article  CAS  PubMed  Google Scholar 

  • Slocum RD, Weinstein KH (1990) Stress–induced putrescine accumulation as a mechanism of ammonia detoxification in cereal leaves. In: Flores HE (ed) Polyamines and ethylene: biochemistry, physiology and interaction. American Society of Plant Physiologists, Maryland, pp 157–167

    Google Scholar 

  • Smaoui A (2000) Changes in molecular species of triacylglycerols in develop in cotton seeds under salt stress. Biochem Soc Trans 28:902–905. https://doi.org/10.1042/bst0280902

    Article  CAS  PubMed  Google Scholar 

  • Smedema LK, Shiati K (2002) Irrigation and salinity: a perspective review of the salinity hazards of irrigation development in the arid zone. Irrig Drain Syst 16:161–174. https://doi.org/10.1023/A:1016008417327

    Article  Google Scholar 

  • Solinas V, Deiana S (1996) Effect of water and nutritional on the Rosmarinus officinalis L. phenolic fraction and essential oil yields. Rivista Italiana Eppos 19:189–198

    Google Scholar 

  • Soltani A, Gholipoor M, Zeinali E (2006) Seed reserve utilization and seedling growth of wheat as affected by drought and salinity. Environ Exp Bot 55(1–2):195–200. https://doi.org/10.1016/j.envexpbot.2004.10.012

    Article  Google Scholar 

  • Souza EJ, Martin JM, Guttieri MJ, ÓBrien KM, Habernicht DK, Laqnning SP, McLean R, Carlson GR, Talbert LE (2004) Influence of genotype, environment, and nitrogen management on spring wheat quality. Crop Sci 44:425–432. https://doi.org/10.2135/cropsci2004.4250

    Article  CAS  Google Scholar 

  • Steppuhn H, Acharya SN, Iwaasa AD, Gruber M, Miller DR (2012) Inherent responses to root-zone salinity in nine alfalfa populations. Can J Plant Sci 92:235–248. https://doi.org/10.4141/cjps2011-174

    Article  Google Scholar 

  • Suarez DL (2001) Sodic soil reclamation: modelling and field study. Aust J Soil Res 39:1225–1246. https://doi.org/10.1071/SR00094

    Article  CAS  Google Scholar 

  • Sun YL, Hong SK (2011) Effects of citric acid as an important component of the responses to saline and alkaline stress in the halophyte Leymuschinensis (Trin.). Plant Growth Regul 64(2):129–139. https://doi.org/10.1007/s10725-010-9547-9

    Article  CAS  Google Scholar 

  • Suyama H, Benes SE, Robinson PH, Grattan SR, Grieve CM, Getachew G (2007) Forage yield and quality under irrigation with saline-sodic drainage water: greenhouse evaluation. Agric Water Manag 88:159–172. https://doi.org/10.1016/j.agwat.2006.10.011

    Article  Google Scholar 

  • Talaat NB, Shawky BT (2014a) Protective effects of arbuscular mycorrhizal fungi on wheat (Triticum aestivum L.) plants exposed to salinity. Environ Exp Bot 98:20–31. https://doi.org/10.1016/j.envexpbot.2013.10.005

    Article  CAS  Google Scholar 

  • Talaat NB, Shawky BT (2014b) Modulation of the ROS-scavenging system in salt-stressed wheat plants inoculated with arbuscular mycorrhizal fungi. J Plant Nutr Soil Sci 177(2):199–207. https://doi.org/10.1002/jpln.201200618

    Article  CAS  Google Scholar 

  • Talbi S, Romero-Puertas MC, Hernandez A, Terron L, Ferchichi A, Sandalio LM (2015) Drought tolerance in a saharian plant oudneya africana: role of the antioxidant defenses. Environ Exp Bot 111:114–126. https://doi.org/10.1016/j.envexpbot.2014.11.004

    Article  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527

    Google Scholar 

  • Tiwari BS, Belenghi B, Levine A (2002) Oxidative stress increased respiration and generation of reactive oxygen species, resulting in ATP depletion, opening of mitochondrial permeability transition, and programmed cell death. Plant Physiol 128(4):1271-81

    Google Scholar 

  • Tzin V, Galili G (2010) New insights into the shikimate and aromatic amino acids biosynthesis pathways in plants. Mol Plant 3:956–972. https://doi.org/10.1093/mp/ssq048

