Skip to main content
Log in

Genetic and metabolic engineering of isoflavonoid biosynthesis

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Isoflavonoids are a diverse group of secondary metabolites derived from the phenylpropanoid pathway. These compounds are distributed predominantly in leguminous plants and play important roles in plant–environment interactions and human health. Consequently, the biosynthetic pathway of isoflavonoid compounds has been widely elucidated in the past decades. Up to now, most of the structural genes and some of the regulatory genes involved in this pathway have been isolated and well characterized. Nowadays, the protective effects of the legume isoflavonoids against hormone dependent cancers, cardiovascular disease, osteoporosis, and menopausal symptoms have generated considerable interest within the genetic and metabolic engineering fields to enhance the dietary intake of these compounds for disease prevention. Subsequently, there are some great progresses in genetic and metabolic engineering to improve their yields in leguminous and non-leguminous plants and/or microorganisms. Because of the field of flavonoid biosynthesis has been reviewed fairly extensively in the past, this review concentrates on the more recent development in the isoflavonoid branch of phenylpropanoid pathway, including gene isolation and characterization. In addition, we describe the state-of-the-art research with respect to genetic and metabolic engineering of isoflavonoid biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Achnine L, Blancaflor EB, Rasmussen S, Dixon RA (2004) Colocalization of L-phenylalanine ammonia-lyase and cinnamate 4-hydrozylase for metabolic channeling in phenylpropanoid biosynthesis. Plant Cell 16:3098–3109

    CAS  Google Scholar 

  • Aharoni A, De Vos CH, Wein M, Sun Z, Greco R, Kroon A, Mol JN, O'Connell AP (2001) The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco. Plant J 28:319–332

    CAS  Google Scholar 

  • Akashi T, Aoki T, Ayabe S (1999) Cloning and functional expression of a cytochrome P450 cDNA encoding 2-hydroxyisoflavanone synthase involved in biosynthesis of the isoflavonoid skeleton in licorice. Plant Physiol 121:821–828

    CAS  Google Scholar 

  • Akashi T, Sawada Y, Aoki T, Ayabe S (2000) New scheme of the biosynthesis of formononetin involving 2, 7, 4′-trihydroxyisoflavanone but not daidzein as the methyl acceptor. Biosci Biotechnol Biochem 64:2276–2279

    CAS  Google Scholar 

  • Akashi T, Sawada Y, Shimada N, Sakurai N, Aoki T, Ayabe S (2003) cDNA cloning and biochemical characterization of S-adenosyl-L-methionine: 2, 7, 4′-trihydroxyisoflavanone 4′-O-methyltransferase, a critical enzyme of the legume isoflavonoid phytoalexin pathway. Plant Cell Physiol 44:103–112

    CAS  Google Scholar 

  • Akashi T, Aoki T, Ayabe S (2005) Molecular and biochemical characterization of 2-hydroxyisoflavanone dehydratase. Involvement of carboxylesterase-like proteins in leguminous isoflavone biosynthesis. Plant Physiol 137:882–891

    CAS  Google Scholar 

  • Akashi T, Koshimizu S, Aoki T, Ayabe S (2006) Identification of cDNAs encoding pterocarpan reductase involved in isoflavan phytoalexin biosynthesis in Lotus japonicus by EST mining. FEBS Lett 580:5666–5670

    CAS  Google Scholar 

  • Ali AA, Velasquez MT, Hansen CT, Mohamed AI, Bhathena SJ (2005) Modulation of carbohydrate metabolism and peptide hormones by soybean isoflavones and probiotics in obesity and diabetes. J Nutr Biochem 16:693–699

    CAS  Google Scholar 

  • Aoki T, Akashi T, Ayabe S (2000) Flavonoids of leguminous plants: structure, biological activity, and biosynthesis. J Plant Res 113:475–488

    Google Scholar 

  • Austin MB, Noel JP (2003) The chalcone synthase superfamily of type III polyketide synthases. Nat Prod Rep 20:79–10

    CAS  Google Scholar 

  • Baggett BR, Cooper JD, Hogan ET, Carper J, Paiva NL, Smith JT (2002) Profiling isoflavonoids found in legume root extracts using capillary electrophoresis. Electrophoresis 23:1642–1651

    CAS  Google Scholar 

  • Barz W, Welle R (1992) Biosynthesis and metabolism of isoflavones and pterocarpan phytoalexins in chickpea, soybean and phytopathogenic fungi. Recent Adv Phytochem 26:139–164

    CAS  Google Scholar 

  • Bettina ED, Richard AD (2005) Metabolic engineering of isoflavonoid biosynthesis in alfalfa. Plant Physiol 138:2245–2259

    Google Scholar 

  • Bisby FA, Buckingham J, Harborne JB (eds) (1994) Phytochemical dictionary of the Leguminosae, vol I. Plants and their constituents. Chapman and Hall, New York

    Google Scholar 

  • Boddu J, Jiang C, Sangar V, Olson T, Peterson T, Chopra S (2006) Comparative structural and functional characterization of sorghum and maize duplications containing orthologous myb transcription regulators of 3-deoxyflavonoid biosynthesis. Plant Mol Biol 60:185–199

    CAS  Google Scholar 

  • Bomati EK, Austin MB, Bowman ME, Dixon RA, Noel JP (2005) Structural elucidation of chalcone reductase and implications for deoxychalcone biosynthesis. J Biol Chem 280:30496–30503

    CAS  Google Scholar 

  • Bruce W, Folkerts O, Garnaat C, Crasta O, Roth B, Bowen B (2000) Expression profiling of the maize flavonoid pathway genes controlled by estradiol-inducible transcription factors CRC and P. Plant Cell 12:65–80

