Skip to main content

Advertisement

Log in

Potassium deficiency in plants: effects and signaling cascades

  • Review
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Potassium (K+) is an important macronutrient for plant growth and productivity. It fulfills important functions and it is widely included in fertilization management strategies to increase crop production. Although K+ is one of the most abundant elements of the earth crust, its availability to plants is usually limited leading to severe reduction in plant growth and yield. In plants, K+ shortage induces several responses at different levels: morphological, physiological, biochemical, and molecular. Activation of signaling cascades including reactive oxygen species, phytohormones (ethylene, auxin, and jasmonic acid), Ca2+, and phosphatidic acid is also triggered. In this review, we summarize the main of these adaptive responses evolved by plants to cope with K+ deficiency in the rhizosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahn SJ, Shin R, Schachtman DP (2004) Expression of KT/KUP genes in Arabidopsis and the role of root hairs in K+ uptake. Plant Physiol 134:1135–1145

    PubMed Central  PubMed  CAS  Google Scholar 

  • Alemán F, Nieves-Cordones M, Martínez V, Rubio F (2011) Root K+ acquisition in plants: the Arabidopsis thaliana model. Plant Cell Physiol 52(9):1603–1612

    PubMed  Google Scholar 

  • Amtmann A, Armengaud P, Volvok V (2004) Potassium nutrition and salt stress. In: Blatt MR (ed) Membrane transport in plants. Blackwell Publishing, Oxford

    Google Scholar 

  • Andrews M, Sprent JI, Raven JA, Eady PE (1999) Relationships between shoot to root ratio, growth and leaf soluble protein concentration of Pisum sativum, Phaseolus vulgaris and Triticum aestivum under different nutrient deficiencies. Plant Cell Environ 22:949–958

    CAS  Google Scholar 

  • Arend M, Monshausen G, Wind C, Weisenseel MH, Fromm J (2004) Effect of potassium deficiency on the plasma membrane H+-ATPase of the wood ray parenchyma in poplar. Plant Cell Environ 27:1288–1296

    CAS  Google Scholar 

  • Armengaud P, Breitling R, Amtmann A (2004) The potassium dependent transcriptome of Arabidopsis reveals a prominent role of jasmonic acid in nutrient signaling. Plant Physiol 136:2556–2576

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ashley MK, Grant M, Grabov A (2006) Plant responses to potassium deficiencies: a role for potassium transport proteins. J Exp Bot 57(2):425–436

    PubMed  CAS  Google Scholar 

  • Askegaard M, Eriksen J, Olesen JE (2003) Exchangeable potassium and potassium balances in organic crop rotations on coarse sand. Soil Use Manag 19:96–103

    Google Scholar 

  • Bañuelos MA, Garciadeblas B, Cubero B, Rodríguez-Navarro A (2002) Inventory and functional characterization of the HAK potassium transporters of rice. Plant Physiol 130:784–795

    PubMed Central  PubMed  Google Scholar 

  • Bednarz CW, Oosterhuis DM, Evans RD (1998) Leaf photosynthesis and carbon isotope discrimination of cotton in response to potassium deficiency. Environ Exp Bot 39:131–139

    CAS  Google Scholar 

  • Benlloch M, Moreno I, Rodriguez-Navarro A (1989) Two modes of rubidium uptake in sunflower plants. Plant Physiol 90:939–942

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bertsch PM, Thomas GW (1985) Potassium status of temperate region soils. In: Munson RD (ed) Potassium in agriculture. American Society of Agronomy, Madison, pp 131–162

    Google Scholar 

  • Bhandal IS, Malik CP (1988) Potassium estimation, uptake, and its role in the physiology and metabolism of flowering plants. Inter Rev Cytol 110:205–254

    CAS  Google Scholar 

  • Blaha G, Stelzl U, Spahn CMT, Agrawal RK, Frank J, Nierhaus KH (2000) Preparation of functional ribosomal complexes and effect of buffer conditions on tRNA positions observed by cryoelectron microscopy. Methods Enzymol 317:292–309

    PubMed  CAS  Google Scholar 

  • Blevins DG, Barnett NM, Frost WB (1978) Role of potassium and malate in nitrate uptake and translocation by wheat seedlings. Plant Physiol 62:784–788

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bottrill DE, Possingham JV, Kriedemann PE (1970) The effect of nutrient deficiencies on photosynthesis and respiration in spinach. Plant Soil 32:424–438

    CAS  Google Scholar 

  • Britto DT, Kronzucker HJ (2008) Cellular mechanisms of potassium transport in plants. Physiol Plant 133:637–650

    PubMed  CAS  Google Scholar 

  • Brouder SM, Cassman KG (1990) Root development of two cotton cultivars in relation to potassium uptake and plant growth in a vermiculite soil. Field Crop Res 23:187–203

    Google Scholar 

  • Bruggemann LI, Pottosin II, Schonknecht G (1998) Cytoplasmic polyamines block the fast activating vacuolar cation channel. Plant J 16:101–105

    CAS  Google Scholar 

  • Buschmann PH, Vaidyanathan R, Gassmann W, Schroeder JI (2000) Enhancement of Na+ uptake currents, time-dependent inward-rectifying K+ channel currents, and K+ channel transcripts by K+ starvation in wheat root cells. Plant Physiol 122:1387–1397

    PubMed Central  PubMed  CAS  Google Scholar 

  • Cakmak I (2005) The role of potassium in alleviating detrimental effects of abiotic stresses in plants. J Plant Nutr Soil Sci 168:521–530

