Skip to main content
Log in

Agrobacterium-mediated transformation of cereals — from technique development to its application

  • Review
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Agrobacterium tumefaciens is a very useful vector to transfer foreign genes into dicotyledonous cells. Monocotyledonous, especially cereals, were considered outside the host range of the bacteria. The main, alternative technique of transformation developed for them was delivery of naked DNA (e.g. microprojectile bombardment, electroporation of protoplasts). The results of Agrobacterium-mediated transformation of cereals accumulated during the last few years confirmed that the method was reliable and repeatable also for this group of plants. The most important advantages of Agro-based system include relatively high transformation efficiency, integration of defined piece of DNA (transgene) frequently as a single copy, Mendelian transmission to the next generation, simple transformation procedure and lower cost of equipment than biolistic.

Discussed are the crucial factors of successful Agrobacterium-mediated transformation of cereals: type of plant tissue used, A. tumefaciens strains and plasmids (vectors), activation of bacterial virulence system and promoter, reporter as well as selectable genes applied for transgene construction. The review contains examples of Agrobacterium-based transformation methods and practical opportunities of their application as well as the list and description of cereal transgenic plants (rice, maize, wheat and barley) obtained after Agrobacterium-mediated transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aldemita R.R., Hodges T.K. 1996. Agrobacterium tumefaciens-mediated transformation of japonica and indica rice varieties. Planta, 199: 612–617.

    Article  CAS  Google Scholar 

  • Baruah-Wolff J., Harwood W.A., Lonsdale D.A., Harvey A., Hull R., Snape J.W. 1999. Luciferase as a reporter gene for transformation studies in rice (Oryza sativa L.). Plant Cell Rep., 18: 715–720.

    Article  CAS  Google Scholar 

  • Beachy R.N. 1999. Facing fear of biotechnology. Science, 285: 335.

    Article  PubMed  CAS  Google Scholar 

  • Boulton M.I., Buchholz W.G., Marks M.S., Markham P.G., Davies J. 1989. Specifity of Agrobacterium-mediated delivery of maize streak virus DNA to members of the Graminae. Plant Mol. Biol., 12: 31–40.

    Article  CAS  Google Scholar 

  • Chalfie M., Tu Y., Euskirchen G., Ward W.W., Prasher D.C. 1994. Green fluorescent protein as a marker for gene expression. Science, 263: 802–807.

    Article  PubMed  CAS  Google Scholar 

  • Chan M-T., Chang H-H., Ho S-L., Tong W-F., Yu S-M. 1993. Agrobacterium-mediated production of transgenic rice plants expressing a chimeric -amylase promoter/-glucuronidase gene. Plant Mol. Biol., 22: 491–506.

    Article  PubMed  CAS  Google Scholar 

  • Chan M.T., Lee M.T., Chang H.H. 1992. Transformation of indica rice (Oryza sativa L.) mediated by Agrobacterium. Plant Cell Physiol., 33: 577–583.

    CAS  Google Scholar 

  • Cheng M., Fry J.E., Pang S., Zhou H., Hironaka C.M., Duncan D.R., Conner T.W., Wan Y. 1997. Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol., 115: 971–980.

    PubMed  CAS  Google Scholar 

  • Cheng V., Sardana R., Kaplan H., Altosaar I. 1998. Agrobacterium-transformed rice plants expressing synthetic cryIA(b) and cryIA(c) genes are highly toxic to striped stem borer and yellow stem borer. Proc. Natl. Acad. Sci. USA. 95: 2767–2772.

    Article  PubMed  CAS  Google Scholar 

  • Christiansen A.H., Sharrock R.A., Quail P.H. 1992. Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol. Biol., 18: 675–689.

    Article  Google Scholar 

  • Citovsky V., Warnick D., Zambryski P. 1994. Nuclear import of Agrobacterium VirD2 and VirE2 proteins in maize and tobacco. Proc. Natl. Acad. Sci. USA, 91: 3210–3214.

    Article  PubMed  CAS  Google Scholar 

  • Citovsky V., Zupan J., Warnick D., Zambryski P. 1992. Nuclear localization of Agrobacterium VirE2 protein in plant cells. Science, 256: 1803–1805.

    Article  Google Scholar 

  • Dong J., Teng W., Buchholz W.G., Hall T.C. 1996. Agrobacterium-mediated transformation of Javanica rice. Mol. Breed., 2: 267–276.

    Article  CAS  Google Scholar 

  • Fujimoto H., Itoh K., Yamamoto M., Kyozuka J., Shimamoto K. 1993. Insect resistant rice generated by introduction of a modified -endotoxin gene of Bacillus thuringiensis. BIO/TECHNOLOGY, 11: 1151–1155.

    PubMed  CAS  Google Scholar 

  • Gordon-Kamm W.J., Spencer T.M., Mangano M.L., Adams T.R., Daines R.J., Start W.G., O’Brien J.V., Chambers S.A., Adams W.R. Jr., Willetts N.G., Rice T.B., Mackey C.J., Krueger R.W., Kausch A.P., Lemaux P.G. 1990. Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell, 2: 603–618.

    Article  PubMed  CAS  Google Scholar 

  • Gould J., Davey M., Hasegawa O., Ulian E.C., Peterson G., Smidh R.H. 1991. Transformation of Zea mays L. using Agrobacterium tumefaciens and the shoot apex. Plant Physiol. 95: 426–434.

    Article  PubMed  CAS  Google Scholar 

  • Graves A.C.F., Goldman S.L. 1986. The transformation of Zea mays seedlings with Agrobacterium tumefaciens. Plant Mol. Biol., 7: 43–50.

    Article  CAS  Google Scholar 

  • Grimsley N., Hohn B., Ramos C., Kado C., Rogovsky P. 1989. DNA transfer from Agrobacterium to Zea mays or Brassica by agroinfection is dependent on bacterial virulence functions. Mol. Gen Genet., 217: 309–316.

    Article  PubMed  CAS  Google Scholar 

  • Hansen G., Chilton M-D. 1996. “Agrolistic” transformation of plant cells: integration of T-strands generated in planta. Proc. Natl. Acad. Sci., 93: 14978–14983.

    Article  PubMed  CAS  Google Scholar 

  • Hansen G., Das A., Chilton M-D. 1994. Constitutive expression of the virulence genes improves the efficiency of plant transformation by Agrobacterium. Proc. Natl. Acad. Sci. USA., 91: 7603–7607.

    Article  PubMed  CAS  Google Scholar 

  • Hansen G., Wright M.S. 1999. Recent advances in the transformation of plants. Trends in Plant Sci., 4: 226–231.

    Article  Google Scholar 

  • Heath J.D. Boulton M.I., Raineri D.M., Doty S.L., Mushegian A.R., Charles T.C., Davies J.W. Nester E.W. 1997. Discrete regions of the sensor protein Ira determine the strain-specific ability of Agrobacterium to infect maize. Mol. Plant-Microbe Interact., 10: 221–227.

    Article  PubMed  CAS  Google Scholar 

  • Hess D., Dressler K., Nimmrichter R. 1990. Transformation experiments by pipetting Agrobacterium into the spikelets of wheat (Triticum aestivum L.). Plant Sci., 72: 233–244.

    Article  CAS  Google Scholar 

  • Hiei Y., Komari T., Kubo T. 1997. Transformation of rice mediated by Agrobacterium tumefaciens. Plant Mol. Biol., 35: 205–218.

    Article  PubMed  CAS  Google Scholar 

  • Hiei Y., Ohta S., Komari T., Kumashiro T. 1994. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J., 6: 271–282.

    Article  PubMed  CAS  Google Scholar 

  • Hood E.E., Gelvin S.T., Melchers L.S., Hoekema A. 1993. New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res. 2: 208–218.

    Article  CAS  Google Scholar 

  • Hood E.E., Helmer G.L., Fraley R.T., Chilton M-D. 1986. The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. J. Bacteriol., 168: 1291–1301.

    PubMed  CAS  Google Scholar 

  • Hooykaas P.J.J. 1989. Transformation of plant cells via Agrobacterium. Plant Mol. Biol. 13: 327–336.

    Article  PubMed  CAS  Google Scholar 

  • Howard E.A., Zupan J.R., Citovsky V., Zambryski P.C. 1992. The VirD2 protein of A. tumefaciens contains a C-terminal bipartite nuclear localization signal: implications for nuclear uptake of DNA in plant cells. Cell, 68: 109–118.

    Article  PubMed  CAS  Google Scholar 

  • Ishida Y., Saito H., Ohta S., Hiei Y., Komari T., Kumashiro T. 1996. High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nature Biotechnol., 14: 745–750.

    Article  CAS  Google Scholar 

  • Jefferson R.A., Kavanagh T.A., Bevan M.W. 1987. GUS fusions: -glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J., 6: 3901–3907.

    PubMed  CAS  Google Scholar 

  • Joersbo M., Brunstedt J. 1992. Sonication: A new method for gene transfer to plants. Physiol. Plant., 85: 230–234.

    Article  CAS  Google Scholar 

  • Kohli A., Leech M., Vain P., Laurie D.A., Christou P. 1998. Transgene organization in rice engineered through direct DNA transfer supports a two-phase integration mechanism mediated by the establishment of integration hot spots. Proc. Natl. Acad. Sci. USA, 95: 7203–7208.

    Article  PubMed  CAS  Google Scholar 

  • Komari T. 1990. Transformation of cultured cells of Chenopodium quinoa by binary vectors that carry a fragment of DNA from virulence region of pTiBo542. Plant Cell Rep., 9: 303–306.

    Article  CAS  Google Scholar 

  • Kumpatla S.P., Hall T.C. 1988. Longevity of 5-azacytidine-mediated gene expression and re-establishment of silencing in transgenic rice. Plant Mol. Biol., 38: 1113–1122.

    Article  Google Scholar 

  • Last D.I., Bretell R.I.S., Chamberlain D.A., Chaundhury A.M., Larkin P.J., Marsh E.L., Peacock W.J., Dennis E.S. 1991. pEmu: an improved promoter for gene expression in cereal cells. Theor. Appl. Genet. 81: 581–588.

    Article  CAS  Google Scholar 

  • Li Z., Upadhyaya N.M., Meena S., Gibbs A.J., Waterhouse P.M. 1997. Comparison of promoters and selectable marker genes for use in Indica rice transformation. Mol. Breed., 3: 1–14.

    Article  CAS  Google Scholar 

  • McElroy D., Brettell S. 1994. Foreign gene expression in transgenic cereals. TIBTECH, 12: 62–68.

    CAS  Google Scholar 

  • McElroy D., Zhang W., Cao J., Wu R. 1990. Isolation of an efficient actin promoter for use in rice transformation. Plant Cell, 2: 163–171.

    Article  PubMed  CAS  Google Scholar 

  • Nadolska-Orczyk A. 1999. Transformacja roslin za pomoca Agrobacterium — podstawowy model dzialania i czynniki na niego wplywajace. Biotechnologia, 1(44): 116–124.

    Google Scholar 

  • Nadolska-Orczyk A., Orczyk W. 1999. Study of the factors influencing Agrobacterium-mediated transformation of pea (Pisum sativum L.). Mol. Breed., (in press).

  • Nayak P., Basu D., Das S., Basu A., Ghosh D., Ramakrishnan N.A., Ghosh M., Sen S.K. 1997. Transgenic elite indica rice plants expressing CryIAc -endotoxin of Bacillus thuringiensis are resistant against yellow stem borer (Scirpophaga incertulas). Proc. Natl. Acad. Sci. USA, 94: 2111–2116.

    Article  PubMed  CAS  Google Scholar 

  • Ow D.W., Wood K.V., DeLuk M., Wet J.R., Helinski D.R., Howell S.H. 1986. Transient and stable expression of the firefly luciferase gene in plant cells and transgenic plants. Science, 234: 856–859.

    Article  CAS  PubMed  Google Scholar 

  • Park S.H., Pinson R.M., Smith R.H. 1996. T-DNA integration into genomic DNA of rice following Agrobacterium inoculation of isolated shoot apices. Plant Mol. Biol., 32: 1135–1148.

    Article  PubMed  CAS  Google Scholar 

  • Pawlowski W.P., Somers D.A. 1998. Transgenic DNA integrated into the oat genome is frequently interspersed by host DNA. Proc. Natl. Acad. Sci. USA, 95: 12106–12110.

    Article  PubMed  CAS  Google Scholar 

  • Raineri D.M., Bottino P., Gordon M.P., Nester E.W. 1990. Agrobacterium-mediated transformation of rice (Oryza sativa L.). Bio/Technol., 8: 33–38.

    Article  CAS  Google Scholar 

  • Raineri D.M., Boulton M.I., Davies J.W., Nester E.W. 1993. VirA, the plant signal receptor, is responsible for the Ti plasmid-specific transfer of DNA to maize by Agrobacterium. Proc. Natl. Acad. Sci. USA, 90: 3549–3553.

    Article  PubMed  CAS  Google Scholar 

  • Rashid H., Yokoi S., Toriyama K., Hinata K. 1996. Transgenic plant production mediated by Agrobacterium in Indica rice. Plant Cell Rep., 15: 727–730.