    CAS  Google Scholar 

  • Buer CS, Muday GK (2004) The transparent testa4 mutation prevents flavonoid synthesis and alters auxin transport and the response of Arabidopsis roots to gravity and light. Plant Cell 16:1191–1205

    CAS  Google Scholar 

  • Caldwell CR, Britz SJ, Mirecki RM (2005) Effect of temperature, elevated carbon dioxide, and drought during seed development on the isoflavone content of dwarf soybean [Glycine max (L) Merrill] grown in controlled environments. J Agric Food Chem 53:1125–1129

    CAS  Google Scholar 

  • Cermak R, Landgrafs S, Wolffram S (2004) Quercetin glucosides inhibit glucose uptake into brush-border-membrane vesicles of porcine jejunum. Br J Nutr 91:849–855

    CAS  Google Scholar 

  • Chan SA, Lin SW, Yu KJ, Liu TY, Fuh MR (2006) Quantitative analysis of isoflavone aglycones in human serum by solid phase extraction and liquid chromatography–tandem mass spectrometry. Planta 69:952–956

    CAS  Google Scholar 

  • Cogolludo A, Frazziano G, Briones AM, Cobeno L, Moreno L, Lodi F, Salaices M, Tamargo J, Perez-Vizcaino F (2007) The dietary flavonoid quercetin activates BKCa currents in coronary arteries via production of H2O2, role in vasodilatation. Cardiovasc Res 73:424–431

    CAS  Google Scholar 

  • Cornwell T, Cohick W, Raskin I (2004) Dietary phytoestrogens and health. Phytochemistry 65:995–1016

    CAS  Google Scholar 

  • Day AJ, Gee JM, DuPont MS, Johnson IT, Williamson G (2003) Absorption of quercetin-3-glucoside and quercetin-4′-glycoside in the rat small intestine: the role of lactase phlorizin hydrolase and the sodium-dependent glucose transporter. Biochem Pharmacol 65:1199–1206

    CAS  Google Scholar 

  • De RE, Aardenburg L, Van DJ, Ariese F, Ernst WH, Gooijer C, Brinkman UA (2005) Changed isoflavone levels in red clover (Trifolium pratense L) leaves with disturbed root nodulation in response to waterlogging. J Chem Ecol 31:1285–1298

    Google Scholar 

  • Deavours BE, Dixon RA (2005) Metabolic engineering of isoflavonoid biosynthesis in alfalfa. Plant Physiol 138:2245–2259

    CAS  Google Scholar 

  • Deavours BE, Liu CJ, Naoumkina MA, Tang YB, Farag MA, Sumner LW, Noel JP, Dixon RA (2006) Functional analysis of members of the isoflavone and isoflavanone O-methyltransferase enzyme families from the model legume Medicago truncatula. Plant Mol Biol 62:715–733

    CAS  Google Scholar 

  • Dhaubhadel S, McGarvey BD, Williams R, Gijzen M (2003) Isoflavonoid biosynthesis and accumulation in developing soybean seeds. Plant Mol Biol 53:733–743

    CAS  Google Scholar 

  • Dhaubhadel S, Gijzen M, Moy P, Farhangkhoee M (2007) Transcriptome analysis reveals a critical role of CHS7 and CHS8 genes for isoflavonoid synthesis in soybean seeds. Plant Physiol 143:326–338

    CAS  Google Scholar 

  • Dhaubhadel S, Farhangkhoee M, Chapman R (2008) Identification and characterization of isoflavonoid specific glycosyltransferase and malonyltransferase from soybean seeds. J Exp Bot 59:981–994

    CAS  Google Scholar 

  • Di X, Yu L, Moore AB, Castro L, Zheng X, Hermon T, Dixon D (2008) A low concentration of genistein induces estrogen receptor-alpha and insulin-like growth factor-I receptor interactions and proliferation in uterine leiomyoma cells. Hum Reprod 23:1873–1883

    CAS  Google Scholar 

  • Dixon RA (2001) Natural products and disease resistance. Nature 411:843–847

    CAS  Google Scholar 

  • Dixon RA (2004) Phytoestrogens. Annu Rev Plant Biol 55:225–261

    CAS  Google Scholar 

  • Dixon RA, Ferreira D (2002) Molecules of interest, genistein. Phytochem 60:205–211

    CAS  Google Scholar 

  • Dixon RA, Steele CL (1999) Flavonoids and isoflavonoids a gold mine for metabolic engineering trends. Plant Sci 4:394–400

    Google Scholar 

  • Dixon RA, Sumner LW (2003) Legume natural products: understanding and manipulating complex pathways for human and animal health. Plant Physiol 131:878–885

    Google Scholar 

  • Dooner HK, Robbins TP, Jorgensen RA (1991) Genetic and developmental control of anthocyanin biosynthesis. Annu Rev Genet 5:173–199

    Google Scholar 

  • Edwards R, Dixon RA (1991) Isoflavone O-methyltransferase activities in elicitor-treated cell suspension cultures of Medicago sativa. Phytochem 30:2597–2606

    CAS  Google Scholar 

  • Farag MA, Huhman DV, Dixon RA, Sumner LW (2008) Metabolomics reveals novel pathways and differential mechanistic and elicitor-specific responses in phenylpropanoid and isoflavonoid biosynthesis in Medicago truncatula cell cultures. Plant Physiol 146:387–402

    CAS  Google Scholar 

  • Ferrer JL, Jez JM, Bowman ME, Dixon RA, Noel JP (1999) Structure of chalcone synthase and the molecular basis of plant polyketide biosynthesis. Nat Struct Biol 6:775–784

    CAS  Google Scholar 

  • Ferrer F-L, Zubieta C, Dixon RA, Noel JP (2005) Crystal structures of alfalfa caffeoyl coenzyme A 3-O-methyltransferase. Plant Physiol 137:1009–1017

