Skip to main content
Log in

Disposable bioreactors: the current state-of-the-art and recommended applications in biotechnology

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Disposable bioreactors have increasingly been incorporated into preclinical, clinical, and production-scale biotechnological facilities over the last few years. Driven by market needs, and, in particular, by the developers and manufacturers of drugs, vaccines, and further biologicals, there has been a trend toward the use of disposable seed bioreactors as well as production bioreactors. Numerous studies documenting their advantages in use have contributed to further new developments and have resulted in the availability of a multitude of disposable bioreactor types which differ in power input, design, instrumentation, and scale of the cultivation container. In this review, the term “disposable bioreactor” is defined, the benefits and constraints of disposable bioreactors are discussed, and critical phases and milestones in the development of disposable bioreactors are summarized. An overview of the disposable bioreactors that are currently commercially available is provided, and the domination of wave-mixed, orbitally shaken, and, in particular, stirred disposable bioreactors in animal cell-derived productions at cubic meter scale is reported. The growth of this type of reactor system is attributed to the recent availability of stirred disposable benchtop systems such as the Mobius CellReady 3 L Bioreactor. Analysis of the data from computational fluid dynamic simulation studies and first cultivation runs confirms that this novel bioreactor system is a viable alternative to traditional cell culture bioreactors at benchtop scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adam E, Sarrazin S, Landolfi C, Motte V, Lortat-Jacob H, Lassalle P, Delehedde M (2008) Efficient long-term and high-yielded production of a recombinant proteoglycan in eukaryotic HEK293 cells using a membrane-based bioreactor. Biochem Biophys Res Commun 369:297–302

    Article  CAS  Google Scholar 

  • Altaras GM, Eklund C, Ranucci C, Maheswari G (2007) Quantitation of lipids with polymer surfaces in cell culture. Biotechnol Bioeng 96:999–1007

    Article  CAS  Google Scholar 

  • Anderlei T, Cesana C, De Jesus M, Kühner M, Wurm F (2009) Shaken bioreactors provide culture alternative. GEN 29. Available at: http://www.genengnews.com/issues/articleindex.aspx, accessed 5 December 2009

  • Aunins JB, Bibila TA, Gatchalian S, Hunt GR, Junker BH, Lewis JA, Seifert DB, Licari P, Ramasubramanyan K, Ranucci CS, Seamans TC, ZhouW WW, Buckland BC (1997) Reactor development for the hepatitis A vaccine VAQTA. In: Carrondo MJT, Griffiths B, Moreira JLP (eds) Animal cell technology: from vaccine to genetic medicine. Kluwer, Dordrecht, pp 175–183

    Google Scholar 

  • Ball P, Crawford B, Lindström K (2009) 21st century vaccine manufacturing. BioProcess Int 4:18–28

    Google Scholar 

  • Beeksma LA, Kompier R (1995) Cell growth and virus propagation in the costar cell cube system. In: Beuvery EC, Griffiths JB, Zeijlemaker WP (eds) Animal cell technology: developments towards the 21st century. Kluwer, Dordrecht, pp 661–663

    Google Scholar 

  • Behme S (2009) Production facilities. In: Behme S (ed) Manufacturing of pharmaceutical proteins. Wiley VCH, Weinheim, pp 227–275

    Chapter  Google Scholar 

  • Bentebibel S, Moyano E, Palazόn J, Cusidό RM, Bonfill M, Eibl R, Pinyol MT (2005) Effects of immobilization by entrapment in alginate and scale-up on paclitaxel and baccatin III production in cell suspension cultures of Taxus baccata. Biotechnol Bioeng 89:647–655

    Article  CAS  Google Scholar 

  • Bruce MP, Boyd V, Duch C, White JR (2002) Dialysis-based bioreactor systems for the production of monoclonal antibodies—alternatives to ascites production in mice. J Immunol Methods 264:59–68

    Article  CAS  Google Scholar 

  • Büchs J, Maier U, Milbradt C, Zoels B (2000) Power consumption in shaking flasks on rotary shaking machines: I. Power consumption measurements in unbaffled flask at low viscosity. Biotechnol Bioeng 68:589–593

    Article  Google Scholar 

  • Canales R, Hlubina M, Baier U, Tuor U (2001) Evaluation of cultivation parameters for mass production of Erynia neoaphidis. IOBC Meeting “Entomopathogens and insect parasite nematodes”. Athens, Greece

  • Castillo J, Vanhamel S (2007) Cultivating anchorage-dependent cells. Gen 27:40–41

    Google Scholar 

  • Chmiel H (2006) Bioreaktoren. In: Chmiel H (ed) Bioprozesstechnik. Elsevier, München, pp 195–215

    Google Scholar 

  • Curtis WR (1999) Achieving economic feasibility for moderate-value food and flavour additives. In: Fu T, Singh G, Curtis WR (eds) Plant cell and tissue culture for the production of food ingredients. Kluwer, New York, pp 225–236

    Google Scholar 

  • Curtis WR (2004) Growing cells in a reservoir formed of a flexible sterile plastic liner. US Patent 6,709,862B2

  • Davis JM (2007a) Hollow fibre cell culture. In: Pörtner R (ed) Animal cell biotechnology: methods and protocols. Humana, Totowa, pp 337–352

    Chapter  Google Scholar 

  • Davis JM (2007b) Systems for cell culture scale-up. In: Stacey G, Davis JM (eds) Medicines from animal cell culture. Wiley, Chichester, pp 145–171

    Google Scholar 

  • De Jesus MJ, Girard P, Bourgeois M, Baumgartner G, Kacko B, Amstutz H, Wurm FM (2004) TubeSpin satellites: a fast track approach for process development with animal cells using shaking technology. Biochem Eng J 17:217–223

    Article  Google Scholar 

  • DeWilde D, Noack U, Kahlert W, Barbaroux M, Greller G (2009) Bridging the gap from reusable to single-use manufacturing with stirred, single-use bioreactors. BioProcess Int 7(Suppl 4):36–41

    CAS  Google Scholar 

  • Docagne F, Colloc'h N, Bougueret V, Page M, Paput J, Tripier M, Dutartre P, MacKenzie ET, Buisson A, Komesli S, Vivien D (2001) A soluble transforming growth factor-beta (TGF-beta) type I receptor mimics TGF-beta responses. J Biol Chem 276:46243–46250

    Article  CAS  Google Scholar 

  • Ducos JP, Terrier B, Courtois D, Pètiard V (2008) Improvement of plastic-based disposable bioreactors for plant science needs. Phytochem Rev 7:607–613

    Article  CAS  Google Scholar 

  • Eibl R, Eibl D (2002) Bioreactors for plant cell and tisue cultures. In: Oksman-Caldentey KM, Barz WH (eds) Plant biotechnology and transgenic plants. Marcel Dekker, New York, pp 163–199

    Google Scholar 

  • Eibl R, Rutschmann K, Lisica L, Eibl D (2003a) Kosten reduzieren durch Einwegbioreaktoren? BioWorld 5:22–23

    Google Scholar 

  • Eibl R, Eibl D, Pechmann G, Ducommun C, Lisica L, Lisica S, Blum P, Schär M, Wolfram L, Rhiel M, Emmerling M, Röll M, Lettenbauer C, Rothmaier M, Flükiger M (2003b) Produktion pharmazeutischer Wirkstoffe in disposable Systemen bis zum 100 L Massstab, Teil 1. KTI-Projekt 5844.2 FHS, Final report, Primary data of the experiments and summary of calculations, University of Applied Sciences Wädenswil, Switzerland, unpublished

  • Eibl R, Eibl D (2006) Design and use of the wave bioreactor for plant cell culture. In: Gutta Dupta S, Ibaraki Y (eds) Plant tissue culture engineering. Springer, Dordrecht, pp 203–227

    Google Scholar 

  • Eibl R, Eibl D (2007) Disposable bioreactors for inoculum production and protein expression. In: Pörtner R (ed) Animal cell biotechnology: methods and protocols. Humana, Totowa, pp 321–335

    Chapter  Google Scholar 

  • Eibl R, Eibl D (2008a) Bioreactors for mammalian cells: general overview. In: Eibl R, Eibl D, Pörtner R, Catapano G, Czermak P (eds) Cell and tissue reaction engineering. Springer, Heidelberg, pp 55–82

    Chapter  Google Scholar 

  • Eibl R, Eibl D (2008b) Design of bioreactors suitable for plant cell and tissue cultures. Phytochem Rev 7:593–598

    Article  CAS  Google Scholar 

  • Eibl R, Werner S, Eibl D (2009a) Disposable bioreactors for plant liquid cultures at litre-scale: review. Eng Life Sci 9:156–164

    Article  CAS  Google Scholar 

  • Eibl R, Werner S, Eibl D (2009b) Bag bioreactor based on wave-induced motion: characteristics and applications. In: Eibl R, Eibl D (eds) Disposable bioreactors. series adv biochem eng biotechnol 115. Springer, Heidelberg, pp 55–87

    Google Scholar 

  • Falch FA, Heden CG (1963) Disposable shaker flasks. Biotechnol Bioeng 5:211–220

    Article  CAS  Google Scholar 

  • Falkenberg FW (1998) Production of monoclonal antibodies in the miniPerm bioreactor: comparison with other hybridoma culture methods. Res Immunol 6:560–570

    Article  Google Scholar 

  • Fenge C, Lüllau E (2006) Cell culture bioreactors. In: Ozturk SS, Hu WS (eds) Cell culture technology for pharmaceutical and cell-based therapies. CRC, New York, pp 155–224

    Google Scholar 

  • Foulon A, Trach F, Pralong A, Proctor M, Lim J (2008) Using disposables in an antibody production process: a cost-effectiveness study of technology transfer between two production sites. BioProcess Int 6(Suppl 3):12–18

    Google Scholar 

  • Fries S, Glazomitsky K, Woods A, Forrest G, Hsu A, Olewinski R, Robinson D, Chartrain M (2005) Evaluation of disposable bioreactors. BioProcess Int 3(Suppl 6):36–44

    CAS  Google Scholar 

  • Galliher P (2008) Achieving high-efficiency production with microbial technology in a single-use bioreactor platform. BioProcess Int 11:60–65

    Google Scholar 

  • Genzel Y, Behrendt I, Koenig S, Sann H, Reichl U (2004) Metabolism of MDCK cells during cell growth and influence on virus production in large-scale microcarrier culture. Vaccine 22:2202–2208

    Article  CAS  Google Scholar 

  • Genzel Y, Olmer RM, Schaefer B, Reichl U (2006) Wave microcarrier cultivation of MDCK cells for influenza virus production in serum containing and serum-free media. Vaccine 24:6074–6087

    Article  CAS  Google Scholar 

  • Girard LS, Fabis MJ, Bastin M, Courtois D, Pétiard V, Koprowski H (2006) Expression of a human anti-rabies virus monoclonal antibody in tobacco cell culture. BBRC 345:602–607

    CAS  Google Scholar 

  • Gorter A, van de Griend RJ, van Eendenburg JD, Haasnot WH, Fleuren GJ (1993) Production of bi-specific monoclonal antibodies in a hollow-fibre bioreactor. J Immunol Methods 161:145–150

    Article  CAS  Google Scholar 

  • Hagen AJ, Aboud RA, DePhillips PA, Oliver CN, Orella CJ, Sitrin RD (1996) Use of nuclease enzyme in the purification of VAQTA, a hepatitis A vaccine. Biotechnol Appl Biochem 23:209–215

    CAS  Google Scholar 

  • Hami LS, Chana H, Yuan V, Craig S (2003) Comparison of a static process and a bioreactor-based process for the GMP manufacture of autologous Xcellerated T cells for clinical trials. BioProcessing J 2:1–10

    Google Scholar 

  • Hami LS, Green C, Leshinsky N, Markham E, Miller K, Craig S (2004) GMP production of Xcellerated T cells for the treatment of patients with CLL. Cytotherapy 6:554–562

    Article  CAS  Google Scholar 

  • Hess S, Baier U, Lettenbauer C, Hafner D (2002) A new application for the wave bioreactor 20: cultivation of Erynia neoaphidis, a mycel producing fungus. IOBC Meeting “Insect pathogens and insect parasitic nematodes”. Birmingham, UK

  • Hirschy O, Schmid T, Grunder JM, Andermatt M, Bollhalder F, Sievers M (2001) Wave reactor and the liquid culture of the entomopathogenic nematode Steinerma feltiae. In: Griffin CT, Burnell AM, Downes MJ, Mulder R (eds) Developments in entomopathogenic nematode/bacterial research. DG XII, COST 819, Brussels, Luxembourg

  • Hitchcock T (2009) Production of recombinant whole-cell vaccines with disposable manufacturing systems. BioProcess Int 5:36–45

    Google Scholar 

  • Hopkinson J (1985) Hollow fibre cell culture systems for economical cell-product manufacturing. BioTechnol 3:225–230

    Article  Google Scholar 

  • Hsiao TY, Bacani FT, Carvalho EB, Curtis WR (1999) Development of a low capital investment reactor system: application for plant cell suspension culture. Biotechnol Prog 15:114–122

    Article  CAS  Google Scholar 

  • Hundt B, Best C, Schlawin N, Kassner H, Genzel Y, Reichl U (2007) Establishment of a mink enteritis vaccine production process in stirred-tank reactor and Wave®Bioreactor microcarrier cultures in 1–10 L scale. Vaccine 25:3987–3995

    Article  CAS  Google Scholar 

  • Jablonski-Lorin C, Mellio V, Hungerbühler E (2003) Stereoselective bioreduction to a chiral building block on a kilogram scale. Chimia 57:574–576

    Article  CAS  Google Scholar 

  • Jenke D (2007) Evaluation of the chemical compatibility of plastic contact materials and pharmaceutical products; safety considerations related to extractables and leachables. J Pharm Sci 96:2566–2581

    Article  CAS  Google Scholar 

  • Jia Q, Li H, Hui M, Hui N, Joudi A, Rishton G, Bao L, Shi M, Zhang X, Luanfeng L, Xu J, Leng G (2008) A bioreactor system based on a novel oxygen transfer method. BioProcess Int 6:66–78

    CAS  Google Scholar 

  • Kauling J, Brod H, Schmidt S, Poggel M, Frahm B, Rose R (2007) Einweg-Bioreaktor. Patent DE102006018824A1

  • Knazek RA, Gullino PM, Kohler PO, Dedrick RL (1972) Cell culture on artificial capillaries: an approach to tissue growth in vitro. Science 178:65–67

    Article  CAS  Google Scholar 

  • Lehmann J, Heidemann R, Riese U, Lütkemeyer D, Büntemeyer H (1992) Der Superspinner–Ein “Brutschrankfermenter” für die Massenkultur tierischer Zellen. BioEngineering 5(6):112–117

    Google Scholar 

  • Lim JAC, Sinclair A (2007) Process economy of disposable manufacturing: process models to minimize upfront investment. Am Pharm Rev 10:114–121

    Google Scholar 

  • Lonza (2008) CELL-tainer single-use bioreactors. Walkersville, Brochure

  • Maier U, Losen M, Büchs J (2003) Advances in understanding and modeling the gas–liquid mass transfer in shake flasks. Biochem Eng J 17:155–167

    Article  Google Scholar 

  • Mardirosian D, Guertin P, Crowell J, Yetz-Aldape J, Hall M, Hodge G, Jonnalagadda K, Holmgren A, Galliher P (2009) Scaling up a CHO-produced hormone–protein fusion product. BioProcess Int 7(Suppl 4):30–35

    CAS  Google Scholar 

  • Marx U (1998) Membrane-based cell culture technologies: a scientifically economically satisfactory alternative malignant ascites production for monoclonal antibodies. Res Immunol 6:557–559

    Article  Google Scholar 

  • Mauter M (2009) Environmental life-cycle assessment of disposable bioreactors. BioProcess Int 7(Suppl 4):18–28

    CAS  Google Scholar 

  • McArdle J (2004) Report of the workshop on monoclonal antibodies. ATLA 32(Suppl 1):119–122

    CAS  Google Scholar 

  • Millipore (2009) Datasheet Mobius® CellReady 3 L Bioreactor. Available at: http://www.millipore.com/publications.nsf/a73664f9f981af8c852569b9005b4eee/228eeedd2285ebe1852575de00570375/$FILE/DS26770000.pdf, accessed 1 December 2009

  • Muller N, Girard P, Hacker D, Jordan M, Wurm FM (2004) Orbital shaker technology for the cultivation of mammalian cells in suspension. Biotechnol Bioeng 89:400–406

    Article  Google Scholar 

  • Nagel A, Koch S, Valley U, Emmrich F, Marx U (1999) Membrane-based cell culture systems—an alternative to in vivo production of monoclonal antibodies. Dev Biol Stand 101:57–64

    CAS  Google Scholar 

  • Negrete A, Kotin RM (2007) Production of recombinant adeno-associated vectors using two bioreactor configurations at different scales. J Virol 145:155–161

    CAS  Google Scholar 

  • Oashi R, Singh V, Hamel JFP (2001) Perfusion culture in disposable bioreactors. GEN 21(40):78

    Google Scholar 

  • Okonkowski J, Balasubramanian U, Seamans C, Fischrogen Z, Zhang J, Lachs P, Robinson D, Chartrain M (2007) Cholesterol delivery to NS0 cells: challenges and solutions in disposable linear low-density polyethylene-based bioreactors. J Biosci Bioeng 103:50–59

    Article  CAS  Google Scholar 

  • Ozturk SS (2007) Comparison of product quality: disposable and stainless steel bioreactor. BioProduction, Berlin

    Google Scholar 

  • Öncül AA, Kalmbach A, Genzel Y, Reichl U, Thévenin D (2009) Numerische und experimentelle Untersuchungen der Fliessbedingungen in Wave-Bioreaktoren. CIT 81:1241

    Article  Google Scholar 

  • Palazόn J, Mallol A, Eibl R, Lettenbauer C, Cusido RM, Pinyol MT (2003) Growth and ginsenoside production in hairy root cultures of Panax ginseng using a novel bioreactor. Planta Med 69:344–349

    Article  Google Scholar 

  • Peacock L, Auton KA (2008) Comparing shaker flasks with a single-use bioreactor for growing yeast seed cultures. BioProcess Int 6:54–57

    CAS  Google Scholar 

  • Peter CP, Suzuki Y, Büchs J (2006) Hydromechanical stress in shake flask: correlation for the maximum local energy dissipation rate. Biotechnol Bioeng 93:1164–1176

    Article  CAS  Google Scholar 

  • Pierce LN, Shabram PW (2004) Scalability of a disposable bioreactor from 25 L–500 L run in perfusion mode with a CHO cell-based cell line: a tech review. BioProcessing J 4:51–56

    Google Scholar 

  • Potera C (2009) Firm on quest to improve biomanufacturing. GEN 29:20–21

    Google Scholar 

  • Rao G, Moreira A, Brorson K (2009) Disposable bioprocessing: the future has arrived. Biotechnol Bioeng 102:348–356

    Article  CAS  Google Scholar 

  • Ries C, John C, Eibl R (2009) Einwegbioreaktoren für die Prozessentwicklung mit Insektenzellen. BioForum 3:11–13

    Google Scholar 

  • Rios M (2006) Process considerations for cell-based influenza vaccines. PharmaTech 4:1–6

    Google Scholar 

  • Schwander E, Rasmusen H (2005) Scalable, controlled growth of adherent cells in a disposable, multilayer format. GEN 25:29

    Google Scholar 

  • Scott LE, Aggett H, Glencross DK (2001) Manufacture of pure antibodies by heterogeneous culture without downstream purification. Biotechniques 31:666–668

    CAS  Google Scholar 

  • Singh V (1999) Disposable bioreactor for cell culture using wave-induced motion. Cytotechnology 30:149–158

    Article  CAS  Google Scholar 

  • Slivac I, Srček VG, Radoševic K, Kmetič I, Kniewald Z (2006) Aujeszky’s disease virus production in disposable bioreactors. J Biosci 3:363–368

    Article  Google Scholar 

  • Taylor I (2007) The CellMaker plus single-use bioreactor: a new bioreactor capable of culturing bacteria, yeast, insect and mammalian cells. Biotechnica, Hannover

    Google Scholar 

  • Terrier B, Courtois C, Hénault N, Cuvier A, Bastin M, Aknin A, Dubreuil J, Pétiard V (2007) Two new disposable bioreactors for plant cell cultures: the wave & undertow bioreactor and the slugg bubble bioreactor. Biotechnol Bioeng 96:914–923

    Article  CAS  Google Scholar 

  • Tollnik C (2009) Einsatz von Disposables in der Praxis - ein Erfahrungsbericht zu Design und Betrieb einer Pilotanlage für klinische Wirkstoffproduktionen. 2. Konferenz Einsatz von Single-Use-Disposables (Concept Heidelberg), Mannheim, Germany

  • Trebak M, Chong JM, Herlyn D, Speicher DW (1999) Efficient laboratory-scale production of monoclonal antibodies using membrane-based high-density cell culture technology. J Immunol Methods 230:59–70

    Article  CAS  Google Scholar 

  • Valentine P (2009) Implementation of a single-use stirred bioreactor at pilot and GMP manufacturing scale for mammalian cell culture. ESACT 2009 Meeting, Dublin, Ireland

  • van Tienhoven EAE, Korbee D, Schipper L, Verharen HW, De Jong WH (2006) In vitro and in vivo (cyto) toxicity assays using PVC and LDPE as model materials. J Biomed Mater Res A78:175–182

    Article  Google Scholar 

  • Weber W, Weber E, Geisse S, Memmert K (2002) Optimisation of protein expression and establishment of the wave bioreactor for baculovirus/insect cell culture. Cytotechnology 38:77–85

    Article  CAS  Google Scholar 

  • Werner S (2009) Wave-mixed bioreactors: characterization and scaling-up by using CFD. BioProduction, Barcelona

    Google Scholar 

  • Zambaux JP (2007) How synergy answers the biotech industry needs. BioProduction, Berlin

    Google Scholar 

  • Zhang H, Williams-Dalson W, Keshavarz-Moore E, Shamlou P (2005) Computational-fluid-dynamics (CFD) analysis of mixing and gas–liquid mass transfer in shake flasks. Biotechnol Appl Biochem 41:1–8

    Article  Google Scholar 

  • Zhang X, Bürki CA, Stettler M, De Sanctis D, Perrone M, Discacciati M, Parolini N, DeJesus M, Hacker DL, Quarteroni A, Wurm FM (2009) Efficient oxygen transfer by surface aeration in shaken cylindrical containers for mammalian cell cultivation at volumetric scales up to 1000 L. Biochem Eng J 45:41–47

    Article  CAS  Google Scholar 

  • Ziv M, Ronen G, Raviv M (1998) Proliferation of meristematic clusters in disposable pre-sterilized plastic biocontainers for the large-scale propagation of plants. In Vitro Cell Dev Biol-Plant 34:152–158

    Article  Google Scholar 

  • Ziv M (1999) In: Altmann A, Ziv M, Izhar S (eds) Organogenic plant regeneration in bioreactors. Kluwer, Dordrecht, pp 673–676

    Google Scholar 

  • Ziv M (2000) Bioreactor technology for plant micropropagation. Hortic Rev 24:1–30

    CAS  Google Scholar 

  • Ziv M (2005) Simple bioreactors for mass propagation of plants. Plant Cell Tissue Org Cult 81:277–285

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Regine Eibl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eibl, R., Kaiser, S., Lombriser, R. et al. Disposable bioreactors: the current state-of-the-art and recommended applications in biotechnology. Appl Microbiol Biotechnol 86, 41–49 (2010). https://doi.org/10.1007/s00253-009-2422-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-2422-9

Keywords

Navigation