Skip to main content

Abstract

Many authors have discussed the problem of a proper definition of secondary metabolites.1,2,3 Bennett and Bentley1 extensively discussed the history of the term secondary metabolites, with special reference to microbial metabolites. They gave the following definition:

“General metabolites (hence general metabolism): A metabolic intermediate or product, found in most living systems, essential to growth and life, and biosynthesized by a limited number of biochemical pathways. Secondary metabolites (hence secondary metabolism): a metabolic intermediate or product, found as a differentiation product in restricted taxonomic groups, not essential to growth and life of the producing organism, and biosynthesized from one or more general metabolites by a wider variety of pathways than is available in general metabolism.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bennett JW and Bentley R.: What’s in a name?-Microbial secondary metabolism. Adv Appl Microbiol 1989; 34: 1–28.

    Article  CAS  Google Scholar 

  2. Luckner M.: Secondary metabolism in microorganisms, plants, and animals. Springer Verlag, New York, 1990.

    Google Scholar 

  3. Dörhen H and Gräfe U.: General aspects of secondary metabolism. In: Biotechnology, vol. 7. Products of secondary metabolism, Kleinhauf H and Von Dörhen H, (Eds) VCH, Weinheim, 1997: 1–55.

    Google Scholar 

  4. Chapman and Hall, Dictionary Natural Products on CD-ROM, London, 1998.

    Google Scholar 

  5. Kinghorn AD and Balandrin MF (Eds), Human medicinal agents from Plants. ACS Symposium Series 534, Washington 1993.

    Google Scholar 

  6. Farnsworth NR.: Screening plants for new medicines. In: Biodiversity ( Wilson EO and Peters FM, Eds) Academic Press, New York, 1988: 61–73.

    Google Scholar 

  7. Farnsworth NR and Soejarto DD. Global importance of medicinal plants. In: Conservation of medicinal plants. Akerele O, Heywood V, and Synge H (Eds) Cambridge University Press, Cambridge, 1991: 25–52.

    Chapter  Google Scholar 

  8. Cragg GM, Newman DJ and Snader KM.: Natural products in drug discovery and development. J Nat Prod 1997; 60: 52–60.

    Article  PubMed  CAS  Google Scholar 

  9. Pimm SL, Russell, GJ, Gittleman JL, et al. The future of biodiversity. Science 1995; 269: 347–350.

    Article  PubMed  CAS  Google Scholar 

  10. Balick MJ, Elisabetsky E and Laird SA (Eds). Medicinal resources of the tropical forest. Columbia University Press, New York, 1996.

    Google Scholar 

  11. Plotkin MJ.: Traditional knowledge of medicinal plants-the search for new jungle medicines. In: Conservation of medicinal plants. Akerele O, Heywood V and Synge H (Eds). Cambridge University Press Cambridge, 1991: 53–63.

    Chapter  Google Scholar 

  12. Hops and Hop products. EBC Technology and Engineering Forum. Zoeterwoude 1997.

    Google Scholar 

  13. Beier RC and Nigg HN.: Natural toxicants in foods. In: Phytochemical resources for medicine and agriculture. Nigg HN and Seigler D (Eds). Plenum Press, New York, 1992: 247–368.

    Google Scholar 

  14. Molyneux RJ.: Toxic range plants and their constituents. In: Phytochemistry and agriculture. Proc Phytochem Soc Europe 34 ( Van Beek TA and Breteler H, Eds). Oxford Science Publications, Oxford, 1993: 151–170.

    Google Scholar 

  15. Ho C-H, Lee CY and Huang M-T.: Phenolic compounds in food and their effects on health 1. ACS Symposium Series 506, ACS, Washington 1992.

    Google Scholar 

  16. Emboden W.: Narcotic plants. Studio Vista, London 1972.

    Google Scholar 

  17. Schultes RE and Hofmann A.: Plants of the gods. McGraw-Hill, Maidenhead, 1979.

    Google Scholar 

  18. Boudet AM and Grima-Pettenati J.: Lignin genetic engineering. Mol Breeding 1996; 2: 25–39.

    Article  CAS  Google Scholar 

  19. Dawson GW, Hallahan DL, Mudd A, et al. Secondary plant metabolites as targets for genetic modification of crop plants for pest resistance. Pestic Sci 1989; 27: 191–201.

