Skip to main content

Medicinal Plants , Engineering of Secondary Metabolites in Cell Cultures

  • Reference work entry
Sustainable Food Production

Definition of the Subject

Plants are the most excellent designers and producers of a variety of small compounds that are beneficial to mankind as foods, medicines, and industrial raw materials. The use of medicinal plants for human health dates back to ancient history of mankind. The first written document of the use of medicinal plants can be found in Papyrus Ebers (1800 BC). Even if the use of certain medicinal plants was known to treat certain diseases – often using the trial-and-error approach – it is only less than 200 years ago the isolation of the first active chemical constituent (secondary metabolite) responsible for its pharmacological effect occurred. Today, many plant-derived compounds are used in pharmaceutical industry , and plants also serve as an important source for new lead compounds.

Many plants containing high-value secondary metabolites are difficult to cultivate or are becoming endangered because of the overharvesting. Furthermore, the chemical synthesis of...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Bioreactor:

A fermentor in which plant cell cultures can be cultivated in sterile, controlled, and contained condition for biotechnological production of cell biomass and/or particular protein or small molecule.

Medicinal plants:

Plants that are used for medicinal purposes; whole plants or specific plant organs or compounds derived thereof can be utilized.

Metabolic engineering:

A process to understand metabolic pathways; a targeted alteration of metabolic pathways with the aim of improved yield, quality, and/or spectrum of produced metabolites.

Plant cell culture:

Process where plant cells are cultivated under controlled conditions; may consist of differentiated tissues or organs (e.g., shoots, roots, embryos, stems) or undifferentiated cells (e.g., callus, suspension cultures).

Secondary metabolites:

Low molecular weight compounds with enormous chemical diversity often found in plants in small amounts essential for plants’ defense system; many secondary metabolites are used as pharmaceuticals, dyes, flavors, and fragrances by humans.

Transgene:

A gene that has been transferred from one organism to another.

Bibliography

Primary Literature

  1. Hostettmann K, Terreaux C (2000) Search for new lead compounds from higher plants. Chimia 54:652–657

    CAS  Google Scholar 

  2. Müller-Kuhrt L (2003) Putting nature back into drug discovery. Nat Biotechnol 21:602

    Article  PubMed  CAS  Google Scholar 

  3. Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477

    Article  PubMed  CAS  Google Scholar 

  4. Verpoorte R (1998) Exploration of nature’s chemodiversity: the role of secondary metabolites as leads in drug development. Drug Discov Today 3:232–238

    Article  CAS  Google Scholar 

  5. De Luca V, St Pierre B (2000) The cell and developmental biology of alkaloid biosynthesis. Trends Plant Sci 5:168–173

    Article  PubMed  Google Scholar 

  6. Hartmann T, Kutchan TM, Strack D (2005) Evolution of metabolic diversity. Phytochemistry 66:1198–1199

    Article  PubMed  CAS  Google Scholar 

  7. Oksman-Caldentey K-M, Inzé D (2004) Plant cell factories in the post-genomic era: new ways to produce designer secondary metabolites. Trends Plant Sci 9:433–440

    Article  PubMed  CAS  Google Scholar 

  8. Verpoorte R (2000) Secondary metabolism. In: Verpoorte R, Alfermann AW (eds) Metabolic engineering of plant secondary metabolism. Kluwer, Dordrech, pp 1–29

    Chapter  Google Scholar 

  9. Ziegler J, Facchini PJ (2008) Alkaloid biosynthesis – metabolism and trafficking. Annu Rev Plant Biol 59:735–769

    Article  PubMed  CAS  Google Scholar 

  10. Bevan MW, Flavell RB, Chilton MD (1983) A chimaeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature 304:184–187

    Article  CAS  Google Scholar 

  11. Fraley RT, Rogers SG, Horsch RB, Sanders PR, Flick JS, Adams SP, Bittner ML, Brand LA, Fink CL, Fry JS, Galluppi GR, Goldberg SB, Hoffman NL, Woo SC (1983) Expression of bacterial genes in plant cells. Proc Natl Acad Sci 80:4803–4807

    Article  PubMed  CAS  Google Scholar 

  12. Herrera-Estrella L, Depicker M, van Montagu M, Schell J (1983) Expression of chimaeric genes transferred into plant cells using a Ti-plasmid-derived vector. Nature 303:209–213

    Article  CAS  Google Scholar 

  13. Murai N, Sutton DW, Murray MG, Slightom JL, Merlo DJ, Reichert NA, Sengupta-Gopalan C, Stock CA, Barker RF, Kemp JD, Hall TC (1983) Phaseolin gene from bean is expressed after transfer to sunflower via tumor-inducing plasmid vectors. Science 222:476–482

    Article  PubMed  CAS  Google Scholar 

  14. Zupan J, Muth TR, Draper O, Zambryski P (2000) The transfer of DNA from Agrobacterium tumefaciens into plants: a feast of fundamental insights. Plant J 23:11–28

    Article  PubMed  CAS  Google Scholar 

  15. Sheng J, Citovsky V (1996) Agrobacterium – plant cell DNA transport: have virulence proteins, will travel. Plant Cell 8:1699–1710

    PubMed  CAS  Google Scholar 

  16. Chilton M-D, Tepfer DA, Petit A, David C, Casse-Delbart T, Tempé J (1982) Agrobacterium rhizogenes inserts T-DNA into the genomes of the host plant root cells. Nature 295:432–434

    Article  CAS  Google Scholar 

  17. Sahi SV, Chilton M-D, Chilton WS (1990) Corn metabolites affect growth and virulence of Agrobacterium tumefaciens. Proc Natl Acad Sci USA 87:3879–3883

    Article  PubMed  CAS  Google Scholar 

  18. Usami S, Morikawa S, Takebe I, Machida Y (1987) Absence in monocotyledonous plants at the diffusible plant factors inducing T-DNA circularization and vir gene expression in Agrobacterium. Mol Gen Genet 209:221–226

    Article  PubMed  CAS  Google Scholar 

  19. Narasimhulu SB, Deng X, Sarria R, Gelvin SB (1996) Early transcription of Agrobacterium T-DNA genes in tobacco and maize. Plant Cell 8:873–886