    CAS  Google Scholar 

  • Ferrer JL, Austin MB, Stewart CJ, Noel JP (2008) Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiol Biochem 46:356–370

    CAS  Google Scholar 

  • Feucht W, Treutter D, Polster J (2004) Flavanol binding of nuclei from tree species. Plant Cell Rep 22:430–436

    CAS  Google Scholar 

  • Galili G, Höfgen R (2002) Metabolic engineering of amino acids and storage proteins in plants. Metab Eng 4:3–11

    CAS  Google Scholar 

  • Gensheimer M, Mushegian A (2004) Chalcone isomerase family and fold: no longer unique to plants. Protein Sci 13:540–544

    CAS  Google Scholar 

  • Graham TL, Graham MY (1991) Glyceollin elicitors induce major but distinctly different shifts in isoflavonoid metabolism in proximal and distal soybean cell populations. Mol Plant Microbe Interact 4:60–68

    CAS  Google Scholar 

  • Graham TL, Graham MY (2000) Defence potential and competency, redox conditioning effects of salicylic acid genistein. In: Stacey G, Keen N (eds) Plant–Microbe Interactions 5:181–219

  • Graham TL, Kim JE, Graham MY (1990) Role of constitutive isoflavone conjugates in the accumulation of glyceollin in soybean infected with Phytophthora megasperma. Mol Plant Microbe Interact 3:157–166

    CAS  Google Scholar 

  • Graham TL, Graham MY, Subramanian S, Yu O (2007) RNAi silencing of genes for elicitation or biosynthesis of 5-deoxyisoflavonoids suppresses race-specific resistance and hypersensitive cell death in Phytophthora sojae infected tissues. Plant Physiol 144:728–740

    CAS  Google Scholar 

  • Grotewold E, Peterson T (1994) Isolation and characterization of a maize gene encoding chalcone flavonone isomerase. Mol Gen Genet 242:1–8

    CAS  Google Scholar 

  • Hakamatsuka T, Mori K, Ishida S, Ebizuka Y, Sankawa U (1998) Purification of 2-hydroxyisoflavanone dehydratase from the cell cultures of Pueraria lobata. Phytochemistry 49:497–505

    CAS  Google Scholar 

  • Han YY, Ming F, Wang W, Wang JW, Ye MM, Shen DL (2006) Molecular evolution and functional specialization of chalcone synthase superfamily from Phalaenopsis orchid. Genetica 128:429–438

    CAS  Google Scholar 

  • He XZ, Dixon RA (1996) Affinity chromatography, substrate/product specificity, and amino acid sequence analysis of an isoflavone O-methyltransferase from alfalfa (Medicago sativa L). Arch Biochem Biophys 336:121–129

    CAS  Google Scholar 

  • He XZ, Dixon RA (2000) Genetic manipulation of isoflavone 7-O-methyltransferase enhances the biosynthesis of 4′-Omethylated isoflavonoid phytoalexins and disease resistance in alfalfa. Plant Cell 12:1689–1702

    CAS  Google Scholar 

  • He XZ, Reddy JT, Dixon RA (1998) Stress responses in alfalfa (Medicago sativa L.) XXII. cDNA cloning and characterization of an elicitor-inducible isoflavone 7-O-methyltransferase. Plant Mol Biol 36:43–54

    CAS  Google Scholar 

  • He XZ, Wang XQ, Dixon RA (2006) Mutational analysis of the Medicago glycosyltransferase UGT71G1 reveals residues that control regioselectivity for (iso)flavonoid glycosylation. J Biol Chem 281:34441–34447

    CAS  Google Scholar 

  • He XZ, Li WS, Blount WJ, Dixon RA (2008) Regioselective synthesis of plant (iso)flavone glycosides in Escherichia coli. Appl Microbiol Biotechnol 80:253–260

    CAS  Google Scholar 

  • Herrmann A, Schulz W, Harlbrock K (1988) Two alleles of the single-copy chalcone synthase gene in parsley differ by a transposon-like element. Mol Gen Genet 212:93–98

    CAS  Google Scholar 

  • Hua C, Wang Y, Zheng X, Dou D, Zhang Z, Govers F, Wang Y (2008) A phytophthora sojae G-protein alpha subunit is involved in chemotaxis to soybean isoflavones. Eukaryot Cell 7:2133–2140

    CAS  Google Scholar 

  • Hur S, Newby ZE, Bruice TC (2004) Transition state stabilization by general acid catalysis, water expulsion, and enzyme reorganization in Medicago sativa chalcone isomerase. Proc Natl Acad Sci U S A 101:2730–2735

    CAS  Google Scholar 

  • Hwang EI, Kaneko M, Ohnishi Y, Horinouchi S (2003) Production of plant-specific flavanones by Escherichia coli containing an artificial gene cluster. Appl Environ Microbiol 69:2699–2706

    CAS  Google Scholar 

  • Ibrahim RK, Muzac I (2000) The methyltransferase gene superfamily: a tree with multiple branches. In: Romeo JT, Ibrahim RK, Varin L, De Luca V (eds) Recent advances in phytochemistry, vol 34. Evolution of metabolic pathways. Pergamon, New York, pp 349–384

    Google Scholar 

  • Ibrahim RK, De Luca V, Khouri H, Latchinian L, Brisson L, Charest PM (1987) Enzymology and compartmentation of polymethylated flavonol glucosides in Chrysosplenium americanum. Phytochemistry 26:1237–1245

    Google Scholar 

  • Jeon MY, Kim BG, Ahn JH (2009) Biological synthesis of 7-O-methyl apigenin from naringenin using Escherichia coli expressing two genes. J Microbiol Biotechnol 19:491–494

    CAS  Google Scholar 

  • Jez JM, Noel JP (2002) Reaction mechanism of chalcone isomerase: pH dependence, diffusion control, and product binding differences. J Biol Chem 277:1361–1369