    Article  CAS  Google Scholar 

  20. Osbourn AE.: Preformed antimicrobial compounds and plant defense against fungal attack. Plant Cell 1996; 8: 1821–1831.

    PubMed  CAS  Google Scholar 

  21. Smith CJ.: Accumulation of phytoalexins: defence mechanism and stimulus response system. New Phytol 1996; 132: 1–45.

    Article  CAS  Google Scholar 

  22. Stafford HA and Ibrahim RK (Eds). Phenolic metabolism in plants. Rec Adv Phytochem Vol 26, Plenum Press, 1992.

    Google Scholar 

  23. Romeo JT, Downum KR and Verpoorte R (Eds). Phytochemical signals and plant-microbe interactions. Recent Advances in Phytochemistry Vol 32. Plenum Press 1998.

    Google Scholar 

  24. Rhodes MJC.: Physiological roles for secondary metabolites in plants: some progress, many outstanding problems. Plant Mol Biol 1994; 24: 1–20.

    Article  PubMed  CAS  Google Scholar 

  25. Dixon RA and Paiva NL.: Stress-induced phenylpropanoid metabolism. Plant Cell 1995; 7: 1085–1097.

    PubMed  CAS  Google Scholar 

  26. Wink M.: Special nitrogen metabolism. In: Plant Biochemistry ( Dey PM,and Harborne JB, Eds). Academic Press, San Diego, 1997: 439–486.

    Chapter  Google Scholar 

  27. Luckner M.: Secondary metabolism in microorganisms, plants and animals. Springer Verlag, Berlin, 1990.

    Google Scholar 

  28. Torsell KBG.: Natural products chemistry. Apotekarsocieteten, Stockholm, 1997.

    Google Scholar 

  29. Harborne JB (Ed). Biochemical aspects of plant and animal coevolution. Ann. Proc. Phytochem. Soc. Europe vol. 15. Academic Press London 1978.

    Google Scholar 

  30. Harborne JB and Tomas-Barberan FA (Eds). Ecological chemistry and biochemistry of plant terpenoids. Oxford Science Publications, Oxford, 1991: 159–208.

    Google Scholar 

  31. Haslam H.: Shikimic Acid. John Wiley, Chichester 1993.

    Google Scholar 

  32. Bentley R.: The shikimate pathway-A metabolic tree with many branches. Crit Rev Biochem Mol Biol 1990; 25: 307–384.

    Article  PubMed  CAS  Google Scholar 

  33. Hermann KM.: The shikimate pathway: early steps in the biosynthesis of aromatic compounds. Plant Cell 1995; 7: 907–919.

    Google Scholar 

  34. Schmidt J and Amrhein N.: Molecular organization of the shikimate pathway in higher plants. Phytochemistry 1995; 39: 737–749.

    Article  Google Scholar 

  35. Jensen RA.: Tyrosine and phenylalanine biosynthesis: relationship between alternative pathways, regulation and subcellular. In: Recent Advances in Phytochemistry: The shikimic acid pathway ( Conn EE, Ed) Plenum Press, New York, 1986: 57–81.

    Chapter  Google Scholar 

  36. Poulsen C and Verpoorte R.: Roles of chorismate mutase, isochorismate synthase and anthranilate synthase in plants. Phytochemistry 1991; 30: 377–386.

    Article  CAS  Google Scholar 

  37. Bongaerts RJM.: The chorismate branching point in Catharanthus roseus. PhD Thesis, Leiden University, November 1998.

    Google Scholar 

  38. Strack D.: Phenolic Metabolism, In: Plant Biochemistry ( PM Dey and JB Harborne, Eds). Academic Press, San Diego, 1997: 387–416.

    Chapter  Google Scholar 

  39. Howles PA, Sewalt VJH, Paiva NL, et al. Overexpression of L-phenylalanine ammonia lyase in transgenic tobacco plants reveals control points for flux into phenylpropanoid biosynthesis. Plant Physiol 1996; 112: 1617–1624.

