Skip to main content

Potassium Solubilizing Microbes: Diversity, Ecological Significances and Biotechnological Applications

  • Chapter
  • First Online:
Plant Microbiomes for Sustainable Agriculture

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 25))

Abstract

Potassium (K) is seventh abundant element on earth and considered as third most significant macronutrient after nitrogen and phosphorus for plants. K plays an important role in metabolism, activation of enzyme, osmoregulation, balancing of charge and preventing unnecessary water loss, and regulating the stomatal movement in plants. The deficiency of K results in poor growth and development which intensely related to crop yield and resistance to disease. In soils, the fixation of K is comparatively fast; however, its release is a slow process. Many potassium solubilizing microbes (KSMs), such as fungi, bacteria and some arbuscular mycorrhizal (AM) fungi assist in mobilization of K from soil/mineral to plants. Microbes secrete various organic acids, which release K from the minerals and make it bioavailable to the plants. Fixation of K in soil, its uptake by the plant and leaching reduce the availability of K content in the soils. Application of microbial inoculants improve the growth and yield by converting the K in available form. KSMs work as biofertilizer in agriculture; improve the productivity, nutrient availability and reduce the use of agrochemicals in an economic, eco-friendly and sustainable manner. Future studies should focus on isolation and inoculation of indigenous K solubilizers to the plants from different environmental conditions such as cold, drought, nutrient-deficient soils, etc., to improve the availability of K for plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou-el-Seoud II, Abdel-Megeed A (2012) Impact of rock materials and biofertilizations on P and K availability for maize (Zea Maize) under calcareous soil conditions. Saudi J Biol Sci 19:55–63

    Article  CAS  PubMed  Google Scholar 

  • Adeleke RA, Cloete TE, Bertrand A, Khasa DP (2010) Mobilisation of potassium and phosphorus from iron ore by ectomycorrhizal fungi. World J Microbiol Biotechnol 26(10):1901–1913

    Article  CAS  Google Scholar 

  • Ahmad M, Nadeem SM, Naveed M, Zahir ZA (2016) Potassium-solubilizing bacteria and their application in agriculture. In: Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 293–313

    Chapter  Google Scholar 

  • Ai-min Z, Gang-yong Z, Shuang-feng Z, Rui-ying Z, Bao-cheng Z (2013) Effect of phosphorus and potassium content of plant and soil inoculated with Paneibacillus kribensis CX-7 strain antioxidant and antitumor activity of Phyllanthus emblica in colon cancer cell lines. Int J Curr Microbiology Appl Sci 2(6):273–279

    Google Scholar 

  • Akhtar O, Mishra R, Kehri HK (2019) Arbuscular mycorrhizal association contributes to Cr accumulation and tolerance in plants growing on Cr contaminated soils. Proc Natl Acad Sci India Sect B Biol Sci 89(1):63–70. https://doi.org/10.1007/s40011-017-0914-4

    Article  CAS  Google Scholar 

  • Aleksandrov VG, Blagodyr RN, Ilev IP (1967) Liberation of phosphoric acid from apatite by silicate bacteria. Mikrobiol Z 29:111–114

    CAS  Google Scholar 

  • Andrews M, Sprent JI, Raven JA, Eady PE (1999) Relationships between shoot to root ratio, growth and leaf soluble protein concentration of Pisum sativum, Phaseolus vulgaris and Triticum aestivum under different nutrient deficiencies. Plant Cell Environ 22:949–958

    Article  CAS  Google Scholar 

  • Anjanadevi IP, John NS, John KS, Jeeva ML, Misra RS (2016) Rock inhabiting potassium solubilizing bacteria from Kerala, India: characterization and possibility in chemical K fertilizer substitution. J Basic Microbiol 56:67–77

    Article  CAS  PubMed  Google Scholar 

  • Argelis DT, Gonzala DA, Vizcaino C, Gartia MT (1993) Biochemical mechanism of stone alteration carried out by filamentous fungi living in monuments. Biogeochemistry 19:129–147

    Google Scholar 

  • Armengaud P, Breitling R, Amtmann A (2010) Coronatine-insensitive 1 (COI1) mediates transcriptional responses of Arabidopsis thaliana to external potassium supply. Mol Plant 3:390–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashley MK, Grant M, Grabov A (2005) Plant responses to potassium deficiencies: a role for potassium transport proteins. J Exp Bot 57:425–436

    Article  PubMed  CAS  Google Scholar 

  • Badr MA, Shafei AM, Sharaf El-Deen SH (2006) The dissolution of K and P-bearing minerals by silicate dissolving bacteria and their effect on sorghum growth. Res J Agric Boil Sci 2:5–11

    Google Scholar 

  • Bagyalakshmi B, Ponmurugan P, Marimuthu S (2012) Influence of potassium solubilizing bacteria on crop productivity and quality of tea (Camellia sinensis). Afr J Agric Res 7:4250–4259

    Article  Google Scholar 

  • Banfield JF, Barker WW, Welch SA, Taunton A (1999) Biological impact on mineral dissolution: application of the lichen model to understanding mineral weathering in the rhizosphere. Proc Natl Acad Sci 96:3404–3411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banik S, Dey BK (1982) Available phosphate content of an alluvial soil as influenced by inoculation of some isolated phosphate-solubilizing micro-organisms. Plant Soil 69(3):353–364

    Article  CAS  Google Scholar 

  • Basak BB, Biswas DR (2009) Influence of potassium solubilizing microorganism (Bacillus mucilaginosus) and waste mica on potassium uptake dynamics by sudan grass (Sorghum vulgare Pers.) grown under two Alfisols. Plant Soil 317:235–255

    Article  CAS  Google Scholar 

  • Baslam M, Garmendia I, Goicoechea N (2013) The arbuscular mycorrhizal symbiosis can overcome reductions in yield and nutritional quality in greenhouse-lettuces cultivated at inappropriate growing seasons. Sci Hort 164:145–154

    Article  CAS  Google Scholar 

  • Biswas DR (2011) Nutrient recycling potential of rock phosphate and waste mica enriched compost on crop productivity and changes in soil fertility under potato–soybean cropping sequence in an Inceptisol of Indo-Gangetic Plains of India. Nutr Cycl Agroecosys 89:15–30

    Article  Google Scholar 

  • Braunschweigh IC (1980) K+ availability in relation to clay content. Results of field experiment. Potash Rev 2:1–8

    Google Scholar 

  • Burgstaller W, Schinner F (1993) Leaching of metals with fungi. Plant Biotechnol J 27:91–116