    CAS  Google Scholar 

  • Jez JM, Bowman ME, Noel JP (2002) Role of hydrogen bonds in the reaction mechanism of chalcone isomerase. Biochem 41:5168–5176

    CAS  Google Scholar 

  • Jiang H, Wood KV, Morgan JA (2005) Metabolic engineering of the phenylpropanoid pathway in Saccharomyces cerevisiae. Appl Environ Microbiol 71:2962–2969

    CAS  Google Scholar 

  • Jin HL, Eleonora C, Paul B, Adrian P, Frank M, Jonathon J, Chiara T, Bernd W, Cathie M (2000) Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis. EMBO J 19:6150–6161

    CAS  Google Scholar 

  • Joshi CP, Chiang VL (1998) Conserved sequence motifs in plant S-adenosyl-L-methionine-dependent methyltransferases. Plant Mol Biol 37:663–674

    CAS  Google Scholar 

  • Joung KE, Kim YW, Sheen YY (2003) Assessment of the estrogenicity of isoflavonoids, using MCF-7-ERE-Luc cells. Arch Pharm Res 26:756–762

    CAS  Google Scholar 

  • Jung W, Yu O, Lau SC, O’Keefe DP, Odell J, Fader G, McGonigle B (2000) Identification and expression of isoflavone synthase, the key enzyme for biosynthesis of isoflavones in legumes. Nature Biotech 18:208–212

    CAS  Google Scholar 

  • Kaneko M, Hwang EI, Ohnishi Y, Horinouchi S (2003) Heterologous production of flavanones in Escherichia coli: potential for combinatorial biosynthesis of flavonoids in bacteria. J Ind Microbiol Biotechnol 38:456–461

    Google Scholar 

  • Katsuyama Y, Miyahisa I, Funa N, Horinouchi S (2007) One-pot synthesis of genistein from tyrosine by coincubation of genetically engineered Escherichia coli and Saccharomyces cerevisiae cells. Appl Microbiol Biotechnol 73:1143–1149

    CAS  Google Scholar 

  • Kerhoas L, Aouak D, Cingöz A, Routaboul JM, Lepiniec L, Einhorn J, Birlirakis N (2006) Structural characterization of the major flavonoid glycosides from Arabidopsis thaliana seeds. J Agric Food Chem 54:6603–6612

    CAS  Google Scholar 

  • Kim BG, Kim SY, Song HS, Lee C, Hur HG, Kim SI, Ahn JH (2003) Cloning and expression of the isoflavone synthase gene (IFS-Tp) from Trifolium pretense. Mol Cells 15:301–306

    CAS  Google Scholar 

  • Kim HK, Jang YH, Baek IS, Lee JH, Min JP, Chung YS, Chung JI, Kim JK (2005) Polymorphism and expression of isoflavone synthase genes from soybean cultivars. Mol Cells 19:67–73

    CAS  Google Scholar 

  • Kim BG, Lee Y, Hur H-G, Lim Y, Ahn J-H (2006) Flavonoid 3′-Omethyltransferase from rice: cDNA cloning, characterization and functional expression. Phytochemistry 67:387–394

    CAS  Google Scholar 

  • Kim HB, Bae JH, Lim JD, Yu CY, An CS (2007) Expression of a functional type-I chalcone isomerase gene is localized to the infected cells of root nodules of Elaeagnus umbellate. Mol Cells 23:405–409

    Google Scholar 

  • Kim BG, Lee YJ, Lee S, Lim Y, Cheong Y, Ahn JH (2008) Altered regioselectivity of a poplar O-methyltransferase, POMT-7. J Biotechnol 138:107–111

    CAS  Google Scholar 

  • Kimura Y, Aoki T, Ayabe S (2001) Chalcone isomerase isozymes with different substrate specificities toward 6’-hydroxy and 6’-deoxychalcones in cultured cells of Glycyrrhiza echinata, a leguminous plant producing 5’-deoxyflavo-noids. Plant Cell Physiol 42:1169–1173

    CAS  Google Scholar 

  • Koblovská R, Macková Z, Vítková M, Kokoska L, Klejdus B, Lapcík O (2008) Isoflavones in the Rutaceae family: twenty selected representatives of the genera Citrus, Fortunella, Poncirus, Ruta and Severinia. Phytochem Anal 19:64–70

    Google Scholar 

  • Koes RE, Spelt CE, Vanden-Elzen PJ, Mol JN (1989) Cloning and molecular characterization of the chalcone synthase multigene family of Petunia hybrida. Gene 81:245–257

    CAS  Google Scholar 

  • Koester J, Bussmann R, Barz W (1984) Malonyl-coenzyme A: isoflavone 7-O-glucoside-6″-O-malonyltransferase from roots of chick pea (Cicer arietinum L). Arch Biochem Biophys 234:513–521

    CAS  Google Scholar 

  • Köster J, Barz W (1981) UDP-glucose:isoflavone 7-O-glucosyltransferase from roots of chick pea (Cicer arietinum L). Arch Biochem Biophys 212:98–104

    Google Scholar 

  • Kottra G, Daniel H (2007) Flavonoid glycosides are not transported by the human Na+/glucose transporter when expressed in Xenopus laevis oocytes, but effectively inhibit electrogenic glucose uptake. J Pharmacol Exp Ther 322:829–835

    CAS  Google Scholar 

  • Kourtz L, Dillon K, Daughtry S, Madison LL, Peoples O, Snell KD (2005) A novel thiolase-reductase gene fusion promotes the production of polyhydroxybutyrate in Arabidopsis. Plant Biotech J 3:435–447