    PubMed  CAS  Google Scholar 

  20. Hansen G (2000) Evidence for Agrobacterium-induced apoptosis in maize cells. Mol Plant Microbe Interact 13:649–657

    Article  PubMed  CAS  Google Scholar 

  21. Nadolska-Orczyk A, Orczyk W, Przetakiewicz A (2000) Agrobacterium -mediated transformation of cereals – from technique development to its application. Acta Physiol Plant 22:77–88

    Article  CAS  Google Scholar 

  22. Sevón N, Oksman-Caldentey K-M (2002) Agrobacterium rhizogenes-mediated transformation: root cultures as a source of alkaloids. Planta Med 68:859–868

    Article  PubMed  Google Scholar 

  23. Palazón J, Cusidó RM, Roig C, Piñol MT (1998) Expression of the rolC gene and nicotine production in transgenic roots and their regenerated plants. Plant Cell Rep 17:384–390

    Article  Google Scholar 

  24. Bonhomme V, Laurain-Mattar D, Lacoux J, Fliniaux M-A, Jacquin-Dubreuil A (2000) Tropane alkaloid production by hairy roots of Atropa belladonna obtained after transformation with Agrobacterium rhizogenes 15834 and Agrobacterium tumefaciens containing rol A, B, C genes only. J Biotechnol 81:151–158

    Article  PubMed  CAS  Google Scholar 

  25. Chriqui D, Guivarch A, Dewitte W, Prinsen E, van Onkelen H (1996) Rol genes and root initiation and development. Plant Soil 187:47–55

    Article  CAS  Google Scholar 

  26. Jouhikainen K, Lindgren L, Jokelainen T, Hiltunen R, Teeri T, Oksman-Caldentey K-M (1999) Enhancement of scopolamine production in Hyoscyamus muticus L. hairy root cultures by genetic engineering. Planta 208:545–551

    Article  CAS  Google Scholar 

  27. Zhang L, Ding R, Chai Y, Bonfill M, Moyano E, Oksman-Caldentey K-M, Xu T, Pi Y, Wang Z, Zhang H, Kai G, Liao Z, Sun K, Tang K (2004) Engineering tropane alkaloid pathway in Hyoscyamus niger hairy root cultures. Proc Natl Acad Sci USA 101:6786–6791. doi:6786

    Article  PubMed  CAS  Google Scholar 

  28. Georgiev MI, Pavlov AI, Bley T (2007) Hairy root type plant in vitro systems as sources of bioactive substances. Appl Microbiol Biotechnol 74:1175–1185

    Article  PubMed  CAS  Google Scholar 

  29. Srivastava S, Srivastava AK (2007) Hairy root culture for mass-production of high-value secondary metabolites. Crit Rev Biotechnol 27:29–43

    Article  PubMed  CAS  Google Scholar 

  30. Sudha CG, Obul RB, Ravishankar GA, Seeni S (2003) Production of ajmalicine and ajmaline in hairy root cultures of Rauvolfia micrantha Hook F., a rare and endemic medicinal plant. Biotechnol Lett 25:631–636

    Article  PubMed  CAS  Google Scholar 

  31. Weathers P, Bunk G, McCoy MC (2005) The effect of phytohormones on growth and artemisinin production in Artemisia annua hairy roots. In Vitro Cell Dev B 41:47–53

    Article  CAS  Google Scholar 

  32. Park S-U, Facchini P (2000) Agrobacterium rhizogenes-mediated transformation of opium poppy, Papaver somniferum L., and California poppy, Eschscholzia californica Cham., root cultures. J Exp Bot 347:1005–1006

    Article  Google Scholar 

  33. Pavlov A, Bley T (2006) Betalains biosynthesis by Beta vulgaris L. hairy root culture in different bioreactor systems. Process Biochem 41:848–852

    Article  CAS  Google Scholar 

  34. Saito K, Sudo H, Yamazaki M, Koseki-Nakamura M, Kitajima M, Takayama H, Aimi N (2001) Feasible production of camptothecin by hairy root culture of Ophiorrhiza pumila. Plant Cell Rep 20:267–271

    Article  CAS  Google Scholar 

  35. Lorence A, Medina-Bolivar F, Nessler CL (2004) Camptothecin and 10-hydroxycamptothecin from Camptotheca acuminata hairy roots. Plant Cell Rep 22:437–441

    Article  PubMed  CAS  Google Scholar 

  36. Georgiev M, Heinrich M, Kerns G, Pavlov A, Bley T (2006) Production of iridoids and phenolics by transformed Harpagophytum procumbens root cultures. Eng Life Sci 6:593–596

    Article  CAS  Google Scholar 

  37. Sung H, Huang S-Y (2006) Medium optimization of transformed root cultures of Stizolobium hassjoo producing L-DOPA with response surface methodology. Biotechnol Bioeng 94:441–447

    Article  PubMed  CAS  Google Scholar 

  38. Fu C-X, Xu Y-J, Zhao D-X, Ma FS (2006) A comparison between hairy root cultures and wild plants of Saussurea involucrata in phenylpropanoids production. Plant Cell Rep 24:750–754

    Article  PubMed  CAS  Google Scholar 

  39. Jung G, Tepfer D (1987) Use of genetic transformation by the Ri T-DNA of Agrobacterium rhizogenes to stimulate biomass and tropane alkaloid production in Atropa belladonna and Calystegia sepium roots grown in vitro. J Ferment Bioeng 85:454–457

    Article  Google Scholar 

  40. Shimomura K, Sauerwein M, Ishimaru K (1991) Tropane alkaloids in the adventitious and hairy root cultures of Solanaceous plants. Phytochemistry 30:2275–2278

    Article  CAS  Google Scholar 

  41. Dupraz JM, Christen P, Kapetanidis I (1994) Tropane alkaloids in transformed roots of Datura quercifolia. Planta Med 60:158–162

    Article  PubMed  CAS  Google Scholar 

  42. Mano Y, Ohkawa H, Yamada Y (1989) Production of tropane alkaloids by hairy root cultures of Duboisia Leichhardtii transformed by Agrobacterium rhizogenes. Plant Sci 59:191–201

