Skip to main content

Syntrophism among Prokaryotes

  • Reference work entry
The Prokaryotes

1 Introduction: Concepts of Cooperation in Microbial Communities, Terminology

The study of pure cultures in the laboratory has provided an amazingly diverse diorama of metabolic capacities among microorganisms, and has established the basis for our understanding of key transformation processes in nature. Pure culture studies are also prerequisites for research in microbial biochemistry and molecular biology. However, desire to understand how microorganisms act in natural systems requires the realization that microorganisms don’t usually occur as pure cultures out there, but that every single cell has to cooperate or compete with other micro- or macroorganisms. The pure culture is, with some exceptions such as certain microbes in direct cooperation with higher organisms, a laboratory artifact. Information gained from the study of pure cultures can be transferred only with great caution to an understanding of the behavior of microbes in natural communities. Rather, a detailed analysis of...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 700.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literature Cited

  • Ahring, B. K., and P. Westermann. 1988 Product inhibition of butyrate metabolism by acetate and hydrogen in a thermophilic coculture Appl. Environ. Microbiol. 54 2393–2397

    PubMed  CAS  Google Scholar 

  • Auburger, G., and J. Winter. 1992 Purification and characterization of benzoyl CoA ligase from a syntrophic, benzoate-degrading, anaerobic mixed culture Appl. Microbiol. Biotechnol. 37 789–95

    Article  PubMed  CAS  Google Scholar 

  • Baena, S., M.-L. Fardeau, M. Labat, B. Ollivier, J.-L. Garcia, and B. K. C. Patel. 1998 Aminobacterium colombiense, gen.nov., sp.nov., an amino acid degrading anaerobe isolated from anaerobic sludge Anaerobe 4 241–250

    Article  PubMed  CAS  Google Scholar 

  • Baena, S., M.-L. Fardeau, B. Ollivier, M. Labat, P. Thomas, J.-L. Garcia, and B. K. C. Patel. 1999a Aminomonas paucivorans gen.nov., sp.nov., a mesophilic, anaerobic, amino-acid-utilizing bacterium Int. J. Syst. Bacteriol. 49 975–982

    Article  PubMed  CAS  Google Scholar 

  • Baena, S., M.-L. Fardeau, T. H. S. Woo, B. Ollivier, M. Labat, and B. K. C. Patel. 1999b Phylogenetic relationships of three amino-acid-utilizing anaerobes, Selenomonas acidaminovorans, “Selenomonas acidaminophila” and Eubacterium acidaminophilum, as inferred from partial 16S rDNA nucleotide sequences and proposal of Thermanaerovibrio acidaminovorans gen.nov., comb. nov. and Anaeromusa acidaminophila gen.nov., comb. nov Int. J. Syst. Bacteriol. 49 969–974

    Article  PubMed  CAS  Google Scholar 

  • Baena, S., M.-L. Fardeau, M. Labat, B. Ollivier, B. J.-L. Garcia, and B. K. C. Patel. 2000 Aminobacterium mobile, sp.nov., a new anaerobic amino-acid-degrading bacterium Int. J. Syst Evol. Microbiol. 50 259–264

    Article  PubMed  CAS  Google Scholar 

  • Barik, S., W. J. Brulla, and M. P. Bryant. 1985 PA-1, a versatile anaerobe obtained in pure culture, catabolizes benzenoids and other compounds in syntrophy with hydrogenotrophs, and P-2 plus Wolinella sp. degrades benzenoids Appl. Environ. Microbiol. 50 304–310

    PubMed  CAS  Google Scholar 

  • Barker, H. A. 1940 Studies upon the methane fermentation. IV: The isolation and culture of Methanobacterium omelianskii Ant. v. Leeuwenhoek 6 201–220

    Article  Google Scholar 

  • Barker, H. A. 1981 Amino acid degradation by anaerobic bacteria Ann. Rev. Biochem. 50 23–40

    Article  PubMed  CAS  Google Scholar 

  • Beaty, P. S., and M. J. McInerney. 1987a Growth of Syntrophomonas wolfei in pure cultures on crotonate Arch. Microbiol. 147 389–393

    Article  CAS  Google Scholar 

  • Beaty, P. S., N. Q. Wofford, and M. J. McInerney. 1987b Separation of Syntrophomonas wolfei from Methanospirillum hungatei in syntrophic cocultures by using Percoll gradients Appl. Environ. Microbiol. 53 1183–1185

    PubMed  CAS  Google Scholar 

  • Beaty, P. S., and M. J. McInerney. 1989 Effect of organic acid anions on the growth and metabolism of Syntrophomonas wolfei in pure culture and in defined consortia Appl. Environ. Microbiol. 55 977–983

    PubMed  CAS  Google Scholar 

  • Ben-Bassat, A., R. Lamed, and J. G. Zeikus. 1981 Ethanol production by thermophilic bacteria: Metabolic control of end product formation in Thermoanaerobium brockii J. Bacteriol. 146 192–199

    PubMed  CAS  Google Scholar 

  • Biebl, H., and N. Pfennig. 1978 Growth yields of green sulfur bacteria in mixed cultures with sulfur and sulfate reducing bacteria Arch. Microbiol. 117 9–16

    Article  CAS  Google Scholar