    CAS  Google Scholar 

  • Kreuzaler F, Ragg H, Fautz E, Kuhn DN, Hahlbrock K (1983) UV-induction of chalcone synthase mRNA in cell suspension cultures of Petroselinum hortense. Proc Natl Acad Sci U S A 80:2591–2593

    CAS  Google Scholar 

  • Kudou S, Fleury Y, Welti D, Magnolato D, Uchida T, Kitamura K, Okubo K (1991) Malonyl isoflavone glycosides in soybean seeds (Glycine max Merrill). Agric Biol Chem 55:2227–2233

    CAS  Google Scholar 

  • Lapcík O (2007) Isoflavonoids in non-leguminous taxa: a rarity or a rule? Phytochem 68:2909–2916

    Google Scholar 

  • Latunde-Dada AO, Cabello-Hurtado F, Czittrich N, Didierjean L, Schopfer C, Hertkorn N, Werck-Reichhart D, Ebel J (2001) Flavonoid 6-hydroxylase from soybean (Glycine max L), a novel plant P-450 monooxygenase. J Biol Chem 276:1688–1695

    CAS  Google Scholar 

  • Leonard E, Koffas MAG (2007) Engineering of artificial plant cytochrome P450 enzymes for synthesis of isoflavones by Escherichia coli. Appl Environ Microbiol 73:7246–7251

    Google Scholar 

  • Leonard E, Chemler J, Lim KH, Koffas MAG (2006) Expression of a soluble flavone synthase allows the biosynthesis of phytoestrogen derivatives in Escherichia coli. Appl Microbiol Biotechnol 70:85–91

    CAS  Google Scholar 

  • Li Y, Baldauf S, Lim E-K, Bowles DJ (2001) Phylogenetic analysis of the UDP-glycosyltransferase multigene family of Arabidopsis thaliana. J Biol Chem 276:4338–4343

    CAS  Google Scholar 

  • Li L, Modolo LV, Achnine LL, ETL DRA, Wang XQ (2007) Crystal structure of Medicago truncatula UGT85H2—insights into the structural basis of a multifunctional (iso)flavonoid glycosyltransferase. J Mol Biol 370:951–963

    CAS  Google Scholar 

  • Liu CJ, Dixon RA (2001) Elicitor-induced association of isoflavone O-methyltransferase with endomembranes prevents the formation and 7-Omethylation of daidzein during isoflavonoid phytoalexin biosynthesis. Plant Cell 13:2643–2658

    CAS  Google Scholar 

  • Liu C, Blount JW, Steele CL, Dixon RA (2002) Bottlenecks for metabolic engineering of isoflavone glycoconjugates in Arabidopsis. Proc Natl Acad Sci U S A 99:14578–14583

    CAS  Google Scholar 

  • Lodovico T, Angel M, Adrian P, Steve M, Francisco A, Culianez-Macia Keith R, Cathie M (1998) The AmMYB308 and AmMYB320 transcription factors from antirrhinum regulate phenylpropanoid and lignin biosynthesis in transgenic tobacco. Plant Cell 10:135–154

    Google Scholar 

  • Lozovaya VV, Lygin AV, Zernova OV, Li S, Hartman GL, Widholm JM (2004) Isoflavonoid accumulation in soybean hairy roots upon treatment with Fusarium solani. Plant Physiol Biochem 42:671–679

    CAS  Google Scholar 

  • Lozovaya VV, Lygin AV, Zernova OV, Ulanov AV, Li S, Hartman GL, Widholm JM (2007) Modification of phenolic metabolism in soybean hairy roots through down regulation of chalcone synthase or isoflavone synthase. Planta 225:665–679

    CAS  Google Scholar 

  • Luczkiewicz M, Glod D (2003) Callus culture of Genista plants in vitro material producing high amounts of isoflavones of phytoestrogenic activity. Plant Sci 165:1101–1108

    CAS  Google Scholar 

  • Mackova Z, Koblovska R, Lapcik O (2006) Distribution of isoflavonoids in non-leguminous taxa—an update. Phytochem 67:849–855

    CAS  Google Scholar 

  • Marinova K, Kleinschmidt K, Weissenböck G, Klein M (2007) Flavonoid biosynthesis in barley primary leaves requires the presence of the vacuole and controls the activity of vacuolar flavonoid transport. Plant Physiol 144:432–444

    CAS  Google Scholar 

  • Masafumi K, Eui IH, Yasuo O, Sueharu H (2003) Heterologous production of flavanones in Escherichia coli, potential for combinatorial biosynthesis of flavonoids in bacteria. J Ind Microbiol Biotechnol 30:456–461

    Google Scholar 

  • Matkowski A (2004) In vitro isoflavonoid production in callus from different organs of P. lobata (Wild) Ohwi. Plant Physiol 161:343–346

    CAS  Google Scholar 

  • Matsumura H, Watanabe S, Harada K, Senda M, Akada S, Kawasaki S, Dubouzet EG, Minaka N, Takahashi R (2005) Molecular linkage mapping and phylogeny of the chalcone synthase multigene family in soybean. Theor Appl Genet 110:1203–1209

    CAS  Google Scholar 

  • McCue P, Shetty K (2004) Health benefits of soy isoflavonoids and strategies for enhancement: a review. Crit Rev Food Sci 44:361–367

    Google Scholar 

  • McKhann HI, Hirsch AM (1994) Isolation of chalcone synthase and chalcone isomerase cDNAs from alfalfa (Medicago sativa L), highest transcript levels occur in young roots and root tips. Plant Mol Biol 24:767–777

    CAS  Google Scholar 

  • Mehdy MC, Lamb CJ (1987) Chalcone isomerase cDNA cloning and mRNA induction by fungal elicitor, wounding and infection. EMBO J 6:1527–1533

    CAS  Google Scholar 

  • Messina M (1999) Soy, soy phytoestrogens (isoflavones), and breast cancer. Am J Clin Nutr 70:574–575