    Article  CAS  Google Scholar 

  43. Christen P, Robert MF, Phillipson JD, Evans WC (1991) Alkaloids of hairy root cultures of a Datura candida hybrid. Plant Cell Rep 9:101–104

    Google Scholar 

  44. Dechaux C, Boitel-Conti M (2005) A Strategy for overaccumulation of scopolamine in Datura innoxia hairy root cultures. Acta Biol Cracov Bot 47:101–107

    Google Scholar 

  45. Häkkinen ST, Moyano E, Cusidó RM, Palazón J, Piñol MT, Oksman-Caldentey K-M (2005) Enhanced secretion of tropane alkaloids in Nicotiana tabacum hairy roots expressing heterologous hyoscyamine-6beta-hydroxylase. J Exp Bot 420:2611–2618

    Article  Google Scholar 

  46. Zhang L, Ding R, Chai Y, Bonfill M, Moyano E, Oksman-Caldentey K-M, Xu T, Pi Y, Wang Z, Zhang H, Kai G, Liao Z, Sun X, Tang K (2004) Engineering tropane biosynthetic pathway in Hyoscyamus niger hairy root cultures. Proc Natl Acad Sci 1117 USA 101:6786–6791

    Google Scholar 

  47. Jacob A, Malpathak N (2004) Green hairy root cultures of Solanum khasianum Clarke – a new route to in vitro solasodine production. Curr Sci 87:1442–1447

    CAS  Google Scholar 

  48. Huang Z, Mu Y, Zhou Y, Chen W, Xu K, Yu Z, Bian Y, Yang Q (1997) Transformation of Taxus brevifolia by Agrobacterium rhizogenes and taxol production in hairy root culture. Acta Bot Yunnanica 19:292–296

    CAS  Google Scholar 

  49. Palazón J, Cusidó RM, Gonzalo J, Bonfill M, Morales C, Piñol MT (1998) Relation between the amount of rolC gene product and indole alkaloid accumulation in Catharanthus roseus transformed root cultures. J Plant Physiol 153:712–718

    Article  Google Scholar 

  50. Bhagwath SG, Hjortso MA (2000) Statistical analysis of elicitation strategies for thiarubrine. A production in hairy root cultures of Ambrosia artemisiifolia. J Biotechnol 80:159–167

    Article  PubMed  CAS  Google Scholar 

  51. Wink M, Alfermann AW, Franke R, Wetterauer B, Distl M, Windhoevel J, Krohn O, Fuss E, Garden H, Mohagheghzadeh A, Wildi EJ, Ripplinger P (2005) Sustainable bioproduction of phytochemicals by plant in vitro cultures: anticancer agents. Plant Gene Res 3:90–100

    Article  CAS  Google Scholar 

  52. Hamill JD, Robins RJ, Rhodes MJC (1989) Alkaloid production by transformed root cultures of Cinchona ledgeriana. Planta Med 55:354–357

    Article  PubMed  CAS  Google Scholar 

  53. Trotin F, Moumou Y, Vasseur J (1993) Flavanol production by Fagopyrum esculentum hairy and normal root cultures. Phytochemistry 32:929–931

    CAS  Google Scholar 

  54. Sato K, Yamazaki T, Okuyama E, Yoshihira K & Shimomura K (1991) Anthraquinones production by transformed root cultures of Rubia tinctorum: Influence of phytohormones and sucrose concentration. Phytochemistry 30:1507–1509

    Article  CAS  Google Scholar 

  55. Croes AF, Vander Berg AJR, Bosveld M, Breteler H, Wullems GJ (1989) Thiophene accumulation in relation to morphology in roots of Tagetes patula. Effects of auxin and transformation by Agrobacterium. Planta Med 179:43–50

    CAS  Google Scholar 

  56. Granicher F, Christen P, Kapetandis I (1992) High-yield production of valepotriates by hairy root cultures of Valeriana officnalis L. var. sambucifolia Mikan. Plant Cell Rep 11:339–342

    Article  Google Scholar 

  57. Oksman-Caldentey K-M, Kivelä O, Hiltunen R (1991) Spontaneous shoot organogenesis and plant regeneration from hairy root cultures of Hyoscyamus muticus. Plant Sci 78:129–136

    Article  CAS  Google Scholar 

  58. Su WW (2006) Bioreactor engineering for recombinant protein production using plant cell suspension culture. In: Gupta SD, Ibaraki Y (eds) Plant tissue culture engineering. Springer, The Netherlands, pp 135–159

    Chapter  Google Scholar 

  59. Choi YE, Kim YS, Paek KY (2006) Types and designs of bioreactors for hairy root culture. In: Gupta SD, Ibaraki Y (eds) Plant tissue culture engineering. Springer, The Netherlands, pp 161–172

    Chapter  Google Scholar 

  60. Eibl R, Kaiser S, Lombriser R, Eibl D (2010) Disposable bioreactors: the current state-of-art and recommended applications in biotechnology. Appl Microbiol Biotechnol 86:41–49

    Article  PubMed  CAS  Google Scholar 

  61. Eibl R, Werner S, Eibl D (2009) Bag bioreactor based on wave-induced motion: characteristics and applications. Adv Biochem Eng Biotechnol 115:55–87

    CAS  Google Scholar 

  62. Eibl R, Eibl D (2002) Bioreactors for plant cell and tissue cultures. In: Oksman-Caldentey K-M, Barz WH (eds) Plant biotechnology and transgenic plants. Marcel Dekker, Basel, pp 163–199

    Google Scholar 

  63. Palazón J, Mallol A, Lettenbauer C, Cusidó RM, Piñol MT (2003) Growth and gingenoside production in hairy root cultures of Panax ginseng using a novel bioreactor. Planta Med 69:344–349

    Article  PubMed  Google Scholar 

  64. Bentebibel S, Moyano E, Palazón J, Cusidó RM, Bonfill M, Eibl R, Piñol MT (2005) Effects of immobilization by entrapment in alginate and scale-up on paclitaxel and baccatin III production in cell suspension cultures of Taxus baccata. Biotechnol Bioeng 89:647–655