    PubMed  CAS  Google Scholar 

  40. Schroeder J, Schanz S, Tropf S, et al. Phytoalexin biosynthesis: stilbene synthase and co-action of a reductase with chalcone synthase. In: Mechanisms of plant defense responses. Fritig B and Legrand M (Eds). Kluwer Academic Publishers, Dordrecht 1993.

    Google Scholar 

  41. Hain R, Reif HJ, Krause E, et al. Disease resistance results from foreign phytoalexin expression in a novel plant. Nature 1993; 361: 153–156.

    Article  PubMed  CAS  Google Scholar 

  42. Kutchan TM.: Alkaloid biosynthesis-The basis for metabolic engineering of medicinal plants. Plant Cell 1995; 7: 1059–1070.

    PubMed  CAS  Google Scholar 

  43. Hashimoto T and Yamada Y.: Alkaloid biogenesis: molecular aspects. Annu Rev Plant Physiol Plant Mol Biol 1994; 45: 257–285.

    Article  CAS  Google Scholar 

  44. Verpoorte, R, Heijden R and Moreno PRH.: Biosynthesis of terpenoid indole alkaloids in Catharanthus roseus cells. The Alkaloids. Vol. 49. Cordell GA ( Editor) Academic Press, San Diego, 1997: 221–299.

    Google Scholar 

  45. Verberne MC, Budi Muljono RA and Verpoorte R.: Salicylic acid biosynthesis. Biochemistry and Molecular Biology of Plant Hormones. New Comprehensive Biochemistry. Libbenga KR, Hall M and Hooikaas PJJ (Eds) Elsevier, Amsterdam, in press.

    Google Scholar 

  46. Poulter CD and Rilling HC.: In: Biosynthesis of isoprenoid compounds. Vol. 1. Porter JW and Spurgeon SL. Wiley New York, 1981: 161–224.

    Google Scholar 

  47. Kleinig H.: The role of plastid in isoprenoid biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 1989; 40: 39–59.

    Article  CAS  Google Scholar 

  48. Nes WD, Parish EJ and Trazskos JM (Eds). Regulation of Isopentenoid Metabolism. ACS Symposium Series 497, Washington 1992.

    Google Scholar 

  49. Gershenzon J and Croteau R. Terpenoid biosynthesis: the basic pathway and formation of monoterpenes, sesquiterpenes and diterpenes. In Moore TS (Ed), Lipid metabolism in plants. CRC Press, Boca Raon, FI, USA, 1993: 340–388.

    Google Scholar 

  50. Stermer BA, Bianchini GM and Korth KL.: Regulation of HMGCoA reductase activity in plants:review. J Lip Res 1994; 35: 1133–1140.

    CAS  Google Scholar 

  51. McGarvey DJ and Croteau R.: Terpenoid metabolism. Plant Cell 1995; 7: 1015–1026.

    PubMed  CAS  Google Scholar 

  52. Tahara S and Ibrahim RK.: Prenylated isoflavonoids — a survey. Phytochemistry 1995; 38: 1073–1094.

    Article  CAS  Google Scholar 

  53. Barron D and Ibrahim RK.: Isoprenylated flavonoids — a survey. Phytochemistry 1996; 43: 921–982.

    Article  CAS  Google Scholar 

  54. Ramos-Valdivia AC, Heijden, R and Verpoorte, R.: Isopentenyl diphosphate isomerase: a core enzyme in isoprenoid biosynthesis. A review of its biochemistry and function. Nat Prod Rep 1997; 14: 591–604.

    Article  PubMed  CAS  Google Scholar 

  55. Lichtenthaler HK, Rohmer M and Schwender J.: Two independent biochemical pathway for isopentenyl diphosphate and isoprenoid biosynthesis in higher plants. Physiol Plant 1997; 101: 643–652.

    Article  CAS  Google Scholar 

  56. Mihaliak CA, Karp F and Croteau R.: Cytochrome P-450 terpene hydroxylases. Methods Plant Biochem 1993; 9: 261–279.

    CAS  Google Scholar 

  57. Stafford HA.: Compartmentation in natural products biosynthesis by multienzyme complex. In: The Biochemistry of Plants,Vol 7, Secondary plant products (Ed) E.E. Conn. Academic Press, New York, 1981: 118–137.