    CAS  Google Scholar 

  • Miyahisa I, Kaneko M, Funa N, Kawasaki H, Kojima H, Ohnishi Y, Horinouchi S (2005) Efficient production of (2S)-flavanones by Escherichia coli containing an artificial biosynthetic gene cluster. Appl Microbiol Biotechnol 68:498–504

    CAS  Google Scholar 

  • Miyahisa I, Funa N, Ohnishi Y, Martens S, Moriguchi T, Horinouchi S (2006) Combinatorial biosynthesis of flavones and flavonols in Escherichia coli. Appl Microbiol Biotechnol 71:53–58

    CAS  Google Scholar 

  • Modolo LV, Blount JW, Achnine L, Naoumkina MA, Wang X, Dixon RA (2007) A functional genomics approach to (iso)flavonoid glycosylation in the model legume Medicago truncatula. Plant Mol Biol 64:499–518

    CAS  Google Scholar 

  • Moore AB, Castro L, Yu L, Zheng X, Di X, Sifre MI, Kissling GE, Newbold RR, Bortner CD, Dixon D (2007) Stimulatory and inhibitory effects of genistein on human uterine leiomyoma cell proliferation are influenced by the concentration. Hum Reprod 22:2623–2631

    CAS  Google Scholar 

  • Morris PF, Bone E, Tyler BM (1998) Chemotropic and contact response of Phytophthora sojae hyphae to soybean isoflavonoids and artificial substrates. Plant Physiol 117:1171–1178

    CAS  Google Scholar 

  • Nagashima S, Inagaki R, Kubo A, Hirotani M, Yoshikawa T (2004) cDNA cloning and expression of isoflavonoid-specific glucosyltransferase from Glycyrrhiza echinata cell-suspension cultures. Planta 218:456–459

    CAS  Google Scholar 

  • Nakatsuka T, Sato K, Takahashi H, Yamamura S, Nishihara M (2008) Cloning and characterization of the UDP-glucose: anthocyanin 5-O-glucosyltransferase gene from blue-flowered gentian. J Exp Bot 59:1241–1252

    CAS  Google Scholar 

  • Naoumkina M, Farag MA, Sumner LW, Tang Y, Liu CJ, Dixon RA (2007) Inaugural article, different mechanisms for phytoalexin induction by pathogen and wound signals in Medicago truncatula. Proc Natl Acad Sci U S A 104:17909–17915

    CAS  Google Scholar 

  • Noguchi A, Saito A, Homma Y, Nakao M, Sasaki N, Nishino T, Takahashi S, Nakayama T (2007) A UDP-glucose:isoflavone 7-O-glucosyltransferase from the roots of soybean (glycine max) seedlings purification, gene cloning, phylogenetics, and an implication for an alternative strategy of enzyme catalysis. J Biol Chem 282:23581–23590

    CAS  Google Scholar 

  • Novák K, Lisá L, Skrdleta V (2004) Rhizobial nod gene-inducing activity in pea nodulation mutants, dissociation of nodulation and flavonoid response. Physiol Plant 120:546–555

    Google Scholar 

  • Ohta M, Matsui K, Hiratsu K, Shinshi H, Ohme-Takagi M (2001) Repression domains of class II ERF transcriptional repressors share an essential motif for active repression. Plant Cell 13:1959–1968

    CAS  Google Scholar 

  • Overkamp S, Hein F, Barz W (2000) Cloning and characterization of eight cytochrome P450 cDNAs from chickpea (Cicer arietinum L) cell suspension cultures. Plant Sci 155:101–108

    CAS  Google Scholar 

  • Pang Y, Shen GA, Liu C, Liu X, Tan F, Sun X, Tang K (2004) Molecular cloning and sequence analysis of a novel chalcone synthase cDNA from Ginkgo biloba DNA. Seq 15:283–290

    CAS  Google Scholar 

  • Paquette S, Møller BL, Bak S (2003) On the origin of family 1 plant glycosyltransferases. Phytochem 62:399–413

    CAS  Google Scholar 

  • Parka SR, Yoona JA, Paika JH, Parka JW, Junga WS, Bana YH, Kima EJ, Yooa YJ, Hanb AR, Yoona YJ (2009) Engineering of plant-specific phenylpropanoids biosynthesis in Streptomyces venezuelae. J Biotech 141:181–188

    Google Scholar 

  • Pollak PE, Vogt T, Mo Y, Taylor LP (1993) Chalcone synthase and flavonol accumulation in stigmas and anthers of Petunia hybrida. Plant Physiol 102:925–932

    CAS  Google Scholar 

  • Praveen RJ, Yasuyo S, Katsuhiko K (2005) Genomics reveals traces of fungal phenylpropanoid–flavonoid metabolic pathway in the filamentous fungus Aspergillus oryzae. J Microbiol 43:475–486

    Google Scholar 

  • Preisig CL, Matthews DE, VanEtten HD (1989) Purification and characterization of S-adenosyl-L-methionine: 6a-hydroxymaackiain 3-O-methyltransferase from Pisum sativum. Plant Physiol 91:559–566

    CAS  Google Scholar 

  • Preston J, Wheeler J, Heazlewood J, Li SF, Parish RW (2004) AtMYB32 is required for normal pollen development in Arabidopsis thaliana. Plant J 40:979–995

    CAS  Google Scholar 

  • Quattrocchio F, Wing J, Woude K, Souer E, Vetten N, Mol J, Koes R (1999) Molecular analysis of the anthocyanin2 gene of petunia and its role in the evolution of flower color. Plant Cell 11:1433–1444

    CAS  Google Scholar 

  • Ralston L, Subramanian S, Matsuno M, Yu O (2005) Partial reconstruction of flavonoid and isoflavonoid biosynthesis in yeast using soybean type I and type II chalcone isomerases. Plant Physiol 137:1375–1388