    Article  PubMed  CAS  Google Scholar 

  65. Bonfill M, Bentebibel S, Moyano E, Palazón J, Cusidó RM, Piñol MT (2008) Paclitaxel and baccatin III production induced by methyl jasmonate in free and immobilized cells of Taxus baccata. Biol Plant 51:647–652

    Article  Google Scholar 

  66. Ramachandra Rao S, Ravishankar GA (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 20:101–153

    PubMed  CAS  Google Scholar 

  67. Robins RJ, Rhodes MJC (1986) The stimulation of anthraquinone production by Cinchona ledgeriana cultures with polymeric adsorbents. Appl Microbiol Biotechnol 24:35–41

    Article  CAS  Google Scholar 

  68. Knuth ME, Sahai OP (1991) Flavour composition and method. US Patent 5,068,184, 26 Nov 1991

    Google Scholar 

  69. Beiderbeck R, Knoop B (1987) Two-phase culture. In: Constael F, Vasil I (eds) Cell culture and somatic cell genetics of plants, vol 5. Academic, San Diego, pp 255–266

    Google Scholar 

  70. Van Uden W, Woedenbag HJ, Pras N (1994) Cyclodextrins as a useful tool for bioconversion in plant cell biotechnology. Plant Cell Tiss Org 38:103–113

    Article  CAS  Google Scholar 

  71. Oksman-Caldentey K-M, Vuorela H, Strauss A, Hiltunen R (1987) Variation in the tropane alkaloid content of Hyoscyamus muticus plants and cell culture clones. Planta Med 53:349–354

    Article  PubMed  CAS  Google Scholar 

  72. Mano Y, Ohkawa H, Yamada Y (1989) Production of tropane alkaloids by hairy root cultures of Duboisia leichhardtii transformed by Agrobacterium rhizogenes. Plant Sci 59:191–201

    Article  CAS  Google Scholar 

  73. Berlin J (1980) Para-fluorophenylalanine resistant cell lines of tobacco. Z Pflanzenphysiol 97:317–324

    CAS  Google Scholar 

  74. Widholm JM (1974) Evidence for compartmentation of tryptophan in cultured plant tissues. Free tryptophan levels and inhibition of anthranilate synthetase. Physiol Plant 30:323–326

    Article  CAS  Google Scholar 

  75. Wataneba K, Yano SI, Yamada Y (1982) Selection of cultured plant cell lines producing high levels of biotin. Phytochemicals 21:513–516

    Article  Google Scholar 

  76. Larkin PJ, Scowcroft WR (1981) Somaclonal variation – a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–214

    Article  Google Scholar 

  77. Zhang KR, John PCL (2005) Raised level of cyclin dependent kinase A after prolonged suspension culture of Nicotiana plumbaginifolia is associated with more rapid growth and division, diminished cytoskeleton and lost capacity for regeneration: implications for instability of cultures plant cells. Plant Cell Tissue Organ Cult 82:295–308

    Article  CAS  Google Scholar 

  78. Shiba T, Mii M (2005) Visual selection and maintenance of the cell lines with high plant regeneration ability and low ploidy level in Dianthus acicularis by monitoring with flow cytometry analysis. Plant Cell Rep 24:572–580

    Article  PubMed  CAS  Google Scholar 

  79. Pikaard CS (2001) Genomic change and gene silencing in polyploids. Trends Genet 17:675–677

    Article  PubMed  CAS  Google Scholar 

  80. Hirasuna TJ, Pestchanker LJ, Srinivasan V, Shuler ML (1996) Taxol production in suspension cultures of Taxus baccata. Plant Cell Tiss Org 44:95–102

    Article  CAS  Google Scholar 

  81. Wallaart TE, Pras N, Quax WJ (1999) Seasonal variations of artemisinin and its biosynthetic precursors in tetraploid Artemisia annua plants compared with the diploid wild-type. Planta Med 65:723–728

    Article  CAS  Google Scholar 

  82. Deus-Neumann B, Zenk MH (1984) Instability of indole alkaloid production in Catharanthus roseus cell suspension-cultures. Planta Med 50:427–431

    Article  PubMed  CAS  Google Scholar 

  83. Qu JG, Zhang W, Yu XJ, Jin MF (2005) Instability of anthocyanin accumulation in Vitis vinifera L. var. Gamay Freaux suspension cultures. Biotechnol Bioprocess Eng 10:155–161

    Article  CAS  Google Scholar 

  84. Wilhelmson A, Häkkinen ST, Kallio P, Oksman-Caldentey K-M, Nuutila AM (2006) Heterologous expression of Vitreoscilla hemoglobin (VHb) and cultivation conditions affect the alkaloid profile of Hyoscyamus muticus hairy roots. Biotechnol Prog 22:350–358

    Article  PubMed  CAS  Google Scholar 

  85. Knobloch KH, Berlin J (1980) Influence of medium composition on the formation of secondary compounds in cell suspension cultures of Catharanthus roseus L. G. Don. Z Naturforsch 35C:551–556

    CAS  Google Scholar 

  86. Berlin J, Forche E, Wray V, Hammer J, Hosel W (1983) Formation of benzophenanthridine alkaloids by suspension cultures of Eschscholtzia californica. Z Naturforsch 38:346–352

    Google Scholar 

  87. Fujita Y, Tabata M, Nishi A, Yamada Y (1982) New medium and production of secondary compounds with two-staged culture medium. In: Fujiwara A (ed) Plant tissue culture. Maruzen, Tokyo, pp 399–400

    Google Scholar 

  88. Payne J, Hamill JD, Robins RJ, Rhodes MJC (1987) Production of hyoscyamine by “hairy root” cultures of Datura stramonium. Planta Med 53:474–478

    Article  PubMed  CAS  Google Scholar 

  89. Mantell SH, Pearson DW, Hazell LP, Smith H (1983) The effect of initial phosphate and sucrose levels on nicotine accumulation in batch suspension cultures of Nicotiana tabacum L. Plant Cell Rep 1:73–77

    Article  Google Scholar 

  90. Toivonen L, Ojala M, Kauppinen V (1991) Studies on the optimization of growth and indole alkalooid production by hairy root cultures of Catharanthus roseus. Biotechnol Bioeng 37:673–680

    Article  PubMed  CAS  Google Scholar 

  91. Do CB, Cormier F (1991) Effects of low nitrate and high sugar concentrations on anthocyanin content and composition of grape (Vitis vinifera L.) cell suspension. Plant Cell Rep 9:500–504

    CAS  Google Scholar 

  92. Ishikawa A, Yoshihara T, Nakamura K (1994) Jasmonate-inducible expression of a potato cathepsin D inhibitor-GUS gene fusion in tobacco cells. Plant Mol Biol 26:403–414

    Article  PubMed  CAS  Google Scholar 

  93. Tiburcio AF, Kaur-Sawhney R, Ingersoll R, Galston AW (1985) Correlation between polyamines and pyrrolidine in developing tobacco callus. Plant Physiol 78:323–326

    Article  PubMed  CAS  Google Scholar 

  94. Zenk MH, El-Shagi, E, Schulte U (1975) Anthraquinone production by cell suspension cultures of Morinda citrifolia. Planta Med 28:79–101

    Google Scholar 

  95. Tabata M (1988) Naphtoquinones. In: Constael F, Vasil I (eds) Cell culture and somatic cell genetics of plants, vol 5. Academic, San Diego, pp 99–111

    Google Scholar 

  96. Rajendran L, Ravishankar GA, Venkataraman LV, Prathiba KR (1992) Anthocyanin production in callus cultures of Daucus carota L. as influenced by nutrient stress and osmoticum. Biotechnol Lett 14:707–714

    Article  CAS  Google Scholar 

  97. Kolewe ME, Gaurav V, Roberst SC (2008) Pharmaceutically active natural product synthesis and supply via plant cell culture technology. Mol Pharm 5:243–256

    Article  PubMed  CAS  Google Scholar 

  98. Goossens A, Häkkinen ST, Laakso I, Seppänen-Laakso T, Biondi S, De Sutter V, Lammertyn F, Nuutila AM, Söderlund H, Zabeau M, Inzé D, Oksman-Caldentey K-M (2003) A functional genomics approach toward the understanding of secondary metabolism in plant cells. Proc Natl Acad Sci USA 100:8595–8600

    Article  PubMed  CAS  Google Scholar 

  99. Vasconsuelo AA, Boland R (2007) Molecular aspects of the early stages of elicitation of secondary metabolites in plants. Plant Sci 172:861–875

    Article  CAS  Google Scholar 

  100. Pauwels L, Barbero GF, Geerinck J, Tilleman S, Grunewald W, Pérez AC, Chico JM, Bossche RV, Sewell J, Gil E, García-Casado G, Witters E, Inzé D, Long JA, De Jaeger G, Solano R, Goossens A (2010) NINJA connects the co-repressor TOPLESS to jasmonate signalling. Nature 464:788–791

    Article  PubMed  CAS  Google Scholar 

  101. Lee-Parsons CW, Royce AJ (2006) Precursor limitations in methyl jasmonate-induced Catharanthus roseus cell cultures. Plant Cell Rep 25:607–612

    Article  PubMed  CAS  Google Scholar 

  102. Rischer H, Orešič M, Seppänen-Laakso T, Katajamaa M, Lammertyn F, Ardiles-Diaz W, Van Montagu MCE, Inzé D, Oksman-Caldentey K-M, Goossens A (2006) Gene-to-metabolite networks for terpenoid indole alkaloid biosynthesis in Catharanthus roseus cells. Proc Natl Acad Sci 103:5614–5619

    Article  PubMed  CAS  Google Scholar 

  103. Yukimune Y, Tabata H, Higashi Y, Hara Y (1996) Methyl jasmonate-induced overproduction of paclitaxel and baccatin III in Taxus cell suspension cultures. Nat Biotechnol 14:1129–1132

    Article  PubMed  CAS  Google Scholar 

  104. Sevón N, Hiltunen R, Oksman-Caldentey K-M (1992) Chitosan increases hyoscyamine content in hairy root cultures of Hyoscyamus muticus. Pharm Pharmacol Lett 2:96–99

    Google Scholar 

  105. Vasconsuelo AA, Giuletti AM, Picotto G, Rodriguez-Talou J, Boland R (2003) Involvement of the PLC/PKC pathway in chitosan-induced anthraquinone production by Rubia tinctorium L. cell cultures. Plant Sci 165:429–436

    Article  CAS  Google Scholar 

  106. Namdeo AG (2010) Plant cell elicitation for production of secondary metabolites: a review. Pharmacogn Rev 1:69–79

    Google Scholar 

  107. Bringmann G, Wohlfarth M, Rischer H, Grüne M, Schlauer J (2000) A new biosynthetic pathway to alkaloids in plants: acetogenic isoquinolines. Angew Chem Int Ed 39:1464–1466

    Article  CAS  Google Scholar 

  108. Wildung MR, Croteau R (1996) A cDNA clone for taxadiene synthase, the diterpene synthase, the diterpene cyclise that catalyzes the committed step of taxol biosynthesis. J Biol Chem 271:9201–9204

    Article  PubMed  CAS  Google Scholar 

  109. Kaspera R, Croteau R (2006) Cytochrome P450 oxygenases of taxol biosynthesis. Phytochem Rev 5:433–444

    Article  PubMed  CAS  Google Scholar 

  110. Jennewein S, Wildung MR, Chau M, Walker K, Croteau R (2004) Random sequencing of an induced Taxus cell cDNA library for identification of clones involved in taxol biosynthesis. Proc Natl Acad Sci USA 101:9149–9154

    Article  PubMed  CAS  Google Scholar 

  111. Sun C, Li Y, Wu Q, Luo H, Sun Y, Song J, Lui EMK, Chen S (2010) De novo sequencing and analysis of the American ginseng root transcriptome using a GS FLX titanium platform to discover putative genes involved in ginsenoside biosynthesis. BMC Genomics 11:262–273

    Article  PubMed  CAS  Google Scholar 

  112. Memelink J, Verpoorte R, Kijne JW (2001) ORCAnization of jasmonate-responsive gene expression in alkaloid metabolism. Trends Plant Sci 6:212–219

    Article  PubMed  CAS  Google Scholar 

  113. Potenza C, Aleman L, Sengupta-Gopalan C (2004) Targeting transgene expression in research, agricultural, and environmental applications:promoters used in plant transformation. In Vitro Cell Dev B 40:1–22

    Article  CAS  Google Scholar 

  114. Yoshida K, Shinmyo A (2000) Transgene expression systems in plant, a natural bioreactor. J Biosci Bioeng 90:353–362

    PubMed  CAS  Google Scholar 

  115. Guilley H, Dudley RK, Jonard G, Balázs E, Richards KE (1982) Transcription of cauliflower mosaic virus DNA: detection of promoter sequences, and characterization of transcripts. Cell 30:763–773

    Article  PubMed  CAS  Google Scholar 

  116. Odell JT, Nagy F, Chua NH (1985) Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313:810–812

    Article  PubMed  CAS  Google Scholar 

  117. Fang RX, Nagy F, Sivasubramanian S, Chua NH (1989) Multiple cis regulatory elements for maximal expression of the cauliflower mosaic virus 35S promoter in transgenic plants. Plant Cell 1:141–150

    PubMed  CAS  Google Scholar 

  118. Kay R, Chan A, Daly M, McPherson J (1987) Duplication of CaMV 35S promoter sequences creates a strong enhancer for plant genes. Science 236:1299–1302

    Article  PubMed  CAS  Google Scholar 

  119. Zárate R, Verpoorte R (2007) Strategies for the genetic modification of the medicinal plant Catharanthus roseus (L.) G. Don. Phytochem Rev 6:475–491

    Article  CAS  Google Scholar 

  120. Weathers PJ, Towler MJ, Xu J (2010) Bench to batch: advances in plant cell culture for producing useful products. Appl Microbiol Biotechnol 85:1339–1351

    Article  PubMed  CAS  Google Scholar 

  121. Naqvi S, Farré G, Sanahuja G, Capell T, Zhu C, Christou P (2010) When more is better: multigene engineering in plants. Trends Plant Sci 15:48–56

    Article  PubMed  CAS  Google Scholar 

  122. Peremarti A, Twyman RM, Gómes-Galera S, Naqvi S, Farré G, Sabalza M, Miralpeix B, Dashevskaya S, Yuan D, Ramessar K, Christou P, Zhu C, Bassie L, Capell T (2010) Promoter diversity in multigene transformation. Plant Mol Biol 73:363–378

    Article  PubMed  CAS  Google Scholar 

  123. Dudareva N, Negre F, Nagegowda DA, Orlova I (2006) Plant volatiles: recent advances and future prospects. Crit Rev Plant Sci 25:417–440

    Article  CAS  Google Scholar 

  124. Nagegowda DA (2010) Plant volatile terpenoid metabolism: biosynthetic genes, transcriptional regulation and subcellular compartmentation. FEBS Lett 584:2965–2973

    Article  PubMed  CAS  Google Scholar 

  125. Wu S, Schalk M, Clark A, Miles RB, Coates R, Chappell J (2006) Redirection of cytosolic or plastidic isoprenoid precursors elevates terpene production in plants. Nat Biotechnol 24:1441–1447

    Article  PubMed  CAS  Google Scholar 

  126. Ohara K, Ujihara T, Endo T, Sato F, Yazaki K (2003) Limonene production in tobacco with Perilla limonene synthase cDNA. J Exp Bot 54:2635–2642

    Article  PubMed  CAS  Google Scholar 

  127. Chappell J, Wolf F, Proulx J, Cuella R, Saunders C (1995) Is the reaction catalyzed by 3-hydroxy-3-methylglutaryl coenzyme A reductase a rate-limiting step for isoprenoid biosynthesis in plants. Plant Physiol 109:1337–1343

    PubMed  CAS  Google Scholar 

  128. Winkel BSJ (2004) Metabolic channeling in plants. Annu Rev Plant Biol 55:85–107

    Article  PubMed  CAS  Google Scholar 

  129. Kristensen C, Morant M, Olsen CE, Ekstrøm CT, Galbraith DW, Lindberg Møller B, Bak S (2005) Metabolic engineering of dhurrin in transgenic Arabidopsis plants with marginal inadvertent effects on the metabolome and transcriptome. Proc Natl Acad Sci USA 102:1779–1784

    Article  PubMed  CAS  Google Scholar 

  130. Aharoni A, Jongsma MA, Bouwmeester HJ (2005) Volatile science? Metabolic engineering of terpenoids in plants. Trends Plant Sci 10:594–602

    Article  PubMed  CAS  Google Scholar 

  131. Ma JK, Hiatt A, Hein M, Vine ND, Wang F, Stabila P, van Dolleweerd C, Mostov K, Lehner T (1995) Generation and assembly of secretory antibodies in plants. Science 268:716–719

    Article  PubMed  CAS  Google Scholar 

  132. Jobling SA, Westcott RJ, Tayal A, Jeffcoat R, Schwall GP (2002) Production of a freeze-thaw-stable potato starch by antisense inhibition of three starch synthase genes. Nat Biotechnol 20:295–299

    Article  PubMed  CAS  Google Scholar 

  133. Zhu C, Naqvi S, Breitenbach J, Sandmann G, Christou P, Capell T (2008) Combinatorial genetic transformation generates a library of metabolic phenotypes for the carotenoid pathway in maize. Proc Natl Acad Sci USA 105:18232–18237

    Article  PubMed  CAS  Google Scholar 

  134. Fujisawa M, Takita E, Harada H, Sakurai N, Suzuki H, Ohyama K, Shibata D, Misawa N (2009) Pathway engineering of Brassica napus seeds using multiple key enzyme genes involved in ketocarotenoid formation. J Exp Bot 60:1319–1332