    Google Scholar 

  58. Lichtenthaler HK, Schwender J, Disch A et al. Biosynthesis of isoprenoids in higher plant chloroplaste proceeds via mevalonate independent pathway. FEBS Lett 1997; 400; 271–274.

    Article  PubMed  CAS  Google Scholar 

  59. Brooks CJW and Watson DG.: Terpenoid phytoalexins. Nat Prod Rep 1991; 9: 367–389.

    Article  Google Scholar 

  60. Beek TA and Groot A.: Terpenoid antifeedants, part I. An overview of terpenoid antifeedants of natural origin. Recl Tray Chim Pays-Bas 1986; 105: 513–527.

    Article  Google Scholar 

  61. Walton DC.: Abscisic acid biosynthesis and metabolism. In: Plant Hormones, Davies PJ (Ed). Kluwer Academic Publishers, Dordrecht, 1988: 113–131.

    Google Scholar 

  62. Schneider G and Schliemann W.: Gibberellin conjugates: an overview. Plant Growth Regul 1994; 15: 247–260.

    Article  CAS  Google Scholar 

  63. Pickett JA.: Lower terpenoids as natural insect control agent. In: Ecological chemistry and biochemistry of plant terpenoids. Harborne JB and Tomas-Barberan FA (Eds) Oxford Science Publications, Oxford, 1991: 159–208.

    Google Scholar 

  64. Graebe JE.: Gibberellin biosynthesis and control. Annu Rev Plant Physiol 1987; 38: 419–465.

    Article  CAS  Google Scholar 

  65. Creelman RA and Mullet JE.: Oligosaccharins, brassinolides and jasmonates: nontraditional regulators of plant growth, development and gene expression. Plant Cell 1997; 9: 1211–1223.

    Article  PubMed  CAS  Google Scholar 

  66. Rohmer M, Knani M, Simonin P, et al. Isoprenoid biosynthesis in bacteria. A novel pathway for early steps leading to isopentenyl diphosphate. Biochem J 1993; 295: 517–524.

    PubMed  CAS  Google Scholar 

  67. Rohmer M, Seemann M, Horbach S, et al. Glyceraldehyde 3-phosphate and pyruvate as precursors ofisoprenic units in an alternative non-mevalonate pathway for terpenoid biosynthesis. J Am Chem Soc 1996; 118: 2564–2566.

    Article  CAS  Google Scholar 

  68. Bach TJ.: Hydroxymethylglutaryl-CoA reductase, a key enzyme in phytosterol synthesis? Lipids 1986; 21; 82–88.

    Article  PubMed  CAS  Google Scholar 

  69. Bach TJ, Weber T and Motel A.: Some properties of enzymes involved in the biosynthesis and metabolism of 3-hydroxy-3-methylglutaryl-CoA in plants. In: Recent Advances in Phytochemistry, Vol 24. Towers GHN, Stafford HA (Eds) Plenum Press, New York, 1990: 1–82.

    Google Scholar 

  70. Bach TJ, Boronat A, Caelles C, et al. Aspects related to mevalonate biosynthesis in plants. Lipids 1991; 26: 637–648.

    Article  PubMed  CAS  Google Scholar 

  71. Goldstein JL and Brown MS.: Regulation of the mevalonate pathway. Nature 1990; 343: 425–430.

    Article  PubMed  CAS  Google Scholar 

  72. Maldonado-Mendoza IE, Burnet RI, Lopez-Meyer M et al. Regulation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase by wounding and methyljasmonate. Plant Cell Tiss Org Cult 1994; 38: 351–356.

    Article  Google Scholar 

  73. Contin A, Heijden R, Lefeber AWM, et al. The iridoid glucoside secologanin is derived from the novel triose phosphate/pyruvate pathway in a Catharanthus roseus cell culture. FEBS Lett 1998; 434: 413–416.

    Article  PubMed  CAS  Google Scholar 

  74. Borejsza-Wysocki W and Hrazdina G.: Aromatic polyketide synthases. Plant Physiol 1996; 110: 791–799.

    PubMed  CAS  Google Scholar 

  75. Conn EE In: ACS Symposium Series vol. 533, Glycosidases, Biochemistry and Molecular Biology. Esen E (Ed). American Chemical Society, Washington DC, 1993: 15–26.