    Article  CAS  Google Scholar 

  • Register J.C. III, Peterson D.J., Bell P.J., Bullock W.P., Evans I.J., Frame B., Greenland A.J., Higgs N.S., Jepson I., Jiao S., Lewnall C.J., Sillick J.M., Wilson H.M. 1994. Structure and function of selectable and non-selectable transgenes in maize after introduction by particle bombardment. Plant. Mol. Biol., 25: 951–961.

    Article  PubMed  CAS  Google Scholar 

  • Rhodes C.A., Pierce D.A., Mettler I.J., Mascarenhas D., Detmer J.J. 1988. Genetically transformed maize plants from protoplasts. Science, 240: 204–207.

    Article  PubMed  CAS  Google Scholar 

  • Schlappi M., Hohn B. 1992. Competence of immature maize embryos for Agrobacterium-mediated gene transfer. Plant Cell, 4: 7–16.

    Article  PubMed  Google Scholar 

  • Shen W-H., Escudero J., Schlappi M., Ramos C., Hohn B., Koukolikova-Nicola Z. 1993. T-DNA transfer to maize cells: histochemical investigation of -glucuronidase activity in maize tissues. Proc. Natl. Acad. Sci. USA, 90: 1488–1492.

    Article  PubMed  CAS  Google Scholar 

  • Shimoda N., Toyoda-Yamamoto A., Aoki S., Machida Y. 1993. Genetic evidence for an interaction between the VirA sensor protein and the ChveE sugar-binding protein of Agrobacterium. J. Biol. Chem., 268: 26552–26558.

    PubMed  CAS  Google Scholar 

  • Smith R.H., Hood E.E. 1995. Agrobacterium tumefaciens transformation of monocotyledons. Crop Sci., 35: 301–309.

    Article  Google Scholar 

  • Stachel S.E., Messens E., Van Montagu M., Zambryski P. 1985. Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature, 318: 624–629.

    Article  Google Scholar 

  • Tingay S., McElroy D., Kalla R., Fieg S., Wang M., Thornton S., Brettell R. 1997. Agrobacterium tumefaciens-mediated barley transformation. Plant J., 11: 1369–1376.

    Article  CAS  Google Scholar 

  • Tinland B. 1996. The integration of T-DNA into plant genomes. Trends Plant Sci., 1: 178–184.

    Article  Google Scholar 

  • Trick H.N., Finer J. 1997. SAAT: sonication-assisted Agrobacterium-mediated transformation. Transg. Res., 6: 329–336.

    Article  CAS  Google Scholar 

  • Tyagi A.K., Mohanty A., Bajaj S., Chaudhury A., Maheshwari S.C. 1999. Transgenic rice: A valuable monocot system for crop improvement and gene research. Critical Rev. Biotechnol., 19: 41–79.

    Article  CAS  Google Scholar 

  • Usami S., Morikawa S., Takebe I., Machida Y. 1987. Absence in monocotyledonous plants of the diffusible plant factors inducing T-DNA circularization and vir gene expression in Agrobacterium. Mol. Gen. Genet., 209: 221–226.

    Article  PubMed  CAS  Google Scholar 

  • Usami S., Okamoto S., Takebe I., Machida Y. 1988. Factor inducing Agrobacterium tumefaciens vir gene expression is present in monocotyledonous plants. Proc. Natl. Acad. Sci. USA, 85: 3748–3752.

    Article  PubMed  CAS  Google Scholar 

  • Vasil I.K. 1994. Molecular improvement of cereals. Plant Mol. Biol., 25: 925–937.

    Article  PubMed  CAS  Google Scholar 

  • Vijayachandra K., Palanichelvam K., Veluthambi K. 1995. Rice scutellum induces Agrobacterium tumefaciens vir genes and T-strand generation. Plant Mol. Biol., 29: 125–133.

    Article  PubMed  CAS  Google Scholar 

  • Yu S.M., Tzou W.S., Lo W.S., Kuo Y.H., Lee H.T., Wu R. 1992. Regulation of α-amylase-encoding gene expression in germinating seeds and cultured cells of rice. Gene, 122: 247–253.

    Article  PubMed  CAS  Google Scholar 

  • Zupan J.R., Zambryski P. 1995. Transfer of T-DNA from Agrobacterium to the plant cell. Plant Physiol., 107: 1041–1047.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nadolska-Orczyk, A., Orczyk, W. & Przetakiewicz, A. Agrobacterium-mediated transformation of cereals — from technique development to its application. Acta Physiol Plant 22, 77–88 (2000). https://doi.org/10.1007/s11738-000-0011-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-000-0011-8

Key words

Navigation