    Article  PubMed  CAS  Google Scholar 

  135. Yun D-J, Hashimoto T, Yamada Y (1992) Metabolic engineering of medicinal plants: transgenic Atropa belladonna with an improved alkaloid composition. Proc Natl Acad Sci USA 89:11799–11803

    Article  PubMed  CAS  Google Scholar 

  136. Laurila J, Laakso I, Valkonen JPT, Hiltunen R, Pehu E (1996) Formation of parental-type and novel glycoalkaloids in somatic hybrids between Solanum brevidens and S. tuberosum. Plant Sci 118:145–155

    Article  CAS  Google Scholar 

  137. Little DB, Croteau RB (2002) Alteration of product formation by directed mutagenesis and truncation of the multiple-product sesquiterpene synthases δ-selinene synthase and γ-humulene synthase. Arch Biochem Biophys 402:120–135

    Article  PubMed  CAS  Google Scholar 

  138. Runguphan W, O’Connor SE (2009) Metabolic reprogramming of periwinkle plant culture. Nat Chem Biol 5:151–153

    Article  PubMed  CAS  Google Scholar 

  139. Trethewey RN, Krozky AJ, Willmitzer L (1999) Metabolic profiling: a Rosetta stone for genomics? Curr Opin Plant Biol 2:83–85

    Article  PubMed  CAS  Google Scholar 

  140. Oksman-Caldentey K-M, Saito K (2005) Integrating genomics and metabolomics for engineering plant metabolic pathways. Curr Opin Biotechnol 16:174–179

    Article  PubMed  CAS  Google Scholar 

  141. Wheeler GL, Jones MA, Smirnoff N (1998) The biosynthetic pathway of vitamin C in higher plants. Nature 393:365–369

    Article  PubMed  CAS  Google Scholar 

  142. Ratcliffe RG, Shachar-Hill Y (2005) Revealing metabolic phenotypes in plants: inputs from NMR analysis. Biol Rev 80:27–43

    Article  PubMed  CAS  Google Scholar 

  143. Kruger NJ, Ratcliffe RG (2007) Dynamic metabolic networks: going with the flow. Phytochemistry 68:2136–2138

    Article  PubMed  CAS  Google Scholar 

  144. Kruger NJ, Huddleston JE, Le Lay P, Brown ND, Ratcliffe RG (2007) Network flux analysis: impact of 13C-substrates on metabolism in Arabidopsis thaliana cell suspension cultures. Phytochemistry 68:2176–2188

    Article  PubMed  CAS  Google Scholar 

  145. Rischer H, Oksman-Caldentey K-M (2006) Unintended effects in genetically modified crops: revealed by metabolomics? Trends Biotechnol 24:102–104

    Article  PubMed  CAS  Google Scholar 

Books and Reviews

  • Allen DK, Libourel IG, Shachar-Hill Y (2009) Metabolic flux analysis in plants: coping with complexity. Plant Cell Environ 32:1241–1257

    Article  PubMed  CAS  Google Scholar 

  • Bhagwath SG, Hjortso MA (2000) J Biotechnol 80:159–167

    Article  PubMed  CAS  Google Scholar 

  • Bonhomme V, Laurain-Mattar D, Lacoux J, Fliniaux M, Jacquin-Dubreuil A (2000) J Biotechnol 81:151–158

    Article  PubMed  CAS  Google Scholar 

  • Buchanan BB, Gruissem W, Russell LJ (eds) (2000) Biochemistry & molecular biology of plants. American Society of Plant Physiologists, Rockville, p 1367

    Google Scholar 

  • Christen P, Robert MF, Phillipson JD, Evans WC (1991) Plant Cell Rep 9:101–104

    Google Scholar 

  • Croes AF, Vander Berg AJR, Bosveld M, Breteler H, Wullems GJ (1989) Planta Med 179:43–50

    Article  CAS  Google Scholar 

  • Dechaux C, Boitel-Conti M (2005) Acta Biol Cracov Bot 47:101–107

    Google Scholar 

  • Du H, Huang Y, Tang Y (2010) Genetic and metabolic engineering of isoflavonoid biosynthesis. Appl Microbiol Biotechnol 86:1293–1312

    Article  PubMed  CAS  Google Scholar 

  • Dudareva N, Pichersky E (2008) Metabolic engineering of plant volatiles. Curr Opin Biotechnol 19:181–189

    Article  PubMed  CAS  Google Scholar 

  • Dupraz JM, Christen P, Kapetanidis I (1994) Planta Med 60:158–162

    Article  PubMed  CAS  Google Scholar 

  • Fu C-X, Xu Y-J, Zhao D-X, Ma FS (2006) Plant Cell Rep 24:750–754

    Article  PubMed  CAS  Google Scholar 

  • Georgiev M, Heinrich M, Kerns G, Pavlov A, Bley T (2006) Eng Life Sci 6:593–596

    Article  CAS  Google Scholar 

  • Georgiev MI, Pavlov AI, Bley T (2007) Hairy root type plant in vitro systems as sources of bioactive substances. Appl Microbiol Biotechnol 74:1175–1185

    Article  PubMed  CAS  Google Scholar 

  • Granicher F, Christen P, Kapetandis I (1992) Plant Cell Rep 11:339–342

    Article  Google Scholar 

  • Häkkinen ST, Moyano E, Cusidó RM, Palazón J, Piñol MT, Oksman-Caldentey K-M (2005) J Exp Bot 420:2611–2618

    Article  Google Scholar 

  • Häkkinen ST, Oksman-Caldentey K-M (2004) Regulation of secondary metabolism in tobacco cell cultures. In: Nagata T, Hasezawa S, Inzé D (eds) Biotechnology in agriculture and forestry, vol 53, Tobacco BY-2 cells. Springer, Berlin/Heidelberg, pp 231–249

    Google Scholar 

  • Hamill JD, Robins RJ, Rhodes MJC (1989) Planta Med 55:354–357

    Article  PubMed  CAS  Google Scholar 

  • Huang Z, Mu Y, Zhou Y, Chen W, Xu K, Yu Z, Bian Y, Yang Q (1997) Acta Bot Yunnanica 19:292–296

    CAS  Google Scholar 

  • Jacob A, Malpathak N (2004) Curr Sci 87:1442–1447

    CAS  Google Scholar 

  • Jouhikainen K, Lindgren L, Jokelainen T, Hiltunen R, Oksman-Caldentey K-M (1999) Enhancement of scopolamine production in Hyscyamus muticus L. hairy root cultures by genetic engineering. Planta 208:545–551

    Article  CAS  Google Scholar 

  • Jung G, Tepfer D (1987) J Ferment Bioeng 85:454–457

    Article  Google Scholar 

  • Lorence A, Medina-Bolivar F, Nessler CL (2004) Plant Cell Rep 22:437–441

    Article  PubMed  CAS  Google Scholar 

  • Mano Y, Ohkawa H, Yamada Y (1989) Plant Sci 59:191–201

    Article  CAS  Google Scholar 

  • Nascimiento NC, Fett-Neto AG (2010) Plant secondary metabolism and challenges in modifying its operation: an overview. Meth Mol Biol 643:1–13

    Article  CAS  Google Scholar 

  • Oksman-Caldentey K-M, Barz W (eds) (2002) Plant biotechnology and transgenic plants. Marcel and Dekker, New York, p 719

    Google Scholar 

  • Oksman-Caldentey K-M, Inzé D (2004) Plant cell factories in the post-genomic era: new ways to produce designer secondary metabolites. Trends Plant Sci 9:433–440

    Article  PubMed  CAS  Google Scholar 

  • Oksman-Caldentey K-M, Inzé D, Orešič M (2004) Connecting genes to metabolites by a systems biology approach. Proc Natl Acad Sci USA 101:9949–9950

    Article  PubMed  CAS  Google Scholar 

  • Palazón J, Cusidó RM, Gonzalo J, Bonfill M, Morales C, Piñol MT (1998) J Plant Physiol 153:712–718

    Article  Google Scholar 

  • Park S-U, Facchini P (2000) J Exp Bot 347:1005–1006

    Article  Google Scholar 

  • Pavlov A, Bley T (2006) Process Biochem 41:848–852

    Article  CAS  Google Scholar 

  • Rischer H, Oksman-Caldentey K-M (2005) Biotechnological utilization of plant genetic resources for the production of phytopharmaceuticals. Plant Gen Resour 3:83–89

    Article  CAS  Google Scholar 

  • Saito K, Dixon RD, Willmitzer L (2006) Plant metabolomics. In: Nagata T, Lörz H, Widholm JM (eds) Biotechnology in agriculture and forestry, vol 57. Springer, Berlin/Heidelberg, p 347

    Google Scholar 

  • Saito K, Sudo H, Yamazaki M, Koseki-Nakamura M, Kitajima M, Takayama H, Aimi N (2001) Plant Cell Rep 20:267–271

    Article  CAS  Google Scholar 

  • Saito K, Yamazaki T, Okuyama E, Yoshihira K, Shimomura K (1991) Phytochemistry 30:2977–2980

    Article  Google Scholar 

  • Samuelsson G (2004) Drugs of natural origin. A textbook of pharmacognocy, 5th edn. Swedish Pharmaceutical Press, Stockholm, pp 473–575

    Google Scholar 

  • Schäfer H, Wink M (2009) Medicinally important secondary metabolites in recombinant microorganisms or plants: progress in alkaloid biosynthesis. Biotechnol J 4:1684–1703

    Article  PubMed  CAS  Google Scholar 

  • Sevón N, Oksman-Caldentey K-M (2002) Agrobacterium rhizogenes-mediated transformation: root cultures as a source of alkaloids. Planta Med 68:859–868

    Article  PubMed  Google Scholar 

  • Shimomura K, Sauerwein M, Ishimaru K (1991) Phytochemistry 30:2275–2278

    Article  CAS  Google Scholar 

  • Srivastava S, Srivastava AK (2007) Hairy root culture for mass-production of high-value secondary metabolites. Crit Rev Biotechnol 27:29–43

    Article  PubMed  CAS  Google Scholar 

  • Sudha CG, Obul RB, Ravishankar GA, Seeni S (2003) Biotechnol Lett 25:631–636

    Article  PubMed  CAS  Google Scholar 

  • Sung H, Huang S-Y (2006) Biotechnol Bioeng 94:441–447

    Article  PubMed  CAS  Google Scholar 

  • Trotin F, Moumou Y, Vasseur J (1993) Phytochemistry 32:929–931

    Article  CAS  Google Scholar 

  • Verpoorte R, Alfermann AW (eds) (2000) Metabolic engineering of plant secondary metabolism. Academic, Dordrecht, p 286

    Google Scholar 

  • Verpoorte R, Alfermann AW, Johnson TS (eds) (2007) Applications of plant metabolic engineering. Springer, Dordrecht, p 332

    Google Scholar 

  • Weathers P, Bunk G, McCoy MC (2005) In Vitro Cell Dev B 41:47–53

    Article  CAS  Google Scholar 

  • Wink M, Alfermann AW, Franke R, Wetterauer B, Distl M, Windhoevel J, Krohn O, Fuss E, Garden H, Mohagheghzadeh A, Wildi EJ, Ripplinger P (2005) Plant Gene Res 3:90–100

    Article  CAS  Google Scholar 

  • Zhang L, Ding R, Chai Y, Bonfill M, Moyano E, Oksman-Caldentey K-M, Xu T, Pi Y, Wang Z, Zhang H, Kai G, Liao Z, Sun X, Tang K (2004) Proc Natl Acad Sci USA 101:6786–6791

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work has been financially supported by the SmartCell project (nr. 222176) from European Commission Framework 7 programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K.-M. Oksman-Caldentey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Häkkinen, S.T., Ritala, A., Rischer, H., Oksman-Caldentey, KM. (2013). Medicinal Plants , Engineering of Secondary Metabolites in Cell Cultures . In: Christou, P., Savin, R., Costa-Pierce, B.A., Misztal, I., Whitelaw, C.B.A. (eds) Sustainable Food Production. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5797-8_387

Download citation

Publish with us

Policies and ethics