    CAS  Google Scholar 

  • Reynaud J, Guilet D, Terreux R, Lussignol M, Walchshofer N (2005) Isoflavonoids in non-leguminous families, an update. Nat Prod Rep 22:504–515

    CAS  Google Scholar 

  • Rhonga L, Feinbaum FMA (1988) Transcriptional regulation of the Arabidopsis thaliana chalcone synthase gene. Mol Cell Biol 8:1985–1992

    Google Scholar 

  • Sainz MB, Grotewold E, Chandler VL (1997) Evidence for direct activation of an anthocyanin promoter by the maize C1 protein and comparison of DNA binding by related Myb domain proteins. Plant Cell 9:611–625

    CAS  Google Scholar 

  • Sarkar FH, Li Y (2003) Soy isoflavones and cancer prevention. Cancer Invest 21:744–757

    CAS  Google Scholar 

  • Sharma SB, Dixon RA (2005) Metabolic engineering of proanthocyanidins by ectopic expression of transcription factors in Arabidopsis thaliana. Plant J 44:62–75

    CAS  Google Scholar 

  • Shimada N, Akashi T, Aoki T, Ayabe S (2000) Induction of isoflavonoid pathway in the model legume Lotus japonicus, molecular characterization of enzymes involved in phytoalexin biosynthesis. Plant Sci 160:37–47

    CAS  Google Scholar 

  • Shimada N, Aoki T, Sato S, Nakamura Y, Tabata S, Ayabe S (2003) A cluster of genes encodes the two types of chalcone isomerase involved in the biosynthesis of general flavonoids and legume-specific 5-deoxy(iso)flavonoids in Lotus japonicus. Plant Physiol 131:941–951

    Google Scholar 

  • Shimada N, Sato S, Akashi T, Nakamura Y, Tabata S, Ayabe S, Aoki T (2007) Genome-wide analyses of the structural gene families involved in the legume-specific 5-deoxyisoflavonoid biosynthesis of Lotus japonicus. DNA Res 14:25–36

    CAS  Google Scholar 

  • Shimamura M, Akashi T, Sakurai N, Suzuki H, Saito K, Shibata D, Ayabe S, Aoki T (2007) 2-hydroxyisoflavanone dehydratase is a critical determinant of isoflavone productivity in hairy root cultures of Lotus japonicus. Plant Cell Physiol 48:1652–1657

    CAS  Google Scholar 

  • Silvia F, Fathi MS, Tamara M, Montserrat C, Pere P, Joan R, David CR (2006) Down-regulation of the maize and Arabidopsis thaliana caffeic acid O-methyl-transferase genes by two new maize R2R3-MYB transcription factors. Plant Mol Biol 62:809–882

    Google Scholar 

  • Simkhada D, Kim E, Lee HC, Sohng JK (2009) Metabolic engineering of Escherichia coli for the biological synthesis of 7-O-xylosyl naringenin. Mol Cells 28:397–401

    Google Scholar 

  • Smith RS, Bisby MA (1993) Persistence of axonal transport in isolated axons of the mouse. Eur J Neurosci 5:1127–1135

    CAS  Google Scholar 

  • Sparvoli F, Martin C, Scienza A, Gavazzi G, Tonelli C (1994) Cloning and molecular analysis of structural genes involved in flavonoid and stilbene biosynthesis in grape (Vitis vinifera L). Plant Mol Biol 24:743–755

    CAS  Google Scholar 

  • Sreevidy VS, Rao CS, Sullia SB, Ladha JK, Reddy PM (2006) Metabolic engineering of rice with soybean isoflavone synthase for promoting nodulation gene expression in rhizobia. J Exp Bot 57:1957–1969

    Google Scholar 

  • Steele CL, Gijzen M, Qutob D, Dixon RA (1999) Molecular characterization of the enzyme catalyzing the aryl migration reaction of isoflavonoid biosynthesis in soybean. Arch Biochem Biophys 367:146–150

    CAS  Google Scholar 

  • Subramanian S, Hu X, Lu G, Odelland JT, Yu O (2004) The promoters of two isoflavone synthase genes respond differentially to nodulation and defense signals in transgenic soybean roots. Plant Mol Biol 54:623–639

    CAS  Google Scholar 

  • Subramanian S, Graham MY, Yu O, Graham TL (2005) RNA interference of soybean isoflavone synthase genes leads to silencing in tissues distal to the transformation site and to enhanced susceptibility to Phytophthora sojae. Plant Physiol 137:1345–1353

    CAS  Google Scholar 

  • Subramanian S, Stacey G, Yu O (2006) Endogenous isoflavones are essential for the establishment of symbiosis between soybean and Bradyrhizobium japonicum. Plant J 48:261–273

    CAS  Google Scholar 

  • Suzuki H, Nakayama T, Yonekura-Sakakibara K, Fukui Y, Nakamura N, Yamaguchi M, Tanaka Y, Kusumi T, Nishino T (2002) cDNA cloning, heterologous expressions, and functional characterization of malonyl-coenzyme A:anthocyanidin 3-O-glucoside-6″-O-malonyltransferase from dahlia flowers. Plant Physiol 130:2142–2151

    CAS  Google Scholar 

  • Suzuki H, Sawada S, Watanabe K, Nagae S, Yamaguchi M, Nakayama T, Nishino T (2004) Identification and characterization of a novel anthocyanin malonyltransferase from scarlet sage (Salvia splendens) flowers: an enzyme that is phylogenetically separated from other anthocyanin acyltransferases. Plant J 38:994–1003