    Book  Google Scholar 

  76. Nahrstedt A.: Cyanogenesis in foodplants. In: Phytochemistry and agriculture. Proc Phytochem Soc Europe 34 ( Van Beek TA and Breteler H, Eds). Oxford Science Publications, Oxford, 1993: 107–129.

    Google Scholar 

  77. Luijendijk TJC, Meijden E and Verpoorte R.: Involvement of strictosidine as a defensive chemical in Catharanthus roseus. J Chem Ecol 1996; 22: 1355–1366.

    Article  CAS  Google Scholar 

  78. Meijer AH, Souer E, Verpoorte R et al. Isolation of cytochrome P-450 cDNA clones from the higher plant Catharanthus roseus by a PCR strategy. Plant Mol Biol 1993; 22: 379–383.

    Article  PubMed  CAS  Google Scholar 

  79. Durst F and O’Keefe DP.: Plant Cytochromes-P450. Special Issue Drug Metabolism and Drug Interactions. 1995; 12: 171–389.

    Article  CAS  Google Scholar 

  80. Halker BA.: Catalytic reactivities and structure/function relationships of cytochrome P450 enzymes. Phytochemistry 1996; 43: 1–21.

    Article  Google Scholar 

  81. Shuler MA.: Plant cytochrome P450 monooxygenases. Crit Rev Plant Sci 1996; 15: 235–284.

    Google Scholar 

  82. Prescott AG and John P.: Dioxygenases: molecular structure and role in plant metabolism. Annu Rev Physiol Plant Mol Biol 1996; 47: 245–271.

    Article  CAS  Google Scholar 

  83. Penel C, Gaspar T. and Greppin H (Eds) Plant peroxidases 1980–1990. Université de Genève Press 1992.

    Google Scholar 

  84. Verpoorte R, Schripsema J and Leer T.: Cinchona alkaloids. The Alkaloids. Vol. 34. Brossi A (Ed). Academic Press, San Diego, 1988: 331–398.

    Google Scholar 

  85. Zenk MH.: Chasing the enzymes of alkaloid biosynthesis. In: Organic reactivity: physical and biological aspects. Golding BT, Griffin RJ and Maskill H (Eds). Royal Society of Chemistry, London, 1995: 89–109.

    Google Scholar 

  86. Galneder E, Rueffer M, Wanner G, et al. Alternative final steps in berberine biosynthesis in Coptis japonica cell cultures. Plant Cell Rep 1988; 7: 1–4.

    Article  CAS  Google Scholar 

  87. Hashimoto T, Nakajima K, Ongena G et al. Two tropinone reductases with distinct stereospecificities from cultured roots of Hyoscyamus piger. Plant Physiol. 1992; 100: 836–845.

    Article  PubMed  CAS  Google Scholar 

  88. Pierpoint WS.: Salicylic acid and its derivatives in plants: medicines, metabolites and messenger molecules. Adv Bot Res 1994; 20: 163–235.

    Article  CAS  Google Scholar 

  89. Gundlach H, Mueller MJ, Kutchan TM, et al. Jasmonic acid is a signal transducer in elicitor-induced cell cultures. Proc Natl Acad Sci USA 1992; 89: 2389–2393.

    Article  PubMed  CAS  Google Scholar 

  90. Threlfall DR and Whitehead IM.: Terpenoid phytoalexins: aspects of biosynthesis, catabolism and regulation. Ecological chemistry and biochemistry of plant terpenoids. Harborne JB and Tomas-Barberan FA ( Eds) Oxford Science Publications, Oxford, 1991: 159–208.

    Google Scholar 

  91. Wijnsma R and Verpoorte R.: Anthraquinones in Rubiaceae. Fortschr Chem Org Naturst 1986; 49: 79–149.

    CAS  Google Scholar 

  92. Koes RE, Quattrocchio F and Mol JNM.: The flavonoid biosynthetic pathway in plants: function and evolution. BioEssays 1994; 16: 123–132.

