Skip to main content

Advertisement

Log in

Nitrogen fertility and abiotic stresses management in cotton crop: a review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This review outlines nitrogen (N) responses in crop production and potential management decisions to ameliorate abiotic stresses for better crop production. N is a primary constituent of the nucleotides and proteins that are essential for life. Production and application of N fertilizers consume huge amounts of energy, and excess is detrimental to the environment. Therefore, increasing plant N use efficiency (NUE) is important for the development of sustainable agriculture. NUE has a key role in crop yield and can be enhanced by controlling loss of fertilizers by application of humic acid and natural polymers (hydrogels), having high water-holding capacity which can improve plant performance under field conditions. Abiotic stresses such as waterlogging, drought, heat, and salinity are the major limitations for successful crop production. Therefore, integrated management approaches such as addition of aminoethoxyvinylglycine (AVG), the film antitranspirant (di-1-p-menthene and pinolene) nutrients, hydrogels, and phytohormones may provide novel approaches to improve plant tolerance against abiotic stress-induced damage. Moreover, for plant breeders and molecular biologists, it is a challenge to develop cotton cultivars that can tolerate plant abiotic stresses while having high potential NUE for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Afridi MZ, Jan TM, Munsif F, Khan A, Nabi G, Ahmad M, Wasiullah M, Khan A, Ullah R (2014) Nitrogen partitioning and translocation in wheat under fertilizer-N levels, application time and decapitation stress. J Biol Agric Healthcare 13:13–19

    Google Scholar 

  • Afzal I, Basra SA, Iqbal A (2005) The effect of seed soaking with plant growth regulators on seedling vigor of wheat under salinity stress. Stress Physiol 11:6–14

    Google Scholar 

  • Ahmad A, Abdin MZ (1999) NADH: nitrate reductase and NAD (P) H: nitrate reductase activities in mustard seedlings. Plant Sci 143:1–8

    CAS  Google Scholar 

  • Ahmed EM (2013) Hydrogel: preparation, characterization, and applications. J Adv Res 6:105–121

    Google Scholar 

  • Alghabari F, Muhammad ZI, Abdul K, Saddam H, Ihsanullah D, Fahad S, Wajid N (2016) Gibberellin-sensitive Rht alleles confer tolerance to heat and drought stresses in wheat at booting stage. J Cereal Sci 70:72–78

    CAS  Google Scholar 

  • Ali MA, Abbas A, Niaz S, Zulkiffal M, Ali S (2009) Morpho-physiological criteria for drought tolerance in sorghum (Sorghum bicolor) at seedling and post-anthesis stages. Int J Agric Biol 11:674–680

    Google Scholar 

  • Ali A, Basra MA, Iqbal J, Hussain SM, Subhani M, Ahmed S (2014) Augmenting the salt tolerance in wheat (Triticum aestivum L) through exogenously applied silicon. Afri J Biotech 1:642–649

    Google Scholar 

  • Alqarawi AA, Allah EF, Hashem A, Huqail A, Sahli AA (2014) Impact of abiotic salt stress on some metabolic activities of Ephedra alata Dence. Food Agric Environ 12:620–625

    CAS  Google Scholar 

  • Amanullah IA, Ali A, Fahad S, Parmar B (2016) Nitrogen source and rate management improve maize productivity of smallholders under semiarid climates. Front Plant Sci 7:1773. doi:10.3389/fpls.2016.01773

    Article  CAS  Google Scholar 

  • Armstrong J, Armstrong W (2005) Rice: sulfide-induced barriers to root radial oxygen loss, Fe2+ and water uptake, and lateral root emergence. Ann Bot 96:625–638

    CAS  Google Scholar 

  • Armstrong W, Drew MC (2002) Root growth and metabolism under oxygen deficiency. In: Waisel Y, Eshel A, Kafkaf U (eds) Plant roots: the hidden half. Marcel Dekker, New York

    Google Scholar 

  • Ashraf M, Ahmad A, Qurainy F, Ashraf MY (2011) Alleviation of waterlogging stress in upland cotton (Gossypium hirsutum L.) by exogenous application of potassium in soil and as a foliar spray. Crop Pasture Sci 62:25–38 Available at http://www.askci.com (USDA 2015)

    CAS  Google Scholar 

  • Bange MP, Milroy SP, Thongbai P (2004) Growth and yield of cotton in response to waterlogging. Field Crops Res 88:129–142

    Google Scholar 

  • Bange MP, Milroy SP, Ellis M, Thongbai P (2010) Opportunities to reduce the impact of water-logging on cotton. In: Dove, H, Culvenor, RA, editors. Food security from sustainable agriculture. Proceedings of 15th Australian Agronomy Conference; 2010 Nov 15–18; Lincoln (New Zealand): Australian Society of Agronomy

  • Barraclough PB, Howarth J, Jones J, Lopez R, Parmar S, Shepherd CE, Hawkesford MJ (2010) Nitrogen efficiency of wheat: genotypic and environmental variation and prospects for improvement. Eur J Agron 33:1–11

    CAS  Google Scholar 

  • Barrick B, Steiner R, Picchioni G, Ulery A, Zhang J (2015) Salinity responses of selected introgressed cotton lines grown in two soils from organic and conventional cotton production. J Cotton Sci 19:268–278

    CAS  Google Scholar 

  • Belimov AA, Safronov VI, Sergeyeva TA, Egorova TN, Matveyeva VA, Tsyganov V, Borisov AY, Tikhonovich IA, Kluge C, Preisfeld A, Stepanok VV DK (2001) Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Canadian J Microb 47:642–652

    CAS  Google Scholar 

  • Berg G, Alavi M, Schmidt CS, Zachow C, Egamberdieva D, Kamilova F, Lugtenberg B (2013) Biocontrol and osmoprotection for plants under saline conditions. In: de Bruijn FJ (ed) Molecular microbial ecology of the rhizosphere. Wiley Blackwell, USA

    Google Scholar 

  • Beyaert RP, Roy RC (2005) Influence of nitrogen fertilization on multi-cut forage sorghum-sudangrass yield and nitrogen use. Agron J 97:1493–1501

    Google Scholar 

  • Bhardwaj SN, Singh M (1991) Thermal relation of light utilization and biomass production in upland cotton (Gossypium hirsutum L.). In Proceedings of Indo US workshop on impact of global climatic changes on photosynthesis and plant productivity 651–662

  • Brown BD, Petrie S (2006) Irrigated hard winter wheat response to fall, spring, and late season applied nitrogen. Field Crops Res. 96:260–268

    Google Scholar 

  • Brown RS, Oosterhuis DM, Coker DL, Fowler L (2003) The dynamics of dry matter partitioning in the cotton boll of modern and obsolete cultivars. In Proceeding of the Beltwide Cotton Conferences. National Cotton Council of America, Memphis. 1886–1889

  • Brownfield DL, Todd CD, Deyholo MK (2008) Analysis of Arabidopsis arginasegene transcription patterns indicates specific biological functions for recently diverged paralogs. Plant Mol Biol 67:429–440

    CAS  Google Scholar 

  • Burke JJ, Velten J, Oliver MJ (2004) In vitro analysis of cotton pollen germination. Agron J 96:359–368

    Google Scholar 

  • Canfield DE, Glazer AN, Falkowski PG (2010) The evolution and future of earth’s nitrogen cycle. Sci 330:192–196

    CAS  Google Scholar 

  • Cassman KG, Dobermann A, Walters DT, Yang H (2003) Meeting cereal demand while protecting natural resources and improving environmental quality. Ann Review Environ Resour 28:315–358

    Google Scholar 

  • Chao W, Kehui C, Wencheng W, Qian L, Fahad S, Qiuqian H, Jianliang H, Lixiao N, Shaobing P (2016) Heat-induced phytohormone changes are associated with disrupted early reproductive development and reduced yield in rice. Sci Rep. doi:10.1038/srep34978

    Article  Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought: from genes to the whole plant. Funct Plant Biol 30:239–264

    CAS  Google Scholar 

  • Chazen O, Neumann PM (1994) Hydraulic signals from the roots and rapid cell wall hardening in growing (Zea mays L.) leaves are primary response to PEG induced water deficits. J Plant Physiol 104:1385–1392

    CAS  Google Scholar 

  • Chen DH, Ye GY, Yang CQ, Chen Y, Wu YK (2003) Effect of introducing Bacillus thuringiensis gene on nitrogen metabolism in cotton. Field Crop Res 92:1–9

    Google Scholar 

  • Christianson J, Lewellyn DJ, Dennis ES, Wilson IW (2010) Global gene expression responses to waterlogging in roots and leaves of cotton (Gossypium hirsutum L.) Plant Cell Physiol 51:21–37

    CAS  Google Scholar 

  • Ciampitti IA, Vyn TJ (2011) A comprehensive study of plant density consequences on nitrogen uptake dynamics of maize plants from vegetative to reproductive stages. Field Crops Res. 121:2–18

    Google Scholar 

  • Clapp CE, Chen Y, Hayes MHB, Cheng HH (2001) Plant growth promoting activity of humic substances. In: Seift RS, Sparks KM (eds) Understanding and managing organic matter in soils, sediments and water. IHSS, Madison, pp 243–255

    Google Scholar 

  • Colmer TD, Voesenek L (2009) Flooding tolerance: suites of plant traits in variable environments. Funct Plant Biol 36:665–681

    Google Scholar 

  • Conaty WC, Tan DKY, Constable GA, Sutton BG, Field DJ, Mamun EA (2008) Genetic variation for waterlogging tolerance in cotton. J Cotton Sci 12:53–61

    Google Scholar 

  • Conaty WC, Mahan JR, Neilsen JE, Tan DKY, Yeates SJ, Sutton BG (2015) The relationship between cotton canopy temperature and yield, fiber quality and water-use efficiency. Irrigation Sci 183:329–341

    Google Scholar 

  • Constable GA, Reid PE, Thomson NJ (2001) Approaches utilized in breeding and development of cotton cultivars in Australia. In: J JN, Saha S (eds) Genetic Improvement of Cotton. Science Publishers, Inc, Mississippi State, pp 1–15

    Google Scholar 

  • Constable GA, Bange MP (2015) The yield potential of cotton (Gossypium hirsutum L.) Field Crops Res. 182:98–106

    Google Scholar 

  • Corradini ED, Moura MR, Mattoso HC (2010) A preliminary study of the incorporation of NPK fertilizer into chitosan nanoparticles. Exp Poly Lett 4:509–515

    CAS  Google Scholar 

  • Cotte NS, Bange MP, Wilson IW, Tan DKY (2012) Developing controlled environment screening for high-temperature tolerance in cotton that accurately reflects performance in the field. Funct Plant Biol 39:670–678

    Google Scholar 

  • Cottee NS, Tan DKY, Bange MP, Cothren JT, Campbell LC (2010) Multi-level determination of heat tolerance in cotton (Gossypium hirsutum L.) under field conditions. Crop Sci 50:2553–2564

    Google Scholar 

  • Cottee NS, Wilson IW, Tan DKY, Bange MP (2014) Understanding the molecular events underpinning cultivar differences in the physiological performance and heat tolerance of cotton (Gossypium hirsutum L). Funct Plant Biol 41:56–67

    CAS  Google Scholar 

  • Dai YN, Li P, Zhang JP, Wang AQ, Wei Q (2008) Swelling characteristics and drug delivery properties of nifedipine-loaded pH sensitive alginate-chitosan hydrogel beads. J Appl Biomater 86:493–500

    Google Scholar 

  • Dodd K, Guppy C, Lockwood P, Rochester I (2010) The effect of sodicity on cotton plant response to solutions containing high sodium concentrations. J Plant Soil 330:239–249

    CAS  Google Scholar 

  • Dong H (2012) Technology and field management for controlling soil salinity effects on cotton. Aust J Crop Sci 6:333–341

    CAS  Google Scholar 

  • Egamberdieva D, Jabborova Hashem DA (2015) Pseudomonas induces salinity tolerance in cotton (Gossypium hirsutum L.) and resistance to Fusarium root rot through the modulation of indole-3-acetic acid. Saudi J Biol Sci 1:1319–1562

    Google Scholar 

  • Egamberdieva D, Kucharova Z (2009) Selection for root colonizing bacteria stimulating wheat growth in saline soils. Plant Sci 45:561–573

    Google Scholar 

  • Ellis MH, Millar AA, Llewellyn DJ, Peacock WJ, Dennis ES (2000) Transgenic cotton (Gossypium hirsutum L) over-expressing alcohol dehydrogenase shows increased ethanol fermentation but no increase in tolerance to oxygen deficiency. Aust J Plant Physiol 27:1041–1050

    CAS  Google Scholar 

  • Ercoli L, Arduini I, Mariotti M, Lulli Masoni L (2012) Management of sulphur fertilizer to improve durum wheat production and minimize S leaching. Eur J Agron 38:74–82

    CAS  Google Scholar 

  • Fahad S, Bano A (2012) Effect of salicylic acid on physiological and biochemical characterization of maize grown in saline area. Pak J Bot 44:1433–1438

    Google Scholar 

  • Fahad S, Chen Y, Saud S, Wang K, Xiong D, Chen C, Wu C, Shah F, Nie L, Huang J (2013) Ultraviolet radiation effect on photosynthetic pigments, biochemical attributes, antioxidant enzyme activity and hormonal contents of wheat. J Food, Agri Environ 11(3&4):1635–1641

    CAS  Google Scholar 

  • Fahad S, Hussain S, Bano A, Saud S, Hassan S, Shan D, Khan FA, Khan F, Chen Y, Wu C, Tabassum MA, Chun MX, Afzal M, Jan A, Jan MT, Huang J (2014a) Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. Environ Sci Pollut Res. doi:10.1007/s11356-014-3754-2

    Article  Google Scholar 

  • Fahad S, Hussain S, Matloob A, Khan FA, Khaliq A, Saud S, Hassan S, Shan D, Khan F, Ullah N, Faiq M, Khan MR, Tareen AK, Khan A, Ullah A, Ullah N, Huang J (2014b) Phytohormones and plant responses to salinity stress: a review. Plant Growth Regul DOI. doi:10.1007/s10725-014-0013-y

    Article  Google Scholar 

  • Fahad S, Hussain S, Saud S, Tanveer M, Bajwa AA, Hassan S, Shah AN, Ullah A, Wu C, Khan FA, Shah F, Ullah S, Chen Y, Huang J (2015a) A biochar application protects rice pollen from high-temperature stress. Plant Physiol Biochem 96:281–287

    CAS  Google Scholar 

  • Fahad S, Nie L, Chen Y, Wu C, Xiong D, Saud S, Hongyan L, Cui K, Huang J (2015b) Crop plant hormones and environmental stress. Sustain Agric Rev 15:371–400

    Google Scholar 

  • Fahad S, Hussain S, Saud S, Hassan S, Chauhan BS, Khan F et al (2016a) Responses of rapid viscoanalyzer profile and other rice grain qualities to exogenously applied plant growth regulators under high day and high night temperatures. PLoS One 11(7):e0159590. doi:10.1371/journal.pone.0159590

    Article  CAS  Google Scholar 

  • Fahad S, Hussain S, Saud S, Khan F, Hassan S, Jr A, Nasim W, Arif M, Wang F, Huang J (2016b) Exogenously applied plant growth regulators affect heat-stressed rice pollens. J Agron Crop Sci 202:139–150

    CAS  Google Scholar 

  • Fahad S, Hussain S, Saud S, Hassan S, Ihsan Z, Shah AN, Wu C, Yousaf M, Nasim W, Alharby H, Alghabari F, Huang J (2016c) Exogenously applied plant growth regulators enhance the morphophysiological growth and yield of rice under high temperature. Front Plant Sci 7:1250. doi:10.3389/fpls.2016.01250

    Article  Google Scholar 

  • Fahad S, Hussain S, Saud S, Hassan S, Tanveer M, Ihsan MZ, Shah AN, Ullah A, Nasrullah KF, Ullah S, AlharbyH NW, Wu C, Huang J (2016d) A combined application of biochar and phosphorus alleviates heat-induced adversities on physiological, agronomical and quality attributes of rice. Plant Physiol Biochem 103:191–198

    CAS  Google Scholar 

  • Fang Y, Xiong L (2015) General mechanisms of drought response and their application in drought resistance improvement in plants. Cellular and Molecular Life Sci 72:673–689

    CAS  Google Scholar 

  • Farooq M, Aziz T, Wahid A, Lee DJ, Siddique KM (2009) Chilling tolerance in maize: agronomic and physiological approaches. Crop Pasture Sci. 60:501–516

    Google Scholar 

  • Food and Agricultural Organization (2008) Current world fertilizer trends and out look to 2011/12. FAO, Rome

    Google Scholar 

  • Foulkes MJ, Hawkesford MJ, Barraclough PB, Holdsworth MJ, Kerr S, Kightley S, Shewry PR (2010) Identifying traits to improve the nitrogen economy of wheat: Recent advances and future prospects. Field Crops Res 114:329–342

    Google Scholar 

  • Gaines I, Yilmaz A (1983) Comparison of five humic acid. Fuel 62:373–379

    Google Scholar 

  • Giller KE, Witter E, McGrath SP (2009) Heavy metals and soil microbes. Soil Biol Biochem 41:2031–2037

    CAS  Google Scholar 

  • Good AG, Shrawat AK, Muench DG (2004) Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trend in Plant Sci 9:597–605

    CAS  Google Scholar 

  • Gong M, Tang M, Chen H, Zhang Q, Feng X (2013) Effects of two Glomus species on the growth and physiological performance of Sophora davidii seedlings under water stress. New Forest 44:399–408

    Google Scholar 

  • Guinn G (1974) Abscission of cotton floral buds and bolls as influenced by factors affecting photosynthesis and respiration. Crop Sci 14:291–293

    CAS  Google Scholar 

  • Guo WQ, Chen BL, Liu RX, Zhou ZG (2010) Effects of nitrogen application rate on cotton leaf antioxidant enzyme activities and endogenous hormone contents under short-term waterlogging at flowering and boll-forming stage. Chinese J Applied Ecology 21:53–60

    CAS  Google Scholar 

  • Hafiz MH, Wajid F, Farhat A, Fahad S, Shafqat S, Wajid N, Hafiz FB (2016) Maize plant nitrogen uptake dynamics at limited irrigation water and nitrogen. Environ Sci Pollut Res. doi:10.1007/s11356-016-8031-0

    Article  Google Scholar 

  • Hai SM, Mir S (1998) The lignitic coal derived HA and the prospective utilization in Pakistan’s agriculture and industry. Sci, Tech Dev 17:32–40

    Google Scholar 

  • Hemphill JK, Basal H, Smith WC (2006) Screening methods for salt tolerance in cotton. J Plant Pathol 1:107–112

    Google Scholar 

  • Higbie SM, Wang F, Stewart JM, Sterling TM, Lindemann WC, Hughs E, Zhang J (2010) Physiological response to salt (NaCl) stress in selected cultivated tetraploid cotton. Int J Agron 2:11–12

    Google Scholar 

  • Hirel B, Gouis J, Ney B, Gallais A (2007) The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. Exp Bot 58:2369–2387

    CAS  Google Scholar 

  • Hirose T (2011) Nitrogen use efficiency revisited. Oecologia 166:863–867

    Google Scholar 

  • Hodgsen AS (1982) The effects of duration, timing and chemical amelioration of short term waterlogging during furrow irrigation of cotton in a cracking grey clay. Aust J Agric Res 33:1019–1028

    Google Scholar 

  • Hodgson AS (1990) Micronutrients: are they important under waterlogging? 5th Australian Cotton Conference. pp165–170

  • Hooda PS, Edwards AC, Anderson HA, Miller A (2000) A review of water quality concerns in livestock farming areas. Sci Total Environ 250:143–167

    CAS  Google Scholar 

  • Hou Z, Li P, Li B, Gong Z, Wang Y (2007) Effects of fertigation scheme on N uptake and N use efficiency in cotton. Plant Soil 290:115–126

    CAS  Google Scholar 

  • Hu L, Wang Z, Huang B (2011) Effects of cytokinin and potassium on stomatal and photosynthetic recovery of Kentucky bluegrass from drought stress. J Crop Sci 53:221–231

    Google Scholar 

  • IFAI (2008) International Fertilizer Association Industry 76 the IFA Annual Conference, Vienna, Austria, 19–21 May

  • Iqbal N, Umar S, Khan NA (2015) Nitrogen availability regulates proline and ethylene production and alleviates salinity stress in mustard (Brassica juncea). J Plant Physiol 178:84–91

    CAS  Google Scholar 

  • Isfan D (1990) Nitrogen physiological efficiency index in some selected spring barley cultivars. Plant Nutr 13:907–914

    CAS  Google Scholar 

  • Joham HE (1986) Effects of nutrient elements on fruiting efficiency. In: Mauney JR, Stewart JM (eds) Cotton physiology. The Cotton Foundation, Memphis, pp 79–89

    Google Scholar 

  • Khabaz-Saberi H, Setter TL, Waters I (2006) Waterlogging induces high to toxic concentrations of iron, aluminum, and manganese in wheat varieties on acidic soil. J Plant Nutr 29:899–911

    CAS  Google Scholar 

  • Khan AL, Hamayun M, Kang SM, Lee JH, Lee IN (2011) Gibberellins producing endophytic Aspergillus fumigatus sp. LH02 influenced endogenous phytohormonal levels, isoflavonoids production and plant growth in salinity stress. Process Biochem 46:440–447

    CAS  Google Scholar 

  • Khan A, Munsif F, Akhtar K, Afridi MZ, Zahoor A, Fahad S, Ullah R, Khan FA, Din M (2014) Response of fodder maize to various levels of nitrogen and phosphorus. Ame. J. Plant Sci. 5:2323–2329

    CAS  Google Scholar 

  • Khawar J, Mubshar H, Fahad S, Muhammad F, Ali AB, Hesham A, Wajid N (2016) Economic assessment of different mulches in conventional and water-saving rice production systems. Environ Sci Pollut Res. doi:10.1007/s11356-016-6162-y

    Article  Google Scholar 

  • Krieg DR (1986) Feedback control and stress effects on photosynthesis. In Proceeding of the Beltwide Cotton Conferences, 227–243. National Cotton Council of America, Memphis

  • Kuai J, Liu Z, Wang Y, Meng Y, Chen B, Zhao W, Oosterhuis DM (2014) Waterlogging during flowering and boll forming stages affects sucrose metabolism in the leaves subtending the cotton boll and its relationship with boll weight. J. Plant Sci. 223:79–98

    CAS  Google Scholar 

  • Kuai J, Zhou Z, Wang Y, Meng Y, Chen B, Zhao W (2015) The effects of short-term waterlogging on the lint yield and yield components of cotton with respect to boll position. Eur J Agron 67:61–74

    Google Scholar 

  • Leblanc A, Renault H, Lecourt J, Etienne P, Deleu C, Le Deunff E (2008) Elongation changes of exploratory and root hair systems induced by aminocyclopropane carboxylic acid and aminoethoxyvinylglycine affect nitrate uptake and BnNrt2. 1 and BnNrt1. 1 transporter gene expression in oilseed rape. Plant Physiol 146:1928–1940

    CAS  Google Scholar 

  • Le-Gouis J, Beghin D, Heumez E, Pluchard P (2000) Genetic differences for nitrogen uptake and nitrogen utilization efficiencies in winter wheat. Eur J Agron 12:163–173

    CAS  Google Scholar 

  • Li HB, Vaillancourt R, Mendham N, Zhou MX (2008) Comparative mapping of quantitative trait loci associated with waterlogging tolerance in barley (Hordeum vulgare L.) BMC Genomics 9:401

    Google Scholar 

  • Li Z, Mei S, Mei Z, Liu X, Fu T, Zhou G, TU J (2014) Mapping of QTL associated with waterlogging and drought resistance during the seedling stage in oilseed rape (Brasssica napas). Euphytica 197:341–353

    Google Scholar 

  • Luo H, Zhang H, Han H, Hu Y, Zhang Y, Zhang W (2014) Effects of water storage in deeper soil layers on growth, yield, and water productivity of cotton in arid areas of northwestern China. J Irrigation and Drainage 63:59–70

    Google Scholar 

  • Luo HH, Tao XP, Hu YY, Zhang YL, Zhang WF (2015) Response of cotton root growth and yield to root restriction under various water and nitrogen regimes. J Plant Nutr Soil Sci 178:384–392

    CAS  Google Scholar 

  • Mano Y, Omori F (2009) High-density linkage map around the root aerenchyma locus qaer1.06 in the backcross populations of maize mi29 teosinte “Zea nicaraguensis”. Breeding Sci 59:427–433

    CAS  Google Scholar 

  • Mano Y, Omori F, Takamizo T, Kindiger B, Bird RM, Loaisiga CH, Takahashi H (2007) QTL mapping of root aerenchyma formation in seedlings of a maize rare teosinte “Zea nicaraguensis” cross. Plant Soil 295:103–113

    CAS  Google Scholar 

  • Milroy SP, Bange MP, Thongbai P (2009) Cotton leaf nutrient concentration in response to waterlogging under field condition. Field Crop Res 113:246–255

    Google Scholar 

  • Mokhele B, Zhan X, Yang G, Zhang X (2012) Nitrogen assimilation in crop plants and its affecting factors. Canadian J Plant Sci 92:399–405

    CAS  Google Scholar 

  • Mustroph A, Albrecht G (2003) Tolerance of crop plants to oxygen deficiency stress: fermentative activity and photosynthetic capacity of entire seedlings under hypoxia and anoxia. Physiol Plant 117:508–520

    CAS  Google Scholar 

  • Najeeb U, Atwell B, Bange M, Tan DKY (2015a) Aminoethoxyvinylglycine (AVG) ameliorates waterlogging-induced damage in cotton by inhibiting ethylene synthesis and sustaining photosynthetic capacity. Plant Growth Regul 76:83–98

    CAS  Google Scholar 

  • Najeeb U, Bange MP, Tan DKY, Atwell BJ (2015b) Consequences of waterlogging in cotton and opportunities for mitigation of yield losses. AoB Plants 7:plv080

    Google Scholar 

  • Najeeb U, Tan DKY, Bange MP (2015c) Inducing waterlogging tolerance in cotton via an anti-ethylene agent aminoethoxyvinylglycine application. Arch. Agron. Soil Sci 1–11

  • Nardi S, Sessi E, Pizzeghello D, Sturato A, Rella R, Parvoli G (2002b) Biological activity of soil organic matter mobilized by root exudates. Chemosphere 46:1075–1081

    CAS  Google Scholar 

  • Nazar R, Iqbal N, Masood A, Syeed S, Khan NA (2011) Understanding the significance of sulfur in improving salinity tolerance in plants. Environ Exp Bot 70:80–87

    CAS  Google Scholar 

  • Nieman RH, Clark KA (1976) Interactive effects of salinity and phosphorus nutrition on concentrations of phosphate and phosphate esters in mature photo synthesizing corn leaves. Plant Physiol 57:157–161

    CAS  Google Scholar 

  • Noman A, Fahad S, Aqeel M, Ali U, Amanullah, Anwar S, Baloch SK, Zainab M (2017) miRNAs: major modulators for crop growth and development under abiotic stresses. Biotechnol Lett. doi:10.1007/s10529-017-2302-9

    Article  Google Scholar 

  • Novoa R, Loomi RS (1981) Green plants play a unique role among living organisms through their ability to reduce carbon in photosynthesis. Plant Soil 58:177–204

    CAS  Google Scholar 

  • Oosterhuis DM, Chipamaunga J, Bate GC (1983) Nitrogen uptake in Field-grown cotton. I. Distribution of in plant components in relation to fertilization And yield. Exp. Agric. 19:91–101

    Google Scholar 

  • Orcen N, Nazarian GR, Barlas T, Irget E (2013) Variation in stomatal traits based on plant growth parameters in Corn (Zea mays L.) Ann Biolog Res 4(11):25–29

    Google Scholar 

  • Pang JY, Zhou MX, Mendham N, Shabala S (2004) Growth and physiological responses of six barley genotypes to waterlogging and subsequent recovery. Crop Pasture Sci 55:895–906

    Google Scholar 

  • Parelle J, Zapater M, Scotti-Saintagne C, Kremer A, Jolivet Y, Dreyer E, Brendel O (2007a) Quantitative trait loci of tolerance to waterlogging in a European oak (Quercus robur L.): physiological relevance and temporal effect patterns. Plant Cell Environ 30:422–434

    Google Scholar 

  • Parelle J, Brendel O, Jolivet Y, Dreyer E (2007b) Intra- and interspecific diversity in the response to waterlogging of two co-occurring white oak species (Quercus Robur and Q. Petraea). Tree Physiol 27(7):1027-1034

    Google Scholar 

  • Parelle J, Dreyer E, Brendel O (2010) Genetic variability and determinism of adaptation of plants to soil waterlogging. In: Mancuso S, Shabala S (eds) Waterlogging signalling and tolerance in plants. Springer, Heidelberg, pp 241–265

    Google Scholar 

  • Parent B, Hachez C, Redondo E, Simonneau T, Chaumont F, Tardieu F (2009) Drought and abscisic acid effects on aquaporin content translate into changes in hydraulic conductivity and leaf growth rate: a trans-scale approach. Plant Physiol 149:2000–2012

    CAS  Google Scholar 

  • Pavlíková D, Neubreg M, Zizkova E, Motyka V, Pavlik M (2012) Interaction between nitrogen nutrition and Phytohormone levels in Festulolium plants. Plant Soil Environ 58:367–372

    Google Scholar 

  • Percival GC, Keary IP (2008) The influence of nitrogen fertilization on waterlogging stresses in Fagus sylvatica L. and Quercus robur L. Arboriculture Urban. Forestry 34:29

    Google Scholar 

  • Pessarakli M (2001) Physiological responses of cotton (Gossypium hirsutum L.) to salt stress. In: Pessarakli (ed) Handbook of plant and crop physiology. Marcel Dekker, New York, pp 681–696

    Google Scholar 

  • Pettigrew WT (2008) The effect of higher temperatures on cotton lint yield production and fiber quality. Crop Sci 48:278–285

    Google Scholar 

  • Pettigrew WT, Meredith WJ (1994) Leaf gas exchange parameters vary among cotton genotypes. Crop Sci 34:700–705

    Google Scholar 

  • Pitman MG, Läuchli A (2002) Global impacts of salinity and agricultural ecosystems. In: Läuchli A, Lüttge U (eds) Salinity: environment-plants-molecules. Springer Sciences, New York, pp 3–20

    Google Scholar 

  • Prado K, Maurel C (2013) Regulation of leaf hydraulics from molecular to whole plant levels. J. Plant Sci. 4:10–255

    Google Scholar 

  • Qiu FZ, Zheng YL, Zhang ZL, Xu SZ (2007) Mapping of QTL associated with waterlogging tolerance during the seedling stage in maize. Ann Bot 99:1067–1081

    Google Scholar 

  • Raun WR, Solie JB, Taylor RK, Arnall Mack CJ, Edmonds DE (2008) Ramp calibration strip technology for determining midseason nitrogen rates in corn and wheat. Agron J 100:1088–1093

    CAS  Google Scholar 

  • Reddy KR, Prasad PV, Kakani VG (2005) Crop responses to elevated carbon dioxide and interactions with temperature, 157–191. In Ecological responses and adaptations of crops to rising atmospheric carbon dioxide, eds. Binghamton

  • Riaz M, Farooq J, Sakhawat G, Mahmood A, Sadiq M, Yaseen M (2013) Genotypic variability for root/shoot parameters under water stress in some advanced lines of cotton (Gossypium hirsutum L.) genetic and mole. Res 12:552–561

    CAS  Google Scholar 

  • Rizhysky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittlerm R (2004) When defense pathways collide: the response of Arabidopsis to a combination of drought and heat stress. J Plant Physiol 134:1683–1696

    Google Scholar 

  • Rochester I (2001) Nutripak: a practical guide to cotton nutrition. In: Centre ACCR. CSIRO Publishing, Narrabri

  • Rojas AM, Aguilar KM, Golubo J, Mandujanoa MC (2011) Effect of gibberellic acid on germination of seeds of five species of cacti from the Chihuahuan Desert, Northern Mexico. J Southwest Natural 56:393–400

    Google Scholar 

  • Rollins JA, Habte E, Templer SE, Colby T, Schmidt J, Korff M (2013) Leaf proteome alterations in the context of physiological and morphological responses to drought and heat stress in barley (Hordeum vulgare L.) J Exp Bot 64:3201–3212

    CAS  Google Scholar 

  • Rosolem CA, Oosterhuis DM, Souza SD (2012) Cotton response to mepiquat chloride and temperature. Sci Agric 70:82–87

    Google Scholar 

  • Saharan BS, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res 21:1–30

    Google Scholar 

  • Sakamoto A, Murata N (2002) The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ 25:163–171

    CAS  Google Scholar 

  • Sanka N, Huber W (1974) Effect of salinity and gibberellins on the activities of photosynthetic enzymes and 14 CO2-fixation products in leaves of Pennisetum typhoides seedlings. Biochem Physiol 166:181–187

    Google Scholar 

  • Saud S, Chen Y, Long B, Fahad S, Sadiq A (2013) The different impact on the growth of cool season turf grass under the various conditions on salinity and draught stress. Int J Agric Sci Res 3:77–84

    Google Scholar 

  • Saud S, Li X, Chen Y, Zhang L, Fahad S, Hussain S, Sadiq A, Chen Y (2014) Silicon application increases drought tolerance of Kentucky bluegrass by improving plant water relations and morphophysiological functions. Sci World J. doi:10.1155/2014/368694

    Article  Google Scholar 

  • Saud S, Chen Y, Fahad S, Hussain S, Na L, Xin L, Alhussien SAAFE (2016) Silicate application increases the photosynthesis and its associated metabolic activities in Kentucky bluegrass under drought stress and post-drought recovery. Environ Sci Pollut Res. doi:10.1007/s11356- 016-6957-x

    Article  Google Scholar 

  • Schindler FV, Knighton RE (1999) Effect of fertilizer nitrogen applied to corn as estimated by the isotopic and difference methods. J Soil Sci 63:1734–1740

    CAS  Google Scholar 

  • Schrader LE, Thomas RJ (1981) Nitrate uptake reduction and transport in the whole plant. In Nitrogen and carbon metabolism. 49–93. Springer Netherlands

  • Setter TL, Waters I, Sharma SK, Singh KN, Kulshreshtha N, Yaduvanshi NPS, Ram PC, Singh BN, Rane J, McDonald G (2009a) Review of wheat improvement for waterlogging tolerance in Australia and India: the importance of anaerobiosis and element toxicities associated with different soils. Ann Bot 103:221–235

    CAS  Google Scholar 

  • Setter TL, Waters I, Sharma SK, Singh KN, Kulshreshtha N, Yaduvanshi NS, Ram PC, Singh BN, Rane J, McDonald G, Khaba H, Biddulph TB, Wilson R, Barclay I, McLean R, Cakir M (2009b) Review of wheat improvement for waterlogging tolerance in Australia and India: the importance of anaerobiosis and element toxicities associated with different soils. Ann Bot 103:221–235

    CAS  Google Scholar 

  • Shabala S (2011) Physiological and cellular aspects of phytotoxicity tolerance in plants: the role of membrane transporters and implications for crop breeding for waterlogging tolerance. New Phytol 190:289–298

    CAS  Google Scholar 

  • Shah F, Lixiao N, Kehui C, Tariq S, Wei W, Chang C, Liyang Z, Farhan A, Fahad S, Huang J (2013) Rice grain yield and component responses to near 2°C of warming. Field Crops Res 157:98–110

    Google Scholar 

  • Shimono H, Bunce JA (2009) Acclimation of nitrogen uptake capacity of rice to elevated atmospheric CO2 concentration. Ann Bot 103:87–94

    CAS  Google Scholar 

  • Sieling K, Beims S (2007) Different cropping systems. J Agron Crop Sci 193:10–20

    CAS  Google Scholar 

  • Snider JL, Oosterhuis DM, Skulman BW, Kawakami EM (2009) Heat stress induced limitations to reproductive success in Gossypium hirsutum. Physiol Plant 137:125–138

    CAS  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signalling. J Microbiol 31:425–448

    CAS  Google Scholar 

  • Stevenson FJ (1994) Humus chemistry: genesis, composition, reactions, 2nd edn. Wiley, New York, p 496

    Google Scholar 

  • Taiz L, Zeiger E (2006) Plant physiology. Sinauer Associates Press, Sunderland

    Google Scholar 

  • Tichner R (2000) Nitrate uptake and reduction in higher and lower plants. Plant Cell Environ 23:1005–1024

    Google Scholar 

  • Tisdale SL, Nielson WL, Beaten JD, Halving JL (1993) Elements required in plant nutrition. In Soil fertility and fertilizers. McMillan Publishing Co. N.Y., pp. 48–49

  • Turan M, Ekinci M, Yildirim E, Gnes A, Karagz K, Kotan R, Dursun A (2014) Plant growth-promoting rhizobacteria improved growth, nutrient, and hormone content of cabbage (Brassica oleracea) seedlings. Turk J Agric 38:327–333

    CAS  Google Scholar 

  • Upadhyaya H, Dutta L, Sahooa Panda SK (2012) Comparative effect of Ca, K, Mn and B on post-drought stress recovery in tea Camellia sinensis (L.) J. Plant Sci. 3:443–460

    CAS  Google Scholar 

  • USDA (2015) Cotton and Wool Outlook/CWS-15i/September 15, 2015 Economic Research Service, USDA. https://www.ers.usda.gov/topics/crops/cotton-wool.aspx

  • Vadez V, Kholova J, Choudhary S, Zindy P, Terrier M, Krishnamurth L, Kumar PR, Turne NC (2011) Whole plant response to drought under climate change. In: Yadav SS, Redden R, Hatfield JL, Lotze-Campen H, Hall AE (eds) Crop adaptation to climate change. Wiley-Blackwell, Chichester

    Google Scholar 

  • Vadez V, Berger JD, Warkentin T, Asseng S, Ratnakumar P, Rao KC, Gaur PM, Jolain NM, Larmure A, Voisin AS, Sharma HC, Pande S, Sharma M, Krishnamurthy L, Zaman MA (2012) Adaptation of grain legumes to climate change: a review. Agron Sustain Deve 32:31–44

    Google Scholar 

  • Vantoai TT, Martin SK, Chase K, Boru G, Schnipke V, Schmitthenner AF, Lark KG (2001) Identification of a QTL associated with tolerance of soybean to soil waterlogging. Crop Sci 41:1247–1252

    Google Scholar 

  • Wahid A (2007) Physiological implications of metabolites bio-synthesis in net assimilation and heat stress tolerance of sugarcane sprouts. J Plant Res 120:219–222

    Google Scholar 

  • Wajid N, Hatem B, Muhammad T, Fahad S, Hafiz MH, Muhammad M, Muhammad FHM, Hassan JC, Imran K, Faisal M, Tauqeer A, Fahd R, Muhammad N, Ali AB, Najeeb U, Alghabari F, Saud S, Hussani M, Rafiq A (2015) Correlation studies on nitrogen for sunflower crop across the agroclimatic variability. Environ Sci Pollut Res. doi:10.1007/s11356-015-5613-1