    CAS  Google Scholar 

  • Cakmak I, Hengeler C, Marschner H (1994) Partitioning of shoot and root dry matter and carbohydrates in bean plants suffering from phosphorus, potassium and magnesium deficiency. J Exp Bot 45:1245–1250

    CAS  Google Scholar 

  • Cao S, Su L, Fang Y (2006) Evidence for involvement of jasmonic acid in the induction of leaf senescence by potassium deficiency in Arabidopsis. Can J Bot 84:328–333

    CAS  Google Scholar 

  • Chen J, Gabelman WH (1995) Isolation of tomato strains varying in potassium acquisition using a sand-zeolite culture system. Plant Soil 176:65–70

    CAS  Google Scholar 

  • Chen J, Gabelman WH (2000) Morphological and physiological characteristics of tomato roots associated with potassium-acquisition efficiency. Sci Hortic 83:213–225

    CAS  Google Scholar 

  • Chen YF, Wang Y, Wu WH (2008) Membrane transporters for nitrogen, phosphate and potassium uptake in plants. J Integr Plant Biol 50:835–848

    PubMed  CAS  Google Scholar 

  • Chérel I, Michard E, Platet N, Mouline K, Alcon C et al (2002) Physical and functional interaction of the Arabidopsis K+ channel AKT2 and phosphatase AtPP2CA. Plant Cell 14:1133–1146

    PubMed Central  PubMed  Google Scholar 

  • Cochrane TT, Cochrane TA (2009) The vital role of potassium in the osmotic mechanism of stomata aperture modulation and its link with potassium deficiency. Plant Signal Behav 4(3):240–243

    PubMed Central  PubMed  CAS  Google Scholar 

  • Damon PM, Osborne LD, Rengel Z (2007) Canola genotypes differ in potassium efficiency during vegetative growth. Euphytica 156:387–397

    CAS  Google Scholar 

  • Deeken R, Sanders C, Ache P, Hedrich R (2000) Developmental and light dependent regulation of phloem-localised K+ channel of Arabidopsis thaliana. Plant J 23:285–290

    PubMed  CAS  Google Scholar 

  • Degl’Innocenti E, Hafsi C, Guidi L, Navari-Izzo F (2009) The effect of salinity on photosynthetic activity in potassium-deficient barley species. J Plant Physiol 166:1968–1981

    PubMed  Google Scholar 

  • Demidchik K, Shabala SN, Davies JM (2007) Spatial variation in H2O2 response of Arabidopsis thaliana root epidermal Ca2+ flux and plasma membrane Ca2+ channels. Plant J 49:377–386

    PubMed  CAS  Google Scholar 

  • Diem B, Godbold DL (1993) Potassium, calcium and magnesium antagonism in clones of Populus trichocarpa. Plant Soil 155(156):411–414

    Google Scholar 

  • Dobrovinskaya OR, Muniz J, Pottosin II (1999) Inhibition of vacuolar ion channels by polyamines. Biophys J 167:127–140

    CAS  Google Scholar 

  • Drew MC (1975) Comparison of the effects of a localized supply of phosphate, nitrate, ammonium and potassium on the growth of the seminal root system, and the shoot in barley. New Phytol 75:490–749

    Google Scholar 

  • Duby G, Hosy E, Fizames C, Alcon A, Alcon C et al (2008) AtKC1, a conditionally targeted Shaker-type subunit, regulates the activity of plant K+ channels. Plant J 53:115–123

    PubMed  CAS  Google Scholar 

  • Epstein E, Rains DW, Elzam OE (1963) Resolution of dual mechanisms of potassium absorption by barley roots. Proc Natl Acad Sci USA 49:684–692

    PubMed Central  PubMed  CAS  Google Scholar 

  • Evans NH (2003) Modulation of guard cell plasma membrane potassium currents by methyl jasmonate. Plant Physiol 131:8–11

    PubMed Central  PubMed  CAS  Google Scholar 

  • Evans HJ, Wildes RA (1971) Potassium and its role in enzyme activation. Potassium in biochemistry and physiology. International Potash Institute, Berne, pp 13–39

    Google Scholar 

  • Fageria NK, Baligar VC, Jones CA (1997) Growth and mineral nutrition of field crops, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  • Fageria NK, Barbosa Filho MP, da Costa JGC (2001) Potassium-use efficiency in common bean genotypes. J Plant Nutr 24:1937–1945

    CAS  Google Scholar 

  • Fairbairn DJ, Liu W, Schachtman DP, Gomez-Gallego S, Day SR, Teasdale RD (2000) Characterisation of two distinct HKT1-like potassium transporters from Eucalyptus camaldulensis. Plant Mol Biol 43:515–525

    PubMed  CAS  Google Scholar 

  • Feijó JA, Malhó R, Obermeyer G (1995) Ion dynamics and its possible role during in vitro pollen germination and tube growth. Protoplasma 187:155–167

    Google Scholar 

  • Fernando M, Kulpa J, Siddiqi YM, Glass ADM (1990) Potassium-dependent changes in the expression of membrane-associated proteins in barley roots. Plant Physiol 92(4):1128–1132

    PubMed Central  PubMed  CAS  Google Scholar 

  • Flowers TJ, Läuchli A (1983) Sodium versus potassium: substitution and compartmentation. In: Läuchli A, Pirson A (eds) Inorganic plant nutrition. Encyclopedia of plant physiology, vol. 15B. Springer, Berlin, pp 651–681

    Google Scholar 

  • Foreman J, Demidchik V, Bothwell JH, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JD et al (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446

    PubMed  CAS  Google Scholar 

  • Gahoonia TS, Ali O, Sarker A, Nielsen NE, Rahman MM (2006) Genetic variation in root traits and nutrient acquisition of lentil genotypes. J Plant Nutr 29:643–655

    CAS  Google Scholar 

  • Gajdanowicz P, Michard E, Sandmann M, Rocha M, Correa LGG et al (2011) Potassium (K+) gradients serve as a mobile energy source in plant vascular tissues. Proc Natl Acad Sci USA 108:864–869

    PubMed Central  PubMed  CAS  Google Scholar 

  • Gambale F, Uozumi N (2006) Properties of Shaker-type potassium channels in higher plants. J Membr Biol 210:1–19

    PubMed  CAS  Google Scholar 

  • Gaymard F, Pilot G, Lacombe B, Bouchez D, Bruneau D, Boucherez J, Michaux-Ferrière N, Thibaud JB, Sentenac H (1998). Identification and disruption of a plant Shaker-like outward channel involved in K+ release into the xylem sap. Cell 94:647–655

    Google Scholar 

  • Geiger D, Becker D, Vosloh D, Gambale F, Palme K et al (2009) Heteromeric AtKC1. AKT1channels in Arabidopsis roots facilitate growth under K+-limiting conditions. J Biol Chem 284:21288–21295

    PubMed Central  PubMed  CAS  Google Scholar 

  • Gerardeaux E, Saur E, Constantin J, Porté A, Jordan-Meille L (2009) Effect of carbon assimilation on dry weight production and partitioning during vegetative growth. Plant Soil 324:329–343

    CAS  Google Scholar 

  • Gerardeaux E, Jordan-Meille L, Constantin J, Pellerin S, Dingkuhn M (2010) Changes in plant morphology and dry matter partitioning caused by potassium deficiency in Gossypium hirsutum (L.). Environ Exp Bot 67:451–459

    CAS  Google Scholar 

  • Gierth M, Mäser P (2007) Potassium transporters in plants—involvement in K+ acquisition, redistribution and homeostasis. FEBS Lett 581:2348–2356

    PubMed  CAS  Google Scholar 

  • Gierth M, Maser P, Schroeder JI (2005) The potassium transporter AtHAK5 functions in K+ deprivation-induced high-affinity K+ uptake and AKT1 K+ channel contribution to K+ uptake kinetics in Arabidopsis roots. Plant Physiol 137:1105–1114

    PubMed Central  PubMed  CAS  Google Scholar 

  • Glass ADM, Dunlop J (1978) The influence of potassium content on the kinetics of potassium influx into excised ryegrass and barley roots. Planta 141(1):117–119

    PubMed  CAS  Google Scholar 

  • Grattan SR, Grieve CM (1992) Mineral element acquisition and growth response of plants grown in saline environments. Agric Ecosyst Environ 38:275–300 (Elsevier Science Publishers B.V., Amsterdam)

    CAS  Google Scholar 

  • Gruber BD, Giehl RFH, Friedel S, von Wirén N (2013) Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiol 163:161–179

    PubMed Central  PubMed  CAS  Google Scholar 

  • Guo ZK, Yang Q, Wan XQ, Yan PQ (2008) Functional characterization of a potassium transporter gene NrHAK1 in Nicotiana rustica. J Zhejiang Univ Sci 9(12):944–952

    CAS  Google Scholar 

  • Guoping Z, Jingxing C, Tirore EA (1999) Genotypic variation for potassium uptake and utilization efficiency in wheat. Nutr Cycl Agroecosyst 54:41–48

    Google Scholar 

  • Hafsi C, Russo MA, Sgherri C, Izzo R, Abdelly C, Navari-Izzo F (2008) Has glyceraldehyde-3-phosphate dehydrogenase a role in the early response of Hordeum maritimum L. to potassium deprivation? Agrochimica 2(4):253–262

    Google Scholar 

  • Hafsi C, Russo MA, Sgherri C, Izzo R, Navari-Izzo F, Abdelly C (2009) Implication of phospholipase D in response of Hordeum vulgare root to short-term potassium deprivation. J Plant Physiol 166:499–506

    PubMed  CAS  Google Scholar 

  • Hafsi C, Atia A, Lakhdar A, Debez A, Abdelly C (2011) Differential responses in potassium absorption and use efficiencies in the halophytes Catapodium rigidum and Hordeum maritimum to various potassium concentrations in the medium. Plant Prod Sci 14(2):135–140

    CAS  Google Scholar 

  • Hammond JP, Broadley MR, White PJ (2004) Genetic responses to phosphorus deficiency. Ann Bot 94:323–332

    PubMed  CAS  Google Scholar 

  • Hampton CR, Bowen HC, Broadley MR, Hammond JP, Mead A, Payne KA, Pritchard J, White PJ (2004) Cesium toxicity in Arabidopsis. Plant Physiol 136:3824–3837

    PubMed Central  PubMed  CAS  Google Scholar 

  • Han-Bai H, Zhao-Hu L, Xiao-Li T (2009) Mechanism of tolerance to potassium deficiency between Liaomian 18 and NuCOTN99B at seedling stage. Acta Agric Sinica 35(3):475–482

    Google Scholar 

  • Havlin JL, Beaton JD, Tisdale SL, Nelson WL (2005) Soil fertility and fertilizers: an introduction to nutrient management, 7th edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Hernandez M, Fernandez-Garcia N, Garcia-Garma J, Rubio-Asensio JS, Rubio F, Olmos E (2012) Potassium starvation induces oxidative stress in Solanum lypersicum L. roots. J Plant Physiol 169:1366–1374

    PubMed  CAS  Google Scholar 

  • Hewitt EJ (1963) Essential nutrient elements for plants: requirement and interaction in plants. In: Steward FC (ed) Plant physiol, vol III. Academic Press Inc., New York, pp 137–360