    Article  CAS  Google Scholar 

  93. Holton TA and Cornish EC.: Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 1995; 7: 1071–1083.

    PubMed  CAS  Google Scholar 

  94. Martin C.: Transcription factors and the manipulation of plant traits. Curr Biol 1996; 7: 130–138.

    CAS  Google Scholar 

  95. Hampton R, Dimster-Denk D and Rine J.: The biology of HMGCoA reductase: the pros of contra-regulation. TIBS 1996; 21: 140–145.

    PubMed  CAS  Google Scholar 

  96. Maldonado-Mendoza lE, Burnett RJ and Nessler CL.: Nucleotide sequence of a cDNA encoding a 3-hydroxy3-glutaryl coenzyme A reductase from Catharanthus roseus. Plant Physiol 1992; 100: 1613–1614.

    Article  PubMed  CAS  Google Scholar 

  97. Facchini, PJ and Luca V.: Differential and tissue-specific expression of a gene family for tyrosine/dopa decarboxylase in opium poppy. J Biol Chem 1994; 269: 26684–26690.

    PubMed  CAS  Google Scholar 

  98. Facchini PJ and Luca V.: Expression in Escherichia coli and partial characterization of two tyrosine/ dopa decarboxylases in opium poppy. Phytochemistry 1995; 38: 1119–1123.

    Article  PubMed  CAS  Google Scholar 

  99. Maldonado-Mendoza IE, Lopez-Meyer M, Galef JR, et al. Molecular Analysis of a New member of the Opium Poppy Tyrosine/3,4-Dihydroxyphenylalanine Decarboxylase Gene Family’. Plant Physiol 1996; 110: 43–49.

    Article  PubMed  CAS  Google Scholar 

  100. Facchini PJ and Luca V.: Phloem specific expression of tyrosine decarboxylase gene and the biosynthesis of isoquinoline alkaloids in Opium poppy. Plant Cell 1995; 7: 1811–1821.

    PubMed  CAS  Google Scholar 

  101. Grotewold E, Chamberlin M, Snook M, et al. Engineering secondary metabolism in maize cells ectopic expression of transcription factors. Plant Cell 1998; 10: 721–740.

    PubMed  CAS  Google Scholar 

  102. Fernandez JA, Kurz WGW and Luca V.: Biochem Cell Biol 1989; 67: 730.

    Article  CAS  Google Scholar 

  103. Fernandez JA and De Luca V. Ubiquitin-mediated degradtion of tryptophan decarboxylase from Catharanthus roseus. Phytochemistry 1994; 36: 1123–1128.

    Article  Google Scholar 

  104. Kneusel RE, Matern U and Nicolay K.: Formation of trans-caffeoyl-CoA from trans-coumaroyl-CoA by Zn2 -dependent enzymes in cultured plant cells and its activation by an elicitor induced pH shift. Arch Biochem Biophys 1989; 269: 455–462.

    Article  PubMed  CAS  Google Scholar 

  105. Hashimoto T, Hayashi A, Amano Y, et al. Hyoscyamine 613-hydroxylase, an enzyme involved in tropane alkaloid biosynthesis, is localized at the pericycle of the root. J Biol Chem 1991; 266: 4648–4653.

    PubMed  CAS  Google Scholar 

  106. Meijer AH, Verpoorte R and, Hoge JHC.: Regulation of enzymes and genes in terpenoid indole alkaloid biosynthesis in Catharanthus roseus. Third Special Issue “Cellular and Molecular Biology in Plant Cell Cultures”, J Plant Res, Tokyo, Komamine A, Fukuda H, Komeda Y, Sankawa U and Syono K (Eds) (1993): 145–164.

    Google Scholar 

  107. Liedvogel B.: Acetyl-CoA and isopentenylpyrophosphate as lipid precursors in plant cells-biosynthesis and compartmentation. J Plant Physiol 1986; 124: 211–222.

    Article  CAS  Google Scholar 

  108. Pasquali G, Goddijn OJM, Waal A, et al. Coordinated regulation of two indole alkaloid biosynthetic genes from Catharanthus roseus by auxin and elicitors. Plant Mol Biol 1992; 18: 1121–1131.

    Article  PubMed  CAS  Google Scholar 

  109. Stevens LH, Blom TJM and Verpoorte R.: Subcellular localization of tryptophan decarboxylase, strictosidine synthase and strictosidine glucosidase in cell suspension cultures of Catharanthus roseus and Tabernaemontana divaricata. Plant Cell Rep1993; 12: 573–576.