    CAS  Google Scholar 

  • Buschmann PH, Vaidyanathan R, Gassmann W, Schroeder JI (2000) Enhancement of Na + uptake currents, time-dependent inward-rectifying K+ channel currents, and K+ channel transcripts by K+ starvation in wheat root cells. Plant Physiol 122(4):1387–1398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cakmak I (2005) The role of potassium in alleviating detrimental effects of abiotic stresses in plants. J Soil Sci Plant Nutr 168:521–530

    Article  CAS  Google Scholar 

  • Calvaruso C, Turpault MP, Frey-Klett P (2006) Root-associated bacteria contribute to mineral weathering and to mineral nutrition in trees: a budgeting analysis. Appl Environ Microbiol 72(2):1258–1266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casieri L, Lahmidi NA, Doidy J, Veneault-Fourrey C, Migeon A, Bonneau L, Brun A (2013) Biotrophic transportome in mutualistic plant–fungal interactions. Mycorrhiza 23:597–625

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Gabelman WH (2000) Morphological and physiological characteristics of tomato roots associated with potassium-acquisition efficiency. Sci Hort 83:213–225

    Article  CAS  Google Scholar 

  • Chen YF, Wang Y, Wu WH (2008) Membrane transporters for nitrogen, phosphate and potassium uptake in plants. J Integr Plant Biol 50(7):835–848

    Article  CAS  PubMed  Google Scholar 

  • Chérel I, Michard E, Platet N, Mouline K, Alcon C, Sentenac H, Thibaud JB (2002) Physical and functional interaction of the Arabidopsis K+ channel AKT2 and phosphatase AtPP2CA. Plant Cell 14:1133–1146

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cimen I, Pirinc V, Doran I, Turgay B (2010) Effect of soil solarization and arbuscular mycorrhizal fungus (Glomus intraradices) on yield and blossom-end rot of tomato. Int J Agric Biol 12:551–555

    Google Scholar 

  • Ciobanu I (1961) Investigation on the efficiency of bacterial fertilizers applied to cotton. Cent Exp Ingras Bact Lucrari Stiint 3:203–214

    Google Scholar 

  • Clark RB, Zeto SK (2000) Mineral acquisition by arbuscular mycorrhizal plants. J Plant Nutr 23:867–902

    Article  CAS  Google Scholar 

  • Clark RB, Zobel RW, Zeto SK (1999) Effects of mycorrhizal fungus isolates on mineral acquisition by Panicum virgatum in acidic soil. Mycorrhiza 9:167–176

    Article  CAS  Google Scholar 

  • Diep CN, Hieu TN (2013) Phosphate and potassium solubilizing bacteria from weathered materials of denatured rock mountain, Ha Tien, Kiên Giang province Vietnam. Am J Life Sci 1:88–92

    Article  CAS  Google Scholar 

  • Drew MC (1975) Comparison of the effects of a localised supply of phosphate, nitrate, ammonium and potassium on the growth of the seminal root system, and the shoot, in barley. New Phytol 75:479–490

    Article  CAS  Google Scholar 

  • Du XQ, WangFL Li H, Jing S, Yu M, Li J, Wu WH, Kudla J, Wang Y (2019) The transcription factor MYB59 regulates K+/NO3− translocation in the Arabidopsis response to low K+ stress. Plant Cell 31(3):699–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fairbairn DJ, Liu W, Schachtman DP, Gomez-Gallego S, Day SR, Teasdale RD (2000) Characterisation of two distinct HKT1-like potassium transporters from Eucalyptus camaldulensis. Plant Mol Biol 43(4):515–525

    Article  CAS  PubMed  Google Scholar 

  • Gajdanowicz P, Michard E, Sandmann M, Rocha M, Corr^ea LGG, Ramırez-Aguilar SJ, Gomez-Porras JL, Gonzalez W, Thibaud J-B, van Dongen JT et al. (2011) Potassium (K+) gradients serve as a mobile energy source in plant vascular tissues. Proc Natl Acad Sci USA 108:864–869

    Article  CAS  Google Scholar 

  • Garcia K, Zimmermann SD (2014) The role of mycorrhizal associations in plant potassium nutrition. Front Plant Sci 5:337

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaymard F, Pilot G, Lacombe B, Bouchez D, Bruneau D, Boucherez J, Sentenac H (1998) Identification and disruption of a plant shaker-like outward channel involved in K+ release into the xylem sap. Cell 94:647–655

    Article  CAS  PubMed  Google Scholar 

  • Gierth M, Mäser P, Schroeder JI (2005) The potassium transporter AtHAK5 functions in K+ deprivation-induced high-affinity K+ uptake and AKT1 K+ channel contribution to K+ uptake kinetics in Arabidopsis roots. Plant Physiol 137:1105–1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glick BR, Liu C, Ghosh S, Dumbroff EB (1997) Early development of canola seedlings in the presence of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2. Soil Biol Biochem 29:1233–1239

    Article  CAS  Google Scholar 

  • Glowa KR, Arocena JM, Massicotte HB (2003) Extraction of potassium and/or magnesium from selected soil minerals by Piloderma. Geomicrobiol J 20:99–111

    Article  CAS  Google Scholar 

  • Goldstein AH (1994) Involvement of the quinoprotein glucose dehydrogenase in the solubilization of exogenous phosphates by gram-negative bacteria. Phosphate in microorganisms: cellular and molecular biology. ASM Press, Washington DC 197–203

    Google Scholar 

  • Groudev SN (1987) Use of heterotrophic microorganisms in mineral biotechnology. Acta Biotechnol 7:299–306

    Article  Google Scholar 

  • Gundala PB, Chinthala P, Sreenivasulu B (2013) A new facultative alkaliphilic, potassium solubilizing, Bacillus Sp. SVUNM9 isolated from mica cores of Nellore District, Andhra Pradesh, India. Research and Reviews. J Microbiol Biotechnol 2:1–7

    Google Scholar 

  • Hafsi C, Debez A, Abdelly C (2014) Potassium deficiency in plants: effects and signaling cascades. Acta Physiol Plant 36:1055–1070

    Article  CAS  Google Scholar 

  • Hafsi C, Romero-Puertas MC, Luis A, Abdelly C, Sandalio LM. (2011). Antioxidative response of Hordeum maritimum L to potassium deficiency. Acta Physiol Plant 33(1):193–202

    Article  CAS  Google Scholar 

  • Hall JA, Peirson D, Ghosh S, Glick B (1996) Root elongation in various agronomic crops by the plant growth promoting rhizobacterium Pseudomonas putida GR12–2. Isr J Plant Sci 44:37–42

    Article  Google Scholar 

  • Han HS, Lee KD (2005) Phosphate and potassium solubilizing bacteria effect on mineral uptake, soil availability and growth of eggplant. Res J Agric Biol Sci 1:176–180

    Google Scholar 

  • Han HS, Supanjani Lee KD (2006) Effects of co-inoculation with phosphate and potassium solubilizing bacteria on mineral uptake and growth of pepper and cucumber. Plant Soil Environ 52:130–136

    Article  CAS  Google Scholar 

  • Hasan R (2002) Potassium status of soils in India. Better Crops Int 16:3–5

    Google Scholar 

  • Hong JP, Takeshi Y, Kondou Y, Schachtman DP, Matsui M, Shin R (2013) Identification and characterization of transcription factors regulating Arabidopsis HAK5. Plant Cell Physiol 54:1478–1490

    Article  CAS  PubMed  Google Scholar 

  • Hosy E, Vavasseur A, Mouline K, Dreyer I, Gaymard F, Porée F, Simonneau T (2003) The Arabidopsis outward K+ channel GORK is involved in regulation of stomatal movements and plant transpiration. Proc Natl Acad Sci 100:5549–5554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu X, Chen J, Guo J (2006) Two phosphate-and potassium-solubilizing bacteria isolated from Tianmu Mountain, Zhejiang, China. World J Microb Biot 22:983–990

    Article  CAS  Google Scholar 

  • Jain N, Sharma DK (2004) Biohydrometallurgy for nonsulfidic minerals—a review. Geomicrobiol J 21:135–144

    Article  CAS  Google Scholar 

  • Johansson SA, Campbell JL (1988) PIXE: A novel technique for elemental analysis

    Google Scholar 

  • Kaldorf M, Kuhn AJ, Schröder WH, Hildebrandt U, Bothe H (1999) Selective element deposits in maize colonized by a heavy metal tolerance conferring arbuscular mycorrhizal fungus. J Plant Physiol 154:718–728

    Article  CAS  Google Scholar 

  • Kang SC, Ha CG, Lee TG, Maheshwari DK (2002) Solubilization of insoluble inorganic phosphates by a soil-inhabiting fungus Fomitopsis sp. PS 102. Curr Sci 439–442

    Google Scholar 

  • Kapulnik Y, Okon Y, Henis Y (1985). Changes in root morphology of wheat caused by Azospirillum inoculation. Can J Microbiol 31:881–887

    Article  Google Scholar 

  • Kapulnik Y, Okon Y, Henis Y (1987). Yield response of spring wheat cultivars (Triticum aestivum and T. turgidum) to inoculation with Azospirillum brasilense under field conditions. Biol Fertil Soils 4(1–2):27–35

    Google Scholar 

  • Kasana RC, Panwar NR, Burman U, Pandey CB (2017) Kumar P (2017) Isolation and Identification of Two Potassium Solubilizing Fungi from Arid Soil. Int J Curr Microbiol App Sci 6(3):1752–1762

    Article  CAS  Google Scholar 

  • Kehri HK, Akhtar O, Zoomi I, Pandey D (2018a) Arbuscular mycorrhizal fungi: taxonomy and its systematics. Int J Life Sci Res 6(4):58–71

    Google Scholar 

  • Kehri HK, Zoomi I, Srivastava P (2018b) Diversity and function of AM fungi in heavy metal contaminated soil. In: Singh S (eds) Biodiversity, monitoring, management and utilization. Astral International (P) Ltd, New Delhi, pp 111–128

    Google Scholar 

  • Keshavarz ZJ, Aliasgharzad N, Oustan S, Emadi M, Ahmadi A (2013) Isolation and characterization of potassium solubilizing bacteria in some Iranian soils. Arch Agron Soil Sci 59:1713–1723

    Article  CAS  Google Scholar 

  • Kinekar BK (2011) Potassium fertilizer situation in India: current use and perspectives. Karnataka J Agri Sci 24(1)

    Google Scholar 

  • Kloepper JW, Lifshitz R, Zablotowicz RM (1989) Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7:39–44

    Article  Google Scholar 

  • Kloepper JW, Zablowicz RM, Tipping EM, Lifshitz R (1991) Plant growth promotion mediated by bacterial rhizosphere colonizers. In: Keister DL, Gregan B (eds) The rhizosphere and plant growth. Kluwer Academic Publishers, Dordrecht, Netherlands, pp 315–326

    Google Scholar 

  • Kour D, Rana KL, Yadav AN, Yadav N, Kumar V, Kumar A, Sayyed RZ, Hesham AE-L, Dhaliwal HS, Saxena AK (2019a) Drought-Tolerant Phosphorus-Solubilizing Microbes: Biodiversity and Biotechnological Applications for Alleviation of Drought Stress in Plants. In: Sayyed RZ, Arora NK, Reddy MS (eds) Plant Growth Promoting Rhizobacteria for Sustainable Stress Management: Volume 1: Rhizobacteria in Abiotic Stress Management. Springer Singapore, Singapore, pp 255–308. https://doi.org/10.1007/978-981-13-6536-2_13

    Chapter  Google Scholar 

  • Kour D, Rana KL, Yadav N, Yadav AN, Kumar A, Meena VS, Singh B, Chauhan VS, Dhaliwal HS, Saxena AK (2019b) Rhizospheric Microbiomes: Biodiversity, Mechanisms of Plant Growth Promotion, and Biotechnological Applications for Sustainable Agriculture. In: Kumar A, Meena VS (eds) Plant Growth Promoting Rhizobacteria for Agricultural Sustainability: From Theory to Practices. Springer Singapore, Singapore, pp 19–65. https://doi.org/10.1007/978-981-13-7553-8_2

    Chapter  Google Scholar 

  • Kour D, Rana KL, Yadav N, Yadav AN, Singh J, Rastegari AA, Saxena AK (2019c) Agriculturally and industrially important fungi: current developments and potential biotechnological applications. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent Advancement in White Biotechnology through Fungi, Volume 2: Perspective for Value-Added Products and Environments. Springer International Publishing, Cham, pp 1–64. https://doi.org/10.1007/978-3-030-14846-1_1

    Google Scholar 

  • Krishnamurthy D, Varamban SV, Thiruvengadasami A, Mathews CK (1989) Solubility of oxygen in sodium-potassium alloys. J Less Common Met. 153:363–372

    Article  CAS  Google Scholar 

  • Kumar A, Bahadur I, Maurya BR, Raghuwanshi R, Meena VS, Singh DK, Dixit J (2015) Does a plant growth-promoting rhizobacteria enhance agricultural sustainability. J Pure Appl Microbiol 9:715–724

    Google Scholar 

  • Kumar M, Kour D, Yadav AN, Saxena R, Rai PK, Jyoti A, Tomar RS (2019) Biodiversity of methylotrophic microbial communities and their potential role in mitigation of abiotic stresses in plants. Biologia 74:287–308. https://doi.org/10.2478/s11756-019-00190-6

    Article  CAS  Google Scholar 

  • Kumar P, Dubey RC, Maheshwari DK (2012) Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiol Res 167(8):493–499

    Article  CAS  PubMed  Google Scholar 

  • Leaungvutiviroj C, Ruangphisarn P, Hansanimitkul P, Shinkawa H, Sasaki K (2010) Development of a new biofertilizer with a high capacity for N2 fixation, phosphate and potassium solubilization and auxin production. Biosci Biotech Biochem 74:1098–1101

    Article  CAS  Google Scholar 

  • Lian B, Fu PQ, Mo DM, Liu CQ (2002) A comprehensive review of the mechanism of potassium releasing by silicate bacteria. Acta Mineral Sin 22:179–183

    CAS  Google Scholar 

  • Lian B, Prithiviraj B, Souleimanov Smith DL (2001) Evidence for the production of chemical compounds analogous to nod factor by the silicate bacterium Bacillus circulans GY92. Microbiol Res 156(3):289–292

    Article  CAS  PubMed  Google Scholar 

  • Lian B, Wang B, Pan M, Liu C, Tang HH (2007) Microbial release of potassium from K-bearing minerals by thermophilic fungus Aspergillus fumigatus. Geochem Cosmochim Acta 72:87–98

    Article  CAS  Google Scholar 

  • Lian B, Wang B, Pan M, Liu C, Teng HH (2008) Microbial release of potassium from K-bearing minerals by thermophilic fungus Aspergillus fumigatus. Geochim Cosmochim Acta 72:87–98

    Article  CAS  Google Scholar 

  • Lin QM, Rao ZH, Sun YX, Yao J, Xing LJ (2002) Identification and practical application of silicate-dissolving bacteria. Agr Sci China 1:81–85

    Google Scholar 

  • Liu D, Lian B, Dong H (2012) Isolation of Paenibacillus sp. and assessment of its potential for enhancing mineral weathering. Geomicrob J 29:413–421

    Article  CAS  Google Scholar 

  • Liu G, Lin Y, Huang Z (2001) Screening of silicate bacteria with potassium-releasing and antagonistical activity. Chinese J Appl Environ Biol 7:66–68

    CAS  Google Scholar 

  • Lopes-Assad ML, Avansini SH, Rosa MM, De Carvalho JR, Ceccato-Antonini SR (2010) The solubilization of potassium-bearing rock powder by Aspergillus niger in small-scale batch fermentations. Can J Microbiol 56:598–605

    Article  CAS  PubMed  Google Scholar 

  • Lopes-Assad ML, Rosa MM, Erler G, Ceccato-Antonini SR (2006) Solubilização de pó-de-rocha por Aspergillus niger. Revista Espaço e Geografia 9:1–17

    Google Scholar 

  • Lynn TM, Win HS, Kyaw EP, Latt ZK, Yu SS (2013) Characterization of phosphate solubilizing and potassium decomposing strains and study on their effects on tomato cultivation. Int J Innov Appl Stud 3:959–966

    Google Scholar 

  • Ma TL, Wu WH, Wang Y (2012) Transcriptome analysis of rice root responses to potassium deficiency. BMC Plant Biol 12:161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meena RK, Singh RK, Singh NP, Meena SK, Meena VS (2015a) Isolation of low temperature surviving plant growth–promoting rhizobacteria (PGPR) from pea (Pisum sativum L.) and documentation of their plant growth promoting traits. Biocat Agri Biotech 4:806–811

    Article  Google Scholar 

  • Meena VS, Bahadur I, Maurya BR, Kumar A, Meena RK, Meena SK, Verma JP (2016) Potassium-solubilizing microorganism in evergreen agriculture: an overview. In: Meena VS, Maurya BR, Verma JP, Meena RK (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi pp 1–20

    Chapter  Google Scholar 

  • Meena VS, Maurya BR, Bahadur I (2014a) Potassium solubilization by bacterial strain in waste mica. Bangl J Bot 43:235–237

    Article  Google Scholar 

  • Meena VS, Maurya BR, Verma JP (2014b) Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiol Res 169(5–6):337–347

    Article  CAS  PubMed  Google Scholar 

  • Meena VS, Maurya BR, Verma JP, Aeron A, Kumar A, Kim K, Bajpai VK (2015b) Potassium solubilizing rhizobacteria (KSR): isolation, identification, and K-release dynamics from waste mica. Ecol Eng 81:340–347

    Article  Google Scholar 

  • Mengel K, Kirkby EA, Kosegarten H, Appel T (2001) Nitrogen. In: Mengel K, Kirkby EA, Kosegarten H, Appel T (eds) Principles of plant nutrition. Springer, Dordrecht pp 397–434

    Chapter  Google Scholar 

  • Mikhailouskaya N, Tchernysh A (2005) K-mobilizing bacteria and their effect on wheat yield. J Agron Crop Sci 8:154–157

    Google Scholar 

  • Minjian C, Haiqiu Y, Hongkui Y, Chunji J (2007) Difference in tolerance to potassium deficiency between two maize inbred lines. Plant Prod Sci 10:42–46

    Article  Google Scholar 

  • Miransari M, Bahrami HA, Rejali F, Malakouti MJ (2009a) Effects of soil compaction and arbuscular mycorrhiza on corn (Zea mays L.) nutrient uptake. Soil Till Res 103:282–290

    Article  Google Scholar 

  • Miransari M, Bahrami HA, Rejali F, Malakouti MJ (2009b) Effects of arbuscular mycorrhiza, soil sterilization, and soil compaction on wheat (Triticum aestivum L.) nutrients uptake. Soil Till Res 104:48–55

    Article  Google Scholar 

  • Muentz A (1890) Sur la decomposition des roches et la formation de la terre arable. CR Acad Sci 110:1370–1372

    Google Scholar 

  • Muralikannan M (1996) Biodissolution of silicate, phosphate and potassium by silicate solubilizing bacteria in rice ecosystem. M Sc (Ag) thesis submitted to Tamil Nadu Agricultural University, Coimbatore 125

    Google Scholar 

  • National Center for Biotechnology Information. PubChem Database. Potassium, AtomicNumber = 19, https://pubchem.ncbi.nlm.nih.gov/element/Potassium

  • Öborn I, Andrist-Rangel Y, Askekaard M, Grant CA, Watson CA, Edwards AC (2005) Critical aspects of potassium management in agricultural systems. Soil Use and Manag 21:102–112

    Article  Google Scholar 

  • Olsson PA, Hammer EC, Pallon J, Van Aarle IM, Wallander H (2011) Elemental composition in vesicles of an arbuscular mycorrhizal fungus, as revealed by PIXE analysis. Fungal Boil 115:643–648

    Article  CAS  Google Scholar 

  • Olsson PA, Hammer EC, Wallander H, Pallon J (2008) Phosphorus availability influences elemental uptake in the mycorrhizal fungus Glomus intraradices, as revealed by particle-induced X-ray emission analysis. Appl Environ Microbiol 74:4144–4148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey D, Kehri HK, Zoomi I, Akhtar O, Singh AK (2019) Mycorrhizal fungi: biodiversity, ecological significance, and industrial applications. In: Yadav A, Mishra S, Singh S, Gupta A (eds) Recent advancement in white biotechnology through fungi. Fungal biology. Springer, Cham, pp 181–199. https://doi.org/10.1007/978-3-030-10480-1_5

    Chapter  Google Scholar 

  • Parmar P, Sindhu SS (2013) Potassium solubilization by rhizosphere bacteria: influence of nutritional and environmental conditions. J Microbiol Res 3:25–31

    Google Scholar 

  • Pathak H, Mohanty S, Jain N, Bhatia A (2010) Nitrogen, phosphorus, and potassium budgets in Indian agriculture. Nutr Cycl Agroecosys 86:287–299

    Article  CAS  Google Scholar 

  • Perner H, Schwarz D, Bruns C, Mäder P, George E (2007) Effect of arbuscular mycorrhizal colonization and two levels of compost supply on nutrient uptake and flowering of pelargonium plants. Mycorrhiza 17:469–474

    Article  PubMed  Google Scholar 

  • Pilot G, Lacombe B, Gaymard F, Chérel I, Boucherez J, Thibaud JB, Sentenac H (2001) Guard Cell Inward K+ Channel Activity in Arabidopsis Involves Expression of the Twin Channel Subunits KAT1 and KAT2. J Biol Chem 276(5):3215–3221

    Article  CAS  PubMed  Google Scholar 

  • Pindi PK, Satyanarayana SDV (2012) Liquid microbial consortium-a potential tool for sustainable soil health. J Biofertil Biopesticide 3(4):1–9

    Google Scholar 

  • Ponmurugan P, Gopi C (2006) In vitro production of growth regulators and phosphatase activity by phosphate solubilizing bacteria. Afr J Biotechnol 5(4):348–350

    CAS  Google Scholar 

  • Prajapati K, Sharma MC, Modi HA (2013) Growth promoting effect of potassium solubilizing microorganisms on Abelmoscus esculantus. Int J Agric Sci 3:181–188

    Google Scholar 

  • Prajapati KB, Modi HA (2012) Isolation and characterization of potassium solubilizing bacteria from ceramic industry soil. CIB Tech J Microbiol 1:8–14

    Google Scholar 

  • Priyadharsini P, Muthukumar T (2016) Interactions between arbuscular mycorrhizal fungi and potassium-solubilizing microorganisms on agricultural productivity. In Potassium solubilizing microorganisms for sustainable agriculture Springer, New Delhi, pp 111–125

    Google Scholar 

  • Pulido LE, Cabrera A, Medina N (2003) Biofertilization using rhizobacteria and AMF in the production of tomato (Lycopersicon esculentum Mill.) and onion (Allium cepa L.) seedlings. II. Root colonization and nutritional status. Cultivos Tropicales 24:5–13

    Google Scholar 

  • Pyo YJ, Gierth M, Schroeder JI, Cho MH (2010) High-affinity K+ transport in Arabidopsis: AtHAK5 and AKT1 are vital for seedling establishment and post germination growth under low-potassium conditions. Plant Physiol 153:863–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raghavendra MP, Nayaka SC, Nuthan BR (2016) Role of rhizosphere microflora in potassium solubilization. In: Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 43–59

    Chapter  Google Scholar 

  • Raj SA (2004) Solubilization on a silicate and concurrent release of phosphorus and potassium in rice ecosystem. In: Biofertilizer technology for rice based cropping system, India, pp 372–378

    Google Scholar 

  • Ramarethinam S, Chandra K (2005) Studies on the effect of potash solubilizing/mobilizing bacteria Frateuria aurantia on brinjal growth and yield. Pestology 11:35–39

    Google Scholar 

  • Ramarethinam S, Chandra K (2006) Studies on the effect of potash solubilizing bacteria Frateuria aurantia (Symbion-K-liquid formulation) on Brinjal (Solanum melongena L.) growth and yield. Pestology 11:35–39

    Google Scholar 

  • Rana KL, Kour D, Sheikh I, Dhiman A, Yadav N, Yadav AN, Rastegari AA, Singh K, Saxena AK (2019a) Endophytic fungi: biodiversity, ecological significance and potential industrial applications. In: Yadav AN, Mishra S, Singh S, Gupta A (eds) Recent advancement in white biotechnology through fungi, vol 1. Diversity and enzymes perspectives. Springer, Switzerland, pp 1–62

    Google Scholar 

  • Rana KL, Kour D, Sheikh I, Yadav N, Yadav AN, Kumar V, Singh BP, Dhaliwal HS, Saxena AK (2019b) Biodiversity of endophytic fungi from diverse niches and their biotechnological applications. In: Singh BP (eds) Advances in endophytic fungal research: present status and future challenges. Springer International Publishing, Cham, pp 105–144. https://doi.org/10.1007/978-3-030-03589-1_6

    Chapter  Google Scholar 

  • Rana KL, Kour D, Yadav AN (2019c) Endophytic microbiomes: biodiversity, ecological significance and biotechnological applications. Res J Biotechnol 14:142–162

    Google Scholar 

  • Rosa-Magri MM, Avansini SH, Lopes-Assad ML, Tauk-Tornisielo SM, Ceccato-Antonini SR (2012) Release of potassium from rock powder by the yeast Torulaspora globosa. Braz Arch Biol Technol 55:577–582

    Article  Google Scholar 

  • Sangeeth KP, Bhai RS, Srinivasan V (2012) Paenibacillus glucanolyticus, a promising potassium solubilizing bacterium isolated from black pepper (Piper nigrum L.) rhizosphere. J Spices Aromat Crops 21:118–124

    Google Scholar 

  • Schachtman DP, Schroeder JI (1994) Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants. Nature 370(6491):655–658

    Article  CAS  PubMed  Google Scholar 

  • Schachtman DP, Schroeder JI, Lucas WJ, Anderson JA, Gaber RF (1992) Expression of an inward-rectifying potassium channel by the Arabidopsis KAT1 cDNA. Science 258:1654–1658

    Article  CAS  PubMed  Google Scholar 

  • Schneider A, Tesileanu R, Charles R, Sinaj S (2013) Kinetics of soil potassium sorption–desorption and fixation. Commun Soil Sci Plan 44:837–849

    Article  CAS  Google Scholar 

  • Shaaban EA, El-Shamma MS, El-Shazly S, El-Gazzar A, Abdel-Hak RE (2012) Efficiency of rock-feldspar combined with silicate dissolving bacteria on yield and fruit quality of Valencia orange fruits in reclaimed soils. Res J Appl Sci 8:4504–4510

    Google Scholar 

  • Sheng XF (2005) Growth promotion and increased potassium uptake of cotton and rape by a potassium releasing strain of Bacillus edaphicus. Soil Biol Biochem 37:1918–1922

    Article  CAS  Google Scholar 

  • Sheng XF, He LY (2006) Solubilization of potassium-bearing minerals by a wild-type strain of Bacillus edaphicus and its mutants and increased potassium uptake by wheat. Can J Microbiol 52:66–72

    Article  CAS  PubMed  Google Scholar 

  • Sheng XF, He LY, Huang WY (2002) The conditions of releasing potassium by a silicate-dissolving bacterial strain NBT. Agr Sci China 1:662–666

    Google Scholar 

  • Sheng XF, Xia JJ, Chen J (2003) Mutagenesis of the Bacillus edaphicus strain NBT and its effect on growth of chili and cotton. Agr Sci China 2:409–412

    Google Scholar 

  • Shin R, Schachtman DP (2004) Hydrogen peroxide mediates plant root cell response to nutrient deprivation. Proc Natl Acad Sci 101:8827–8832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sindhu SS, Dua S, Verma MK, Khandelwal A (2010) Growth promotion of legumes by inoculation of rhizosphere bacteria. In: Microbes for legume improvement. Springer, Vienna

    Chapter  Google Scholar 

  • Singh G, Biswas DR, Marwaha TS (2010) Mobilization of potassium from waste mica by plant growth promoting rhizobacteria and its assimilation by maize (Zea mays) and wheat (Triticum aestivum L.): a hydroponics study under phytotron growth chamber. J Plant Nutr 33:1236–1251

    Article  CAS  Google Scholar 

  • Singh NP, Singh RK, Meena VS, Meena RK (2015) Can we use maize (Zea mays) rhizobacteria as plant growth promoter. Vegetos 28:86–99

    Google Scholar 

  • Singh P, Blanke MM (2000) Deficiency of potassium but not phosphorus enhances root respiration. Plant Growth Regul 32:77–81

    Article  CAS  Google Scholar 

  • Sparks DL, Huang PM (1985) Physical chemistry of soil potassium. In: Munson RD (ed) Potassium in agriculture ASA. CSSA and SSSA, Madison, pp 201–265

    Google Scholar 

  • Sperber JI (1958) The incidence of apatite-solubilizing organisms in the rhizosphere and soil. Aust J Agric Res 9:778–781

    Article  CAS  Google Scholar 

  • Sugumaran P, Janarthanam B (2007) Solubilization of potassium containing minerals by bacteria and their effect on plant growth. World J. Agric. Res 3:350–355

    Google Scholar 

  • Supanjani HH, Jung JS, Lee KD (2006) Rock phosphate potassium and rock solubilizing bacteria as alternative sustainable fertilizers. Agron Sustain Dev 26:233–240

    Article  CAS  Google Scholar 

  • Syed BA, Patel B (2014) Investigation and Correlation of Soil Biotic and Abiotic Factors Affecting Agricultural Productivity in Semi-Arid Regions of North Gujarat, India. Int J Res Stud Biosci 2:18–29

    Google Scholar 

  • Thaler P, Pagès L (1998) Modelling the influence of assimilate availability on root growth and architecture. Plant Soil 201:307–320

    Article  CAS  Google Scholar 

  • Thomas SJM, Edwards PP, Kuznetsov VL (2008) Sir Humphry Davy: boundless chemist, physicist, poet and man of action. Chem Phys Chem 9:59–66

    Article  CAS  PubMed  Google Scholar 

  • Uroz S, Calvaruso C, Turpault MP, Frey-Klett P (2009) Mineral weathering by bacteria: ecology, actors and mechanisms. Trends Microbial 17:378–387

    Article  CAS  Google Scholar 

  • Uroz S, Calvaruso C, Turpault MP, Pierrat JC, Mustin C, Frey-Klett P (2007) Effect of the mycorrhizosphere on the genotypic and metabolic diversity of the bacterial communities involved in mineral weathering in a forest soil. Appl Environ Microbiol 73:3019–3027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veresoglou SD, Shaw LJ, Sen R (2011) Glomus intraradices and Gigaspora margarita arbuscular mycorrhizal associations differentially affect nitrogen and potassium nutrition of Plantago lanceolata in a low fertility dune soil. Plant Soil 340:481–490

    Article  CAS  Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Kumar S, Saxena AK, Suman A (2016a) Molecular diversity and multifarious plant growth promoting attributes of Bacilli associated with wheat (Triticum aestivum L.) rhizosphere from six diverse agro-ecological zones of India. J Basic Microbiol 56:44–58

    Article  CAS  PubMed  Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Mishra S, Kumar S, Saxena AK, Suman A (2016b) Appraisal of diversity and functional attributes of thermotolerant wheat associated bacteria from the peninsular zone of India. Saudi J Biol Sci. https://doi.org/10.1016/j.sjbs.2016.01.042

    Article  PubMed  PubMed Central  Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Panjiar N, Kumar S, Saxena AK, Suman A (2015) Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the northern hills zone of India. Ann Microbiol 65:1885–1899

    Article  CAS  Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Saxena AK, Suman A (2017a) Potassium-Solubilizing microbes: diversity, distribution, and role in plant growth promotion. In: Panpatte DG, Jhala YK, Vyas RV, Shelat HN (eds) Microorganisms for green revolution: Volume 1: Microbes for sustainable crop production. Springer Singapore, Singapore, pp 125–149. https://doi.org/10.1007/978-981-10-6241-4_7

    Google Scholar 

  • Verma P, Yadav AN, Kumar V, Singh DP, Saxena AK (2017b) Beneficial plant-microbes interactions: biodiversity of microbes from diverse extreme environments and its impact for crop improvement. In: Singh DP, Singh HB, Prabha R (eds) Plant-Microbe interactions in agro-ecological perspectives: Volume 2: Microbial interactions and agro-ecological impacts. Springer, Singapore, pp 543–580. https://doi.org/10.1007/978-981-10-6593-4_22

    Google Scholar 

  • Verrecchia EP, Dumont JL (1996) A biogeochemical model for chalk alteration by fungi in semiarid environments. Biogeochemistry 35:447–470

    Article  CAS  Google Scholar 

  • Very AA, Sentenac H (2003) Molecular mechanisms and regulation of K+ transport in higher plants. Annu Rev Plant Biol 54:575–603

    Article  CAS  PubMed  Google Scholar 

  • Römheld V, Kirkby EA (2010) Research on potassium in agriculture: needs and prospects. Plant Soil 335(1–2):155–180

    Article  CAS  Google Scholar 

  • Wallander H, Wickman T (1999) Biotite and microcline as potassium sources in ectomycorrhizal and non-mycorrhizal Pinus sylvestris seedlings. Mycorrhiza 9:25–32

    Article  CAS  Google Scholar 

  • White PJ, Karley AJ (2010) Potassium. In: Cell biology of metals and nutrients Springer, Berlin, Heidelberg, pp 199–224

    Google Scholar 

  • Wu SC, Cao ZH, Li ZG, Cheung KC, Wong MH (2005) Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma 125:155–166

    Article  Google Scholar 

  • Xiaoxi Z, Liu X, Tang J, Hu S, Jiang P, Li W, Xu L (2012) Characterization and potassium solubilizing ability of Bacillus circulans Z1–3. Adv Sci Lett 10:173–176

    Article  CAS  Google Scholar 

  • Xie J, McCobb DP (1998) Control of alternative splicing of potassium channels by stress hormones. Science 280:443–446

    Article  CAS  PubMed  Google Scholar 

  • Yadav AN (2017a) Agriculturally important microbiomes: biodiversity and multifarious PGP attributes for amelioration of diverse abiotic stresses in crops for sustainable agriculture. Biomed J Sci Tech Res 1:1–4

    Google Scholar 

  • Yadav AN (2017b) Beneficial role of extremophilic microbes for plant health and soil fertility. J Agric Sci 1:1–4

    Google Scholar 

  • Yadav AN (2018) Biodiversity and biotechnological applications of host-specific endophytic fungi for sustainable agriculture and allied sectors. Acta Sci Microbiol 1:01–05

    Google Scholar 

  • Yadav AN (2019a) Endophytic fungi for plant growth promotion and adaptation under abiotic stress conditions. Acta Sci Agric 3:91–93

    CAS  Google Scholar 

  • Yadav AN (2019b) Microbiomes of Wheat (Triticum aestivum L.) Endowed with Multifunctional Plant Growth Promoting Attributes. EC Microbiology 15:1–6

    CAS  Google Scholar 

  • Yadav AN, Kour D, Sharma S, Sachan SG, Singh B, Chauhan VS, Sayyed RZ, Kaushik R, Saxena AK (2019a) Psychrotrophic Microbes: Biodiversity, Mechanisms of Adaptation, and Biotechnological Implications in Alleviation of Cold Stress in Plants. In: Sayyed RZ, Arora NK, Reddy MS (eds) Plant Growth Promoting Rhizobacteria for Sustainable Stress Management: Volume 1: Rhizobacteria in Abiotic Stress Management. Springer Singapore, Singapore, pp 219–253. https://doi.org/10.1007/978-981-13-6536-2_12

    Chapter  Google Scholar 

  • Yadav AN, Kumar R, Kumar S, Kumar V, Sugitha T, Singh B, Chauhan V, Dhaliwal HS, Saxena AK (2017a) Beneficial microbiomes: biodiversity and potential biotechnological applications for sustainable agriculture and human health. J Appl Biol Biotechnol 5:45–57

    CAS  Google Scholar 

  • Yadav AN, Kumar V, Prasad R, Saxena AK, Dhaliwal HS (2018a) Microbiome in crops: diversity, distribution and potential role in crops improvements. In: Prasad R, Gill SS, Tuteja N (eds) Crop improvement through microbial biotechnology. Elsevier, USA, pp 305–332

    Chapter  Google Scholar 

  • Yadav AN, Mishra S, Singh S, Gupta A (2019b) Recent advancement in white biotechnology through fungi Volume 1: diversity and enzymes perspectives. Springer International Publishing, Cham

    Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Saxena AK (2015a) Prospecting cold deserts of north western Himalayas for microbial diversity and plant growth promoting attributes. J Biosci Bioeng 119:683–693

    Article  CAS  PubMed  Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Saxena AK (2016) Bioprospecting of plant growth promoting psychrotrophic Bacilli from cold desert of north western Indian Himalayas. Indian J Exp Biol 54:142–150

    PubMed  Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Tyagi SP, Kaushik R, Saxena AK (2015b) Culturable diversity and functional annotation of psychrotrophic bacteria from cold desert of Leh Ladakh (India). World J Microbiol Biotechnol 31:95–108

    Article  CAS  PubMed  Google Scholar 

  • Yadav AN, Saxena AK (2018) Biodiversity and biotechnological applications of halophilic microbes for sustainable agriculture. J Appl Biol Biotechnol 6:48–55

    CAS  Google Scholar 

  • Yadav AN, Singh S, Mishra S, Gupta A (2019c) Recent advancement in white biotechnology through fungi. Volume 2: Perspective for value-added products and environments. Springer International Publishing, Cham

    Google Scholar 

  • Yadav AN, Singh S, Mishra S, Gupta A (2019d) Recent advancement in white biotechnology through fungi. Volume 3: Perspective for sustainable environments. Springer International Publishing, Cham

    Google Scholar 

  • Yadav AN, Verma P, Kaushik R, Dhaliwal HS, Saxena AK (2017b) Archaea endowed with plant growth promoting attributes. EC Microbiol 8:294–298

    Google Scholar 

  • Yadav AN, Verma P, Kour D, Rana KL, Kumar V, Singh B, Chauahan VS, Sugitha T, Saxena AK, Dhaliwal HS (2017c) Plant microbiomes and its beneficial multifunctional plant growth promoting attributes. Int J Environ Sci Nat Resour 3:1–8. https://doi.org/10.19080/IJESNR.2017.03.555601

    Article  Google Scholar 

  • Yadav AN, Verma P, Kumar M, Pal KK, Dey R, Gupta A, Padaria JC, Gujar GT, Kumar S, Suman A, Prasanna R, Saxena AK (2015c) Diversity and phylogenetic profiling of niche-specific Bacilli from extreme environments of India. Ann Microbiol 65:611–629

    Article  Google Scholar 

  • Yadav AN, Verma P, Kumar S, Kumar V, Kumar M, Singh BP, Saxena AK, Dhaliwal HS (2018b) Actinobacteria from rhizosphere: molecular diversity, distributions and potential biotechnological applications. In: Singh B, Gupta V, Passari A (eds) New and future developments in microbial biotechnology and bioengineering. USA, pp 13–41. https://doi.org/10.1016/b978-0-444-63994-3.00002-3

    Chapter  Google Scholar 

  • Yadav AN, Verma P, Kumar V, Sangwan P, Mishra S, Panjiar N, Gupta VK, Saxena AK (2018c) Biodiversity of the genus Penicillium in different habitats. In: Gupta VK, Rodriguez-Couto S (eds) New and future developments in microbial biotechnology and bioengineering, Penicillium system properties and applications. Elsevier, Amsterdam, pp 3–18. https://doi.org/10.1016/b978-0-444-63501-3.00001-6

    Chapter  Google Scholar 

  • Yadav AN, Verma P, Sachan SG, Kaushik R, Saxena AK (2018d) Psychrotrophic microbiomes: molecular diversity and beneficial role in plant growth promotion and soil health. In: Panpatte DG, Jhala YK, Shelat HN, Vyas RV (eds) Microorganisms for green revolution-Volume 2: Microbes for sustainable agro-ecosystem. Springer, Singapore, pp 197–240. https://doi.org/10.1007/978-981-10-7146-1_11

    Google Scholar 

  • Yadav AN, Verma P, Singh B, Chauhan VS, Suman A, Saxena AK (2017d) Plant growth promoting bacteria: Biodiversity and multifunctional attributes for sustainable agriculture. Adv Biotechnol Microbiol 5:1–16

    Google Scholar 

  • Yadav AN, Yadav N (2018) Stress-adaptive microbes for plant growth promotion and alleviation of drought stress in plants. Acta Sci Agric 2:85–88

    Google Scholar 

  • Yadav AN, Yadav N, Sachan SG, Saxena AK (2019b) Biodiversity of psychrotrophic microbes and their biotechnological applications. J Appl Biol Biotechnol 7:99–108

    Article  Google Scholar 

  • Yadav BK, Sidhu AS (2016) Dynamics of potassium and their bioavailability for plant nutrition. In: Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 187–201

    Chapter  Google Scholar 

  • Yadav N, Yadav AN (2019) Actinobacteria for sustainable agriculture. J Appl Biotechnol Bioeng 6:38–41

    Google Scholar 

  • Yang XE, Liu JX, Wang WM, Li H, Luo AC, Ye ZQ, Yang Y (2003) Genotypic differences and some associated plant traits in potassium internal use efficiency of lowland rice (Oryza sativa L.). Nutr Cycl Agroecosys 67:273–282

    Article  CAS  Google Scholar 

  • Youssef GH, Seddik WM, Osman MA (2010) Efficiency of natural minerals in presence of different nitrogen forms and potassium dissolving bacteria on peanut and sesame yields. J Am Sci 6:647–660

    Google Scholar 

  • Yuan L, Fang DH, Wang ZH, Shun H, Huang JG (2000) Bio-mobilization of potassium from clay minerals: I. By ectomycorrhizas. Pedosphere 10:339–346

    Google Scholar 

  • Yuan L, Huang J, Li X, Christie P (2004) Biological mobilization of potassium from clay minerals by ectomycorrhizal fungi and eucalypt seedling roots. Plant Soil 262:351–361

    Article  CAS  Google Scholar 

  • Zaefarian F, Rezvani M, Rejali F, Ardakani MR, Noormohammadi G (2011) Effect of heavy metals and arbuscular mycorrhizal fungal on growth and nutrients (N, P, K, Zn, Cu and Fe) accumulation of alfalfa (Medicago sativa L.). Am Eurasian J Agric Environ Sci 11(3):346–352

    Google Scholar 

  • Zandonadi DB, Santos MP, Dobbss LB, Olivares FL, Canellas LP, Binzel ML, Façanha AR (2010) Nitric oxide mediates humic acids-induced root development and plasma membrane H + -ATPase activation. Planta 231:1025–1036

    Article  CAS  PubMed  Google Scholar 

  • Zhang AM, Zhao GY, Gao TG, Wang W, Li J, Zhang SF, Zhu BC (2013) Solubilization of insoluble potassium and phosphate by Paenibacillus kribensis CX-7: a soil microorganism with biological control potential. Afr. J. Microbiol. Res 7:41–47

    Article  CAS  Google Scholar 

  • Zhang C, Kong F (2014) Isolation and identification of potassium-solubilizing bacteria from tobacco rhizospheric soil and their effect on tobacco plants. Appl Soil Ecol 82:18–25

    Article  Google Scholar 

  • Zhao F, Sheng XF, Huang Z, He L (2008) Isolation of mineral potassium-solubilizing bacterial strains from agricultural soils in Shandong Province. Biodivers Sci 16:593–600

    Article  CAS  Google Scholar 

  • Zoomi I, Narayan RP, Akhtar O, Srivastava P (2017) Role of plant growth promoting rhizobacteria in reclamation of wasteland. In: Microbial biotechnology. Springer, Singapore, pp 61–80. https://doi.org/10.1007/978-981-10-6847-8_3

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors are thankful to University Grant Commission (UGC) and CSIR, New Delhi for the financial assistance and also thankful to Head of Botany Department, University of Allahabad for providing all the necessary facilities.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pandey, D., Kehri, H.K., Zoomi, I., Singh, U., Chaudhri, K.L., Akhtar, O. (2020). Potassium Solubilizing Microbes: Diversity, Ecological Significances and Biotechnological Applications. In: Yadav, A., Singh, J., Rastegari, A., Yadav, N. (eds) Plant Microbiomes for Sustainable Agriculture. Sustainable Development and Biodiversity, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-030-38453-1_9

Download citation

Publish with us

Policies and ethics