    CAS  Google Scholar 

  • Suzuki H, Nishino T, Nakayama T (2007) cDNA cloning of a BAHD acyltransferase from soybean (Glycine max): isoflavone 7-O-glucoside-6″-O- malonyltransferase. Phytochem 68:2035–2042

    CAS  Google Scholar 

  • Tian L, Dixon RA (2006) Engineering isoflavone metabolism with an artificial bifunctional enzyme. Planta 224:496–507

    CAS  Google Scholar 

  • Tsukamoto C, Shimada S, Igita K, Kudou S, Kokubun M, Okubo K, Kitamura K (1995) Factors affecting isoflavone content in soybean seeds, changes in isoflavones, saponins and composition of fatty acids at different temperatures during seed development. J Agric Food Chem 43:1184–1192

    CAS  Google Scholar 

  • Tuteja JH, Clough SJ, Chan WC, Vodkin LO (2004) Tissue-specific gene silencing mediated by a naturally occurring chalcone synthase gene cluster in Glycine max. Plant Cell 16:819–835

    CAS  Google Scholar 

  • Unno H, Ichimaida F, Suzuki H, Takahashi S, Tanaka T, Saito A, Nishino T, Kusunoki M, Nakayama T (2007) Structural and mutational studies of anthocyanin malonyltransferases establish the features of BAHD enzyme catalysis. J Biol Chem 282:15812–15822

    CAS  Google Scholar 

  • Van Aalten DM, Grotewold E, Joshua-Tor L (1998) Essential dynamics from NMR clusters, dynamic properties of the Myb DNA-binding domain and a hinge-bending enhancing variant. Methods 14:318–328

    Google Scholar 

  • VanEtten HD, Matthews PS, Mercer EH (1983) (+) Maackiain and (+) medicarpin as phytoalexins in Sophora japonica L and identification of the (−) isomers by biotransformation. Phytochem 22:2291–2295

    CAS  Google Scholar 

  • Veitch N (2007) Isoflavonoids of the Leguminosae. Nat Prod Rep 24:417–464

    CAS  Google Scholar 

  • Vera VL, Anatoliy VL, Olga VZ, Alexander VU, Shuxian L, Glen LH, Jack MW (2007) Modification of phenolic metabolism in soybean hairy roots through down regulation of chalcone synthase or isoflavone synthase. Planta 225:665–679

    Google Scholar 

  • Watanabe S, Uesugi S, Kikuchi Y (2002) Isoflavones for prevention of cancer, cardiovascular diseases, gynecological problems and possible immune potentiation. Biomed Pharmacother 56:302–312

    CAS  Google Scholar 

  • Weisshaar B, Block A, Armstrong GA, Herrmann A, Schulze-Lefert P, Hahlbrock K (1991) Regulatory elements required for light-mediated expression of the Petroselinum crispum chalcone synthase gene. Symp Soc Exp Biol 45:191–210

    CAS  Google Scholar 

  • Wengenmayer H, Ebel J, Grisebach H (1974) Purification and properties of a S-adenosylmethionine: isoflavone 4′-O-methyltransferase from cell suspension cultures of Cicer arietinum L. Eur J Biochem 50:135–143

    CAS  Google Scholar 

  • Witte S, Moco SW, Vervoort J, Matern U, Martens S (2009) Recombinant expression and functional characterization of regiospecific flavonoid glucosyltransferases from Hieracium pilosella L. Planta 229:1135–1146

    CAS  Google Scholar 

  • Wu Q, Preisig CL, VanEtten HD (1997) Isolation of the cDNAs encoding (+)6a-hydroxymaackiain 3-O-methyltransferase, the terminal step for the synthesis of the phytoalexin pisatin in Pisum sativum. Plant Mol Biol 35:551–560

    CAS  Google Scholar 

  • Xie DY, Sharma SB, Wright E, Wang ZY, Dixon RA (2006) Metabolic engineering of proanthocyanidins through co-expression of anthocyanidin reductase and the PAP1 MYB transcription factor. Plant J 45:895–907

    CAS  Google Scholar 

  • Yan YJ, Kohli A, Koffas MAG (2005) Biosynthesis of natural flavanones in Saccharomyces cerevisiae. Appl Environ Microbiol 71:5610–5613

    CAS  Google Scholar 

  • Yu O, Jung W, Shi J, Croes RA, Fader GM, McGonigle B, Odell JT (2000) Production of the isoflavones genistein and daidzein in non-legume dicot and monocot tissues. Plant Physiol 124:781–793

    CAS  Google Scholar 

  • Yu O, Shi J, Hession AO, Maxwell CA, McGonigle B, Odell JT (2003) Metabolic engineering to increase isoflavone biosynthesis in soybean seed. Phytochem 63:753–763

    CAS  Google Scholar 

  • Yu XH, Chen MH, Liu CJ (2008) Nucleocytoplasmic-localized acyltransferases catalyze the malonylation of 7-O-glycosidic (iso)flavones in Medicago truncatula. Plant J 55:382–396

    CAS  Google Scholar 

  • Zabala G, Zou J, Tuteja J, Gonzalez DO, Clough SJ, Vodkin (2006) Transcriptome changes in the phenylpropanoid pathway of Glycine max in response to Pseudomonas syringae infection. BMC Plant Biol 6:26

    Google Scholar 

  • Zhou JM, Seo YW, Ibrahim RK (2009) Biochemical characterization of a putative wheat caffeic acid O-methyltransferase. Plant Physiol Biochem 47:322–326

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from the National Transgenic Program (2008ZX08005-004 and 2009ZX08009055B).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yubi Huang or Yixiong Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, H., Huang, Y. & Tang, Y. Genetic and metabolic engineering of isoflavonoid biosynthesis. Appl Microbiol Biotechnol 86, 1293–1312 (2010). https://doi.org/10.1007/s00253-010-2512-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2512-8

Keywords

Navigation