    Google Scholar 

  • Hirsch RE, Lewis BD, Spalding EP, Sussman MR (1998) A role for the AKT1 potassium channel in plant nutrition. Science 280:918–921

    PubMed  CAS  Google Scholar 

  • Høgh-Jensen H (2003) The effect of potassium deficiency on growth and N2-fixation in Trifolium repens. Physiol Plant 119:440–449

    Google Scholar 

  • Hong Y, Devaiah SP, Bahn SC, Thamasandra BN, Li M, Welti R, Wang X (2009) Phospholipase Dє and phosphatidic acid enhance Arabidopsis nitrogen signaling and growth. Plant J 58:376–387

    PubMed  CAS  Google Scholar 

  • Hong JP, Takeshi Y, Kondou Y, Schachtman DP, Matsui M, Shin R (2013) Identification and characterization of transcription factors regulating Arabidopsis HAK5. Plant Cell Physiol 54(9):1478–1490

    PubMed  CAS  Google Scholar 

  • Honsbein A, Sokolovski S, Grefen C, Campanoni P, Pratelli R et al (2009) A tripartite SNARE-K+ channel complex mediates in channel-dependent K+ nutrition in Arabidopsis. Plant Cell 21:2859–2877

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hosy E, Vavasseur A, Mouline K, Dreyer I, Gaymard F et al (2003) The Arabidopsis outward K+ channel GORK is involved in regulation of stomatal movements and plant transpiration. Proc Natl Acad Sci USA 100:5549–5554

    PubMed Central  PubMed  CAS  Google Scholar 

  • Howe GA, Schilmiller AL (2002) Oxylipin metabolism in response to stress. Curr Opin Plant Biol 5:230–236

    PubMed  CAS  Google Scholar 

  • Jeanguenin L, Alcon C, Duby G, Boeglin M, Cherel I et al (2011) AtKC1 is a general modulator of Arabidopsis inward Shaker channel activity. Plant J 67:570–582

    PubMed  CAS  Google Scholar 

  • Johnston AE (2005) Understanding potassium and its use in agriculture. EFMA, Brussels

    Google Scholar 

  • Jordan-Meille L, Pellerin S (2004) Leaf area establishment of a maize (Zea Mays L.) field crop under potassium deficiency. Plant Soil 265:75–92

    CAS  Google Scholar 

  • Jordan-Meille L, Pellerin S (2008) Shoot and root growth of hydroponic maize (Zea mays L.) as influence by K deficiency. Plant Soil 304:157–168

    CAS  Google Scholar 

  • Jung JY, Shin R, Schachtman DP (2009) Ethylene mediates response and tolerance to potassium deprivation in Arabidopsis. Plant Cell 21:607–621

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kanai S, Ohkura K, Adu-Gyamfi JJ, Mohapatra PK, Nguyen NT, Saneoka H, Fujita K (2007) Depression of sink activity precedes the inhibition of biomass production in tomato plants subjected to potassium deficiency stress. J Exp Bot 58(11):2917–2928

    PubMed  CAS  Google Scholar 

  • Kanai S, Moghaieb RE, El-Shemy HA, Panigrahi R, Mohapatra PK, Ito J, Nguyen NT, Saneoka H, Fujita K (2011) Potassium deficiency affects water status and photosynthetic rate of the vegetative sink in green house tomato prior to its effects on source activity. Plant Sci 180:368–374

    PubMed  CAS  Google Scholar 

  • Kang Y, Outlaw WH, Andersen PC, Fiore GB (2007) Guard-cell apoplastic sucrose concentration–a link between leaf photosynthesis and stomatal aperture size in the apoplastic phloem loader Vicia faba L. Plant Cell Environ 30:551–558

    PubMed  CAS  Google Scholar 

  • Kellermeier F, Chardon F, Amtmann A (2013) Natural variation of Arabidopsis root architecture reveals complementing adaptive strategies to potassium starvation. Plant Physiol 161:1421–1432

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kim MJ, Ruzicka D, Shin R, Schachtman DP (2012) The Arabidopsis AP2/ERF transcription factor RAP2.11 modulates plant response to low-potassium conditions. Mol Plant 5(5):1042–1057

    PubMed  CAS  Google Scholar 

  • Kramell R, Miersch O, Atzorn R, Parthier B, Wasternack C (2000) Octadecanoid-derived alteration of gene expression and the oxylipin signature in stressed barley leaves—implications for different signalling pathways. Plant Physiol 123:177–186

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kudla J, Batistič O, Hashimoto K (2010) Calcium signals: the lead currency of plant information processing. Plant Cell 22:541–563

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lacombe B, Pilot G, Michard E, Gaymard F, Sentenac H, Thibaud JB (2000) A shaker-like K+ channel with weak rectification is expressed in both source and sink phloem tissues of Arabidopsis. Plant Cell 12:837–851

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lan WZ, Lee SC, Chec YF, Jiang YQ, Luan S (2011) Mechanistic analysis of AKT1 regulation by the CBL–CIPK–PP2CA interactions. Mol Plant 4:527–536

    Google Scholar 

  • Lee SC, Lan WZ, Kim BG, Li L, Cheong YH, Pandey GK, Lu G, Buchanan BB, Luan SA (2007) Protein phosphorylation/dephosphorylation network regulates a plant potassium channel. Proc Natl Acad Sci USA 104(40):15959–15964

    PubMed Central  PubMed  CAS  Google Scholar 

  • Leigh RA, Wyn Jones RG (1984) A hypothesis relating critical potassium concentrations for growth to the distribution and functions of this ion in the plant cell. New Phytol 97:1–13

    CAS  Google Scholar 

  • Li L, Kim BG, Cheong YH, Pandey GK, Luan S (2006) A Ca2+ signaling pathway regulates a K+ channel for low-K response in Arabidopsis. Proc Natl Acad Sci USA 103(33):12625–12630

    PubMed Central  PubMed  CAS  Google Scholar 

  • Liu K, Fu HH, Bei QX, Luan S (2000) Inward potassium channel in guard cells as a target for polyamine regulation of stomatal movements. Plant Physiol 124:1315–1325

    PubMed Central  PubMed  CAS  Google Scholar 

  • Liu LL, Ren HM, Chen LQ, Wang Y, Wu WH (2013) A protein kinase CIPK9 interacts with calcium sensor CBL3 and regulates K+ homeostasis under low-K+ stress in Arabidopsis. Plant Physiol 161:266–277

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ma TL, Wu WH, Wang Y (2012) Transcriptome analysis of rice root responses to potassium deficiency. BMC Plant Biol 12:161

    PubMed Central  PubMed  CAS  Google Scholar 

  • Maathuis FJM, Sanders D (1994) Mechanism of high affinity potassium uptake in roots of Arabidopsis thaliana. Proc Natl Acad Sci USA 91:9272–9276

    PubMed Central  PubMed  CAS  Google Scholar 

  • Maathuis FJM, Sanders D (1995) Contrasting roles in ion transport of two K+-channel types in root cells of Arabidopsis thaliana. Planta 197:456–464

    PubMed  CAS  Google Scholar 

  • Maathuis FJM, Sanders D (1996) Mechanisms of potassium absorption by higher plant roots. Physiol Plant 96:158–168

    CAS  Google Scholar 

  • Maathuis FJM, Filatov V, Herzyk P et al (2003) Transcriptome analysis of root transporters reveals participation of multiple gene families in the response to cation stress. Plant J 35:675–692

    PubMed  CAS  Google Scholar 

  • Mahmood T, GILL MA, Ranjha AM, Ahmad Z, Rehman H (2001) Potassium deficiency-stress tolerance in wheat genotypes I: sand culture study. Inter J Agric Biol 3(1):113–116

    Google Scholar 

  • Marschner H (1986) Mineral nutrition of higher plants. Acad Press, London

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Springer, New York

    Google Scholar 

  • Marschner H, Römheld V (1994) Strategies of plant acquisition of iron. Plant Soil 165:261–274

    CAS  Google Scholar 

  • Marschner H, Kirkby EA, Cakmak I (1996) Effect of mineral nutritional status on shoot root partitioning of photoassimilates and cycling of mineral nutrients. J Exp Bot 47:1255–1263

    PubMed  CAS  Google Scholar 

  • Martínez-Cordero MA, Martínez V, Rubio F (2004) Cloning and functional characterization of the high-affinity K+ transporter HAK1 of pepper. Plant Mol Biol 56:413–421

    PubMed  Google Scholar 

  • Meijer HJ, Munnik T (2003) Phospholipase based signalling in plants. Ann Rev Plant Biol 54:265–306

    CAS  Google Scholar 

  • Memon AR, Siddiqi MY, Glass ADM (1985) Efficiency of K+ utilization by barley varieties: activation of pyruvate kinase. J Exp Bot 36:79–90

    CAS  Google Scholar 

  • Meng TC, Fukada T, Tonks NK (2002) Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol Cell 9:387–399

    PubMed  CAS  Google Scholar 

  • Mengel K, Kirkby EA (1982) Potassium. In: Mengel K, Kirkby EA (eds) Principles of plant nutrition. International Potash Institute, Worblaufeu-Bern, pp 335–368

    Google Scholar 

  • Mengel K, Haghparast MR, Koch K (1974) The effect of potassium on the fixation of molecular nitrogen by root nodules of Vicia faba. Plant Physiol 54:535–538

    PubMed Central  PubMed  CAS  Google Scholar 

  • Minjian C, Haiqiu Y, Hongkui Y, Chunji J (2007) Difference in tolerance to potassium deficiency between two maize inbred lines. Plant Biosyst 134(3):333–339

    Google Scholar 

  • Mouline K, Véry AA, Gaymard F, Boucherez J, Pilot G et al (2002) Pollen tube development and competitive ability are impaired by disruption of a Shaker K+ channel in Arabidopsis. Genes Dev 16:339–350

    PubMed Central  PubMed  CAS  Google Scholar 

  • Munnik T, Meijer HJG, Ter Riet B, Hirt H, Frank W, Bartels D, Musgrave A (2000) Hyperosmotic stress stimulates phospholipase D activity and elevates the levels of phosphatidic acid and diacylglycerol pyrophosphate. Plant J 22:147–154

    PubMed  CAS  Google Scholar 

  • Navari-Izzo F, Cestone B, Cavallini A, Natali L, Giordani T, Quartacci MF (2006) Copper excess triggers phospholipase D activity in wheat roots. Phytochemistry 67:1232–1242

    PubMed  CAS  Google Scholar 

  • Neill S, Desikan R, Hancock J (2002) Hydrogen peroxide signaling. Curr Opin Plant Biol 5:388–395

    PubMed  CAS  Google Scholar 

  • Ni DA (2012) Role of vacuolar invertase in regulating Arabidopsis stomatal opening. Acta Physiol Plant 34:2449–2452

    CAS  Google Scholar 

  • Nieves-Cordones M, Miller A, Alemán F, Martínez V, Rubio F (2008) A putative role for the plasma membrane potential in the control of the expression of the gene encoding the tomato high-affinity potassium transporter HAK5. Plant Mol Biol 68:521–532

    PubMed  CAS  Google Scholar 

  • Obermeyer G, Blatt MR (1995) Electrical properties of intact pollen germination of Lilium longiflorum: characteristics of the non-germinating pollen grains. J Exp Bot 46:803–813

    CAS  Google Scholar 

  • Ottow EA, Brinker M, Teichmann T, Fritz E, Kaiser W, Brosché M, Kangasjärvi J, Jiang X, Polle A (2005) Populus euphratica displays apoplastic sodium accumulation, osmotic adjustment by decreases in calcium and soluble carbohydrates, and develops leaf succulence under salt stress. Plant Physiol 139:1762–1772

    PubMed Central  PubMed  CAS  Google Scholar 

  • Pandey GK, Cheong YH, Kim BG, Grant JJ, Li L et al (2007) CIPK9: a calcium sensor-interacting protein kinase required for low-potassium tolerance in Arabidopsis. Cell Res 17:411–421

    PubMed  CAS  Google Scholar 

  • Pettigrew WT (2008) Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiol Plant 133:670–681

    PubMed  CAS  Google Scholar 

  • Philippar K, Fuchs I, Luthen H, Hoth S, Bauer CS et al (1999) Auxin-induced K+ channel expression represents an essential step in coleoptile growth and gravitropism. Proc Natl Acad Sci USA 96:12186–12191

    PubMed Central  PubMed  CAS  Google Scholar 

  • Pilot G, Lacombe B, Gaymard F, Chérel I, Boucherez J et al (2001) Guard cell inward K+ channel activity in Arabidopsis involves expression of the twin channel subunits KAT1 and KAT2. J Biol Chem 276:3215–3221

    PubMed  CAS  Google Scholar 

  • Pilot G, Gaymard F, Mouline K, Chérel I, Sentenac H (2003) Regulated expression of Arabidopsis shaker K+ channel genes involved in K+ uptake and distribution in the plant. Plant Mol Biol 51:773–787

    PubMed  CAS  Google Scholar 

  • Pottosin II, Estévez M (2003) Regulation of the fast vacuolar channel by cytosolic and vacuolar potassium. Biophys J 84:977–986

    PubMed Central  PubMed  CAS  Google Scholar 

  • Pujos A, Morard P (1997) Effects of potassium deficiency on tomato growth and mineral nutrition at the early production stage. Plant Soil 189:189–196

    CAS  Google Scholar 

  • Pyo Y, Gierth M, Schroeder JI, Cho MH (2010) High-affinity K+ transport in Arabidopsis: AtHAK5 and AKT1 are vital for seedling establishment and postgermination growth under low K+ conditions. Plant Physiol 153:863–875

    PubMed Central  PubMed  CAS  Google Scholar 

  • Qi Z, Hampton CR, Shin R, Barkla BJ, White PJ, Schachtman DP (2008) The high affinity K+ transporter AtHAK5 plays a physiological role in planta at very low K+ concentrations and provides a caesium uptake pathway in Arabidopsis. J Exp Bot 59:595–607

    PubMed  CAS  Google Scholar 

  • Qin C, Wang X (2002) The Arabidopsis phospholipase D family. Characterization of a calcium-independent and phosphatidylcholine-selective PLDf1 with distinct regulatory domains. Plant Physiol 128:1057–1068

    PubMed Central  PubMed  CAS  Google Scholar 

  • Qu C, Liu C, Ze Y, Gong X, Hong M, Wang L, Hong F (2011) Inhibition of nitrogen and photosynthetic carbon assimilation of maize seedlings by exposure to a combination of salt stress and potassium-deficient stress. Biol Trace Elem Res 144:1159–1174

    PubMed  CAS  Google Scholar 

  • Raven PH, Evert RF, Curtis H (1976) Biology of plants. Worth Publishers, New York

    Google Scholar 

  • Reintanz B, Szyroki A, Ache P, Ivashikina N, Godde M et al (2002) AtKC1, a silent Arabidopsis potassium channel α-subunit modulates root hair K+ influx. Proc Natl Acad Sci USA 99:4079–4084

    PubMed Central  PubMed  CAS  Google Scholar 

  • Rengel Z, Damon PM (2008) Crops and genotypes differ in efficiency of potassium uptake and use. Physiol Plant 133:624–636

    PubMed  CAS  Google Scholar 

  • Rodríguez-Navarro A (2000) Potassium transport in fungi and plants. Biochim Biophys Acta 1469:1–30

    PubMed  Google Scholar 

  • Römheld V (1987) Different strategies for iron acquisition in higher plants. Physiol Plant 70:231–234

    Google Scholar 

  • Rubio F, Nieves-Cordones M, Alemàn F, Martinez V (2008) Relative contribution of AtHAK5 and AtAKT1 to K+ uptake in the high-affinity range of concentrations. Physiol Plant 134:598–608

    PubMed  CAS  Google Scholar 

  • Russo MA, Quartacci MF, Izzo R, Belligno A, Navari-Izzo F (2007) Long- and short-term phosphate deprivation in bean roots: plasma membrane lipid alterations and transient stimulation of phospholipases. Phytochemistry 68:1564–1571

    PubMed  CAS  Google Scholar 

  • Sakaguchi T, Nishizawa NK, Nakanishi H, Yoshimura E, Mori S (1999) The role of potassium in the secretion of mugineic acids family phytosiderophores from iron-deficient barley roots. Plant Soil 215:221–227

    CAS  Google Scholar 

  • Samal D, Kovar JL, Steingrobe B, Sadana US, Bhadoria PS, Claassen N (2010) Potassium uptake efficiency and dynamics in the rhizosphere of maize (Zea mays L.), wheat (Triticum aestivum L.), and sugar beet (Beta vulgaris L.) evaluated with a mechanistic model. Plant Soil 332:105–121

    CAS  Google Scholar 

  • Sattelmacher B, Horst WJ, Becher HC (1994) Factors that contribute to genetic variation for nutrient efficiency of crop plants. Z Pflanzenernahr Bodenkd 157:215–224

    CAS  Google Scholar 

  • Sauerbeck DC, Helal HM (1990) Factors affecting the nutrient efficiency of plants. In: El Bassam N (ed) Genetic aspects of plant mineral nutrition. Martinus Nijhoff, Dordrecht, pp 11–17

    Google Scholar 

  • Schachtman DP, Schroeder JI (1994) Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants. Nature 370:655–658

    PubMed  CAS  Google Scholar 

  • Schachtman DP, Shin R (2007) Nutrient sensing and signaling: nPKS. Ann Rev Plant Biol 58:47–69

    CAS  Google Scholar 

  • Schachtman DP, Schroeder JI, Lucas WJ, Anderson JA, Gaber RF (1992) Expression of an inward rectifying potassium channel by the Arabidopsis KAT1 cDNA. Science 258:1654–1658

    PubMed  CAS  Google Scholar 

  • Schuppe-Koistinen I, Moldeus P, Bergman T, Cotgreave IA (1994) S-thiolation of human endothelial cell glyceraldehyde-3-phosphate dehydrogenase after hydrogen peroxide treatment. Eur J Biochem 221:1033–1037

    PubMed  CAS  Google Scholar 

  • Sentenac H, Bonneaud N, Minet M, Lacroute F, Salmon JM, Gaymard F, Grignon C (1992) Cloning and expression in yeast of a plant potassium ion transport. Science 256:663–665

    PubMed  CAS  Google Scholar 

  • Shin R, Schachtman DP (2004) Hydrogen peroxide mediates plant root cell response to nutrient deprivation. Proc Natl Acad Sci USA 101(23):8827–8832

    PubMed Central  PubMed  CAS  Google Scholar 

  • Shin R, Berg RH, Schachtman DP (2005) Reactive oxygen species and root hairs in Arabidopsis response to nitrogen, phosphorus and potassium deficiency. Plant Cell Physiol 46(8):1350–1357

    PubMed  CAS  Google Scholar 

  • Singh P, Blanke MM (2000) Deficiency of potassium but not phosphorus enhances root respiration. Plant Growth Regul 32:77–81

    CAS  Google Scholar 

  • Spalding EP, Hirsch RE, Lewis DR, Qi Z, Sussman MR, Lewis BD (1999) Potassium uptake supporting plant growth in the absence of AKT1 channel activity. J Gen Physiol 113:909–918

    PubMed Central  PubMed  CAS  Google Scholar 

  • Sparks DL (1987) Potassium dynamics in soil. In: Stewart BA (ed) Advances in soil science. Springer, New York, pp 1–63

    Google Scholar 

  • Sparks DL, Huang PM (1985) Physical chemistry of soil potassium. In: Munson RD (ed) Potassium in agriculture. American Society of Agronomy, Madison, pp 201–276

    Google Scholar 

  • Stintzi A, Weber H, Reymond P, Browse J, Farmer EE (2001) Plant defense in the absence of jasmonic acid: the role of cyclopentenones. Proc Natl Acad Sci USA 98:12837–12842

    PubMed Central  PubMed  CAS  Google Scholar 

  • Talbott LD, Zeiger E (1996) Central roles for potassium and sucrose in guard-cell osmoregulation. Plant Physiol 111:1051–1057

    PubMed Central  PubMed  CAS  Google Scholar 

  • Taylor LP, Hepler PK (1997) Pollen germination and tube growth. Ann Rev Plant Physiol Plant Mol Biol 48:461–491

    CAS  Google Scholar 

  • Tester M, Blatt MR (1989) Direct measurement of K+ channels in thylakoid membranes by incorporation of vesicles planar lipid bilayer. Plant Physiol 91:249–252

    PubMed Central  PubMed  CAS  Google Scholar 

  • Tewari RK, Kumar P, Tewari N, Srivastava S, Sharma PN (2004) Macronutrient deficiencies and differential antioxidant responses-influence on the activity and expression of superoxide dismutase in maize. Plant Sci 166:687–694

    CAS  Google Scholar 

  • Tewari RK, Kumar P, Sharma PN (2007) Oxidative stress and antioxidant responses in young leaves of mulberry plants under nitrogen, phosphorus or potassium deficiency. J Integr Plant Biol 49(3):313–332

    CAS  Google Scholar 

  • Thaler P, Pages L (1998) Modeling the influence of assimilates availability on root growth and architecture. Plant Soil 201:307–320

    CAS  Google Scholar 

  • Trehan SP, Sharma RC (2002) Potassium uptake efficiency of young plants of three potato cultivars as related to root and shoot parameters. Commun Soil Sci Plant Anal 33:1813–1823

    CAS  Google Scholar 

  • Troufflard S, Mullen W, Larson T, Graham I, Crozier A, Amtmann A (2010) Potassium deficiency induces the biosynthesis of oxylipins and glucosinolates in Arabidopsis thaliana. BMC Plant Biol 10:172–184

    PubMed Central  PubMed  Google Scholar 

  • Tuteja N, Mahaja S (2007) Calcium signaling network in plants. Plant Signal Behav 2(2):79–85

    PubMed Central  PubMed  Google Scholar 

  • Véry AA, Sentenac H (2003) Molecular mechanisms and regulation of K+ transport in higher plants. Ann Rev Plant Biol 54:575–603

    Google Scholar 

  • Vicente-Agullo F, Rigas S, Desbrosses G, Dolan L, Hatzopoulos P, Grabov A (2004) Potassium carrier TRH1 is required for auxin transport in Arabidopsis roots. Plant J 40:523–535

    PubMed  CAS  Google Scholar 

  • Vigliocco A, Bonamico B, Alemano S, Miersch O, Abdala G (2002) Stimulation of jasmonic acid production in Zea mays L. infected by the maize rough dwarf virus—Río Cuarto. Reversion of symptoms by salicylic acid. Biocell 26(3):369–374

    PubMed  CAS  Google Scholar 

  • Walker DJ, Leigh RA, Miller AJ (1996) Potassium homeostasis in vacuolate plant cells. Proc Natl Acad Sci USA 93:10510–10514

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wang X (2000) Multiple forms of phospholipase D in plants: the gene family, catalytic and regulatory properties, and cellular functions. Prog Lipid Res 39:109–149

    PubMed  CAS  Google Scholar 

  • Wang Y, Wu WH (2010) Plant sensing and signaling in response to K+-deficiency. Mol Plant 3:280–287

    PubMed  CAS  Google Scholar 

  • Wang Y, Wu WH (2013) Potassium transport and signaling in higher plants. Annu Rev Plant Biol 64:451–476

    PubMed  CAS  Google Scholar 

  • Wang TB, Gassmann W, Rubio F, Schroeder JI, Glass ADM (1998) Rapid up-regulation of HKT1, a high-affiniy potassium transporter gene, in roots of barley and wheat following withdrawal of potassium. Plant Physiol 118:651–659

    PubMed Central  PubMed  Google Scholar 

  • Wang Y, He L, Li HD, Xu J, Wu WH (2010) Potassium channel α-subunit AtKC1 negatively regulates AKT1-mediated K+ uptake in Arabidopsis roots under low-K+ stress. Cell Res 20:826–837

    PubMed  CAS  Google Scholar 

  • Wang N, Hua H, Eneji AE, Li Z, Duan L, Tian X (2012) Genotypic variations in photosynthetic and physiological adjustment to potassium deficiency in cotton (Gossypium hirsutum). J Photochem Photobiol B: Biol 110:1–8

    CAS  Google Scholar 

  • White PJ, Karley AJ (2010) Potassium. In: Hell R, Mendel R–R (eds) Cell biology of metals and nutrients. Springer, Heidelberg, pp 199–224

    Google Scholar 

  • Williamson LC, Ribrioux SPCP, Fitter AH, Leyser HMO (2001) Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiol 126:875–882

    PubMed Central  PubMed  CAS  Google Scholar 

  • Woodend JJ, Glass AMD (1993) Genotype-environment interaction and correlation between vegetative and grain production measures of potassium use-efficiency in wheat (T. aestivum L.) grown under potassium stress. Plant Soil 151:39–44

    CAS  Google Scholar 

  • Xiao-Lei W, Hai-Qiu Y, Ning L, Bing YI, Jing W, Xing-Tao L, Xin-Hua Z, Min-Jian C (2012) Some physiological characteristics in maize (Zea mays L.) inbred lines tolerant to low potassium from grain filling to maturity. Afr J Agric Res 7(11):1761–1771

    Google Scholar 

  • Xiao-Li T, Gang-Wei W, Rui Z, Pei-Zhu Y, Liu-Sheng D, Zhao-Hu L (2008) Conditions and indicators for screening cotton (Gossypium hirsutum L.) varieties tolerant to low potassium. Acta Agric Sinica 34(8):1435–1443

    Google Scholar 

  • Xu J, Li HD, Chen LQ, Wang Y, Liu LL, He L, Wu WH (2006) A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell 125:1347–1360

    PubMed  CAS  Google Scholar 

  • Yamaguchi T, Tanabe S, Minami E, Shibuya N (2004) Activation of phospholipase D induced by hydrogen peroxide in suspension cultured rice cells. Plant Cell Physiol 45(9):1261–1270

    PubMed  CAS  Google Scholar 

  • Yang T, Poovaiah BW (2002) Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin. Proc Natl Acad Sci USA 99:4097–4102

    PubMed Central  PubMed  CAS  Google Scholar 

  • Yang XE, Liu JX, Wang WM, Li H, Luo AC, Ye ZQ, Yang YA (2003) Genotypic differences and some associated plant traits in potassium internal use efficiency of lowland rice (Oryza sativa L.). Nutr Cycl Agroecosyst 67(3):273–282

    CAS  Google Scholar 

  • Yawson DO, Kwakye PK, Armah FA, Frimpong KA (2011) The dynamics of potassium (K) in representative soil series of Ghana. J Agric Biol Sci 6(1):48–55

    Google Scholar 

  • Zhang W, Wang C, Qin C, Wood T, Olafsdottir G, Welti R, Wang X (2003) The oleate stimulated phospholipase D, PLDδ, and phosphatidic acid decrease H2O2-induced cell death in Arabidopsis. Plant Cell 15:2285–2295

    PubMed Central  PubMed  CAS  Google Scholar 

  • Zhao D, Oosterhuis DM, Bednarz CW (2001) Influence of potassium deficiency on photosynthesis, chlorophyll content, and chloroplast ultrastructure of cotton plants. Photosynthetica 39(1):103–109

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chokri Hafsi.

Additional information

Communicated by P. Wojtaszek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hafsi, C., Debez, A. & Abdelly, C. Potassium deficiency in plants: effects and signaling cascades. Acta Physiol Plant 36, 1055–1070 (2014). https://doi.org/10.1007/s11738-014-1491-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-014-1491-2

Keywords

Navigation