    Article  CAS  PubMed  Google Scholar 

  • UNEP. United Nations Framework Convention on Climate Change Information Kit. Climate change information sheets. (ed. Williams M.) (UNEP’s information unit for conventions, international environment house, Geneva Châtelaine Switzerland, 1999)

    Google Scholar 

  • Van Beek CL, Tóth G, Risk Assessment Methodologies of Soil Threats in Europe (2012) Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.397.1303&rep=rep1&type=pdf. Accessed on 5 June 2019

  • Verma D, Singla-Pareek SL, Rajagopal D, Reddy MK, Sopory SK (2007) Functional validation of a novel isoform of Na+/H+ antiporter from Pennisetum glaucum for enhancing salinity tolerance in rice. J Biosci 32:621–628. https://doi.org/10.1007/s12038-007-0061-9

    Article  CAS  PubMed  Google Scholar 

  • Wajid N, Ashfaq A, Asad A, Muhammad T, Muhammad A, Muhammad S, Khawar J, Ghulam MS, Syeda RS, Hafiz MH, Muhammad IAR, Muhammad ZH, Muhammad Habib ur R, Veysel T, Fahad S, Suad S, Aziz K, Shahzad A (2017) Radiation efficiency and nitrogen fertilizer impacts on sunflower crop in contrasting environments of Punjab. Pak Environ Sci Pollut Res 25:1822–1836. https://doi.org/10.1007/s11356-017-0592-z

    Article  CAS  Google Scholar 

  • Wallender WW, Tanji KK (2011) Nature and extent of agricultural salinity and sodicity. In: Wallender WW, Tanji KK (eds) Agricultural salinity assessment and management. American Society of Civil Engineers, New York

    Chapter  Google Scholar 

  • Wang J, Naser N (1994) Improved performance of carbon paste ampermeric biosensors through the incorporation of fumed silica. Electroanalysis 6:571–575. https://doi.org/10.1002/elan.1140060707

    Article  CAS  Google Scholar 

  • Wardlaw IF, Moncur L (1995) The response of wheat to high temperature following anthesis. I. The rate and duration of kernel filling. Funct Plant Biol 22(3):391–397. https://doi.org/10.1071/PP9950391

    Article  Google Scholar 

  • Willadino L, Camara T, Boget N, Claparols I, Santos M, Torne JM (1996) Polyamine and free amino acid variations in NaCl–treated embryogenic maize callus from sensitive and resistant cultivars. J Plant Physiol:149–185. https://doi.org/10.1016/S0176-1617(96)80192-1

  • Wolf RB, Cavins JF, Kleiman R, Black LT (1982) Effect of temperature on soybean seed constituents: oil, protein, moisture, fatty acids, amino acids and sugars. J Am Oil Chem Soc 59(5):230-232

    Google Scholar 

  • Xiao-Yan Y, Ai-Fang Y, Ke-Wei Z, Ju-Ren Z (2004) Production and analysis of transgenic maize with improved salt tolerance by the introduction of AtNHX1 gene. Acta Bot Sin 46:854–861

    Google Scholar 

  • Xue ZY, Zhi DY, Xue GP, Zhao YX, Xia GM (2004) Enhanced salt tolerance of transgenic wheat (Triticum aestivum L.) expressing a vacuolar Na+/H+ antiporter gene with improved grain yield in saline soils in the field and a reduced level of leaf Na+. Plant Sci 167:849–859. https://doi.org/10.1016/j.plantsci.2004.05.034

    Article  CAS  Google Scholar 

  • Yang Z, Zhang Z, Zhang T, Fahad S, Cui K, Nie L, Peng S, Huang J (2017) The effect of season-long temperature increases on rice cultivars grown in the central and southern regions of China. Front Plant Sci 8:1908. https://doi.org/10.3389/fpls.2017.01908

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan-Lin C, Soon H (2001) Effects of citric acid as an important of the responses to saline and alkaline stress in the halophyte Leymus chinensis (Trin). Plant Growth Regul 64(2):129–139. https://doi.org/10.1007/s10725-010-9547-9

    Article  CAS  Google Scholar 

  • Yassin M, El Sabagh A, Mekawy AMM, Islam MS, Hossaın A, Barutcular C, Alharby H, Bamagoos A, Liu L, Ueda A, Saneoka H (2019a) Comparative performance of two bread wheat (Triticum aestivum L.) genotypes under salinity stress. Appl Ecol Environ Res 17(2):5029–5041. https://doi.org/10.15666/aeer/1702_50295041

    Article  Google Scholar 

  • Yassin M, Fara SA, Hossain A, Saneoka H, El Sabagh A (2019b) Assessment of salinity tolerance bread wheat genotypes: using stress tolerance indices. Fresenius Environ Bull 28(5):4199–4217

    CAS  Google Scholar 

  • Yazdi-Samadi B, Rinne RW, Seif RD (1977) Components of developing soybean seeds: oil, protein, sugars, starch, organic acids, and amino acids. Agron J 69(3):481–486. https://doi.org/10.2134/agronj1977.00021962006900030037x

    Article  CAS  Google Scholar 

  • Yeilaghi H, Arzani A, Ghaderian M, Fotovat R, Feizi M, Pourdad SS (2012) Effect of salinity on seed oil content and fatty acid composition of safflower (Carthamus tinctorius L.) genotypes. Food Chem 130:618–625. https://doi.org/10.1016/j.foodchem.2011.07.085

    Article  CAS  Google Scholar 

  • Yildirim E (2007) Foliar and soil fertilization of humic acid affect productivity and quality of tomato. Acta Agriculturae Scandinavica, Section B - Plant Soil Sci 57 (2):182-186

    Google Scholar 

  • Yoon JY, Hamayun M, Lee SK, Lee IJ (2009) Methyl jasmonate alleviated salinity stress in soybean. J Crop Sci Biotechnol 12:63–68. https://doi.org/10.1007/s12892-009-0060-5

    Article  Google Scholar 

  • Yurtseven E, Kesmez GD, Ünlükara A (2005) The effects of water salinity and potassium levels on yield, fruit quality and water consumption of a native Central Anatolian tomato species (Lycopersicon esculantum). Agric Water Manag 78(1–2):128–135. https://doi.org/10.1016/j.agwat.2005.04.018

    Article  Google Scholar 

  • Zadeh HM, Naeini MB (2007) Effects of salinity stress on the morphology and yield of two cultivars of canola (Brassica napus L.). J Agron 6:409–414. https://doi.org/10.3923/ja.2007.409.414

    Article  Google Scholar 

  • Zahida Z, Hafiz FB, Zulfiqar AS, Ghulam MS, Fahad S, Muhammad RA, Hafiz MH, Wajid N, Muhammad S (2017) Effect of water management and silicon on germination, growth, phosphorus and arsenic uptake in rice. Ecotoxicol Environ Saf 144:11–18

    Article  CAS  Google Scholar 

  • Zeng L, Shannon MC (2000) Salinity effects on seedling growth and yield components of rice. Crop Sci 40(4):996–1003. https://doi.org/10.2135/cropsci2000.404996x

    Article  Google Scholar 

  • Zhao J, Lawrence C, Verportee R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23:283–333. https://doi.org/10.1016/j.biotechadv.2005.01.003

    Article  CAS  PubMed  Google Scholar 

  • Zhifang G, Loescher WH (2003) Expression of a celery mannose 6-phosphate reductase in Arabidopsis thaliana enhances salt tolerance and induces biosynthesis of both mannitol and a glucosyl-mannitol dimmer. Plant Cell Environ 26: 275–283

    Google Scholar 

  • Zhou X, Minocha R, Minocha SC (1995) Physiological response of suspension cultures of Catharanthusroseus to aluminum: changes in polyamine and inorganic ions. J Plant Physiol 145:277–284. https://doi.org/10.1016/S0176-1617(11)81890-0

    Article  CAS  Google Scholar 

  • Zhu J, Khan K (2001) Effect of genotypes and environment on glutenin polymers and breadmaking quality. Cereal Chem 78:125–130. https://doi.org/10.1094/CCHEM.2001.78.2.125

    Article  CAS  Google Scholar 

Download references

Financial Support

This is a collaborative work. No financial support was assisted for the chapter.

Conflict of Interest

Authors declared no conflict of interest

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

EL Sabagh, A. et al. (2020). Consequences of Salinity Stress on the Quality of Crops and Its Mitigation Strategies for Sustainable Crop Production: An Outlook of Arid and Semi-arid Regions. In: Fahad, S., et al. Environment, Climate, Plant and Vegetation Growth. Springer, Cham. https://doi.org/10.1007/978-3-030-49732-3_20

Download citation

Publish with us

Policies and ethics