    Article  Google Scholar 

  • Wiedenfeld BB, Wallace W, Hons F (2009) Indicator of cotton nitrogen status. J Plant Nutr 32:1353–1370

    CAS  Google Scholar 

  • Wise RR, Olson AJ, Schrader SM, Sharkey TD (2004) Electron transport is the functional limitation of photosynthesis in field-grown Pima cotton plants at high temperature. Plant Cell Environ 27:717–724

    CAS  Google Scholar 

  • Witcombe JR, Hollington PA, Howarth CJ, Reader S, Steele KA (2008) Breeding for abiotic stresses for sustainable agriculture. Philosophical Trans 363:703–716

    CAS  Google Scholar 

  • Witt C, Dobermann A, Abdulrachman S, Gines HC, Wang G, Nagarajan R, Satawatananont S, Son TT, Tan PS, Tiem LV, Simbahan GC, Olk DC (1999) Internal nutrient efficiencies of irrigated lowland rice in tropical and subtropical Asia. Field Crops Res. 63:113–118

    Google Scholar 

  • Wu L, Liu M (2008) Preparation and properties of chitosan-coated NPK compound fertilizer with controlled release and water retention. J Carbohydrate Polymers 72:240–247

    CAS  Google Scholar 

  • Yang SF, Hoffman NE (1984) Ethylene biosynthesis and its regulation in higher plants. Plant Physiol 35:155–189

    CAS  Google Scholar 

  • Yang GZ, Tang HY, Nie YC, Zhang XL (2011) Response of cotton growth, yield, and biomass to nitrogen split application ratio. Eur J Agron 35:164–170

    CAS  Google Scholar 

  • Yang GZ, Chu KY, Tang HY, Nie YC, Zhang XL (2013) Fertilizer 15N accumulation, recovery and distribution in cotton plant as affected by N rate and split. J Int Agric 12:999–1007

    Google Scholar 

  • Yoshida T, Mogami J, Yamaguchi-Shinozaki K (2014) ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. Current Opinion Plant Biol 21:133–139

    CAS  Google Scholar 

  • Yoshimura T, Matsuo K, Fujioka R (2006) Novel biodegradable superabsorbent hydrogels derived from cotton cellulose and succinic anhydride: synthesis and characterization. J. Applied Polymer Sci. 99:3251–3256

    CAS  Google Scholar 

  • Yousaf M, Li X, Ren T, Cong R, Ata-Ul Karim ST, Shah AN, Khan MJ, Zhang Z, Fahad S, Lu J (2016a) Response of nitrogen, phosphorus and potassium fertilization on productivity and quality of winter rapeseed in Central China. Int J Agric Biol 16:1137–1142

    Google Scholar 

  • Yousaf M, Li X, Zhang Z, Ren T, Cong R, Ata-Ul-Karim ST, Fahad S, Shah AN, Lu J (2016b) Nitrogen fertilizer management for enhancing crop productivity and nitrogen use efficiency in a rice-oilseed rape rotation system in China. Front Plant Sci 7:1496. doi:10.3389/fpls.2016.01496

    Article  Google Scholar 

  • Yutiao C, Jing P, Jing W, Penghao F, Yu H, Congde Z, Fahad S, Peng S, Kehui C, Lixiao N, Huang J (2015) Crop management based on multi-split topdressing enhances grainyield and nitrogen use efficiency in irrigated rice in China. Field Crops Res 184:50–57

    Google Scholar 

  • Zahoor A, Waqar A, Khanzada H, Bashir U, Aziz K, Zahir S, Faheem AK, Raja MN (2014) Role of nitrogen fertilizer in crop productivity and environmental pollution. Int J Agric Forestry 4:201–206

    Google Scholar 

  • Zhang GQ, Zha LS, Zhou MH, Ma JH, Liang BR (2005) Preparation and characterization of pH and temperature responsive semi interpenetrating polymer network hydrogels based on linear sodium alginate and cross linked poly (N-isopropylacrylamide). J Applied Polymer Sci 97:1931–1940

    CAS  Google Scholar 

  • Zhang D, Li W, Xin C, Tang W, Eneji AE, Dong H (2012) Lint yield and nitrogen use efficiency of field-grown cotton vary with soil salinity and nitrogen application rate. Field Crops Res 138:63–70

    Google Scholar 

  • Zhou MZ (2010) Improvement of plant waterlogging tolerance. In: Mancuso S, Shabala S (eds) Waterlogging signalling and tolerance in plants. Springer, Heidelberg, pp 267–285

    Google Scholar 

  • Zhou ZQ, Oosterhuis MD (2012) Physiological mechanism of nitrogen mediating cotton (Gossypium hirsutum L.) seedlings growth under water-stress conditions. Ame J Plant Sci 3:721–730

    CAS  Google Scholar 

  • Ziska LH, Namuco O, Mayo T, Quilang J (1997) Growth and yield response of field grown tropical rice to increasing carbon dioxide and air temperature. Agron J 89:45–53

    Google Scholar 

  • Zlatev Z, Lidon FC (2012) An overview on drought induced changes in plant growth, water effects of 15N split-application on soil and fertilizer n uptake of barley, oilseed rape and wheat in relations and photosynthesis. J Plant Nutr 26:1055–1063

    Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Research Fund for the National Natural Science Foundation of China (Grant No. 31401321 and 31460325).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honghai Luo.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A., Tan, D.K.Y., Afridi, M.Z. et al. Nitrogen fertility and abiotic stresses management in cotton crop: a review. Environ Sci Pollut Res 24, 14551–14566 (2017). https://doi.org/10.1007/s11356-017-8920-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-8920-x

Keywords

Navigation