    Google Scholar 

  110. Stevens LH.: Formation and conversion of strictosidine in the biosynthesis of monoterpenoid indole and quinoline alkaloids. PhD Thesis, Leiden, 1994.

    Google Scholar 

  111. Luca V and Cutler AJ.: Subcellular localization of enzymes involved in indole alkaloid biosynthesis in Catharanthus roseus. Plant Physiol 1987; 85: 1099–1102.

    Article  PubMed  Google Scholar 

  112. Luca V, Alvarez-Fernandez F, Campbell D. et al. Developmental regulation of enzymes of indole alkaloid biosynthesis in Catharanthus roseus. Plant Physiol 1988; 86: 447–450.

    Article  PubMed  Google Scholar 

  113. Stevens LH, Giroud C, Pennings EJM, et al. Purification and characterization of strictosidine synthase from a cell suspension culture of Cinchona robusta. Phytochemistry 1993; 33: 99–106.

    Article  CAS  Google Scholar 

  114. Luijendijk TJC.: Strictosidine glucosidase in alkaloid biosynthesis. PhD Thesis, Leiden University, 1995.

    Google Scholar 

  115. McKnight TD, Bergey DR, Burnett RJ, et al. Expression of enzymatically active and correctly targeted strictiosidine synthase in transgenic tobacco plants. Planta 1991; 185: 148–152.

    Article  CAS  Google Scholar 

  116. Blom TJM, Sierra M, Vliet TB, et al. The transport and accumulation of the alkaloid ajmalicine and the bioconversion of ajmalicine into serpentine in isolated vacuoles of Catharanthus roseus (L.) G. Don.. Planta 1991; 183; 170–177.

    CAS  Google Scholar 

  117. Kutchan TM and Zenk MH.: Enzymology and molecular biology of benzophenanthridine alkaloid biosynthesis. J Plant Res 1993; 3: 165–173.

    Google Scholar 

  118. Amann M, Nagakura N and Zenk MH.: Intracellular compartmentation of two enzymes of berberine biosynthesis in plant cell cultures. Planta 1986; 167: 310–320.

    Article  CAS  Google Scholar 

  119. Deus-Neumann B and Zenk MH.: Accumulation of alkaloids in plants vacuoles does not involve an ion-trap mechanism. Planta 1986; 167: 44–53.

    Article  CAS  Google Scholar 

  120. Deus-Neumann B and Zenk MH.: A highly selective uptake system in vacuoles of higher plants. Planta 1984; 162: 250–260.

    Article  CAS  Google Scholar 

  121. Renaudin JP and Guern J.: Compartmentation mechanisms of indole alkaloids in cell suspension cultures of Catharanthus roseus. Physiol. Veg 1982; 20: 533–547.

    CAS  Google Scholar 

  122. Blom TJM, Vliet TB, Schripsema J, et al. Uptake and accumulation of the alkaloids quinine and cinchonamine in cultured cells of Cinchona robusta and Catharanthus roseus J Plant Physiol 1991; 138: 436–442.

    CAS  Google Scholar 

  123. Chapell J.: Biochemistry and molecular biology of the isoprenoid biosynthetic pathway in plants. Annu Rev Plant Physiol Mol Biol 1995; 46: 521–547.

    Article  Google Scholar 

  124. Hrazdina G. and Wagner G.: Metabolic pathways as enzyme complexes: evidence for the synthesis of phenylpropanoids in membrane associated enzyme complexes. Arch Biochem Biophys 1985; 237: 88–100.

    Article  PubMed  CAS  Google Scholar 

  125. Srere PA.: Complex of sequential metabolic enzymes. Annu Rev Biochem 1987; 56: 21–56

    Article  Google Scholar 

  126. Waller GR. and Nowacki EK.: Alkaloid Biology and Metabolism in Plants. Plenum Press, New York 1978.

    Book  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Verpoorte, R. (2000). Secondary Metabolism. In: Verpoorte, R., Alfermann, A.W. (eds) Metabolic Engineering of Plant Secondary Metabolism. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9423-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9423-3_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5475-3

  • Online ISBN: 978-94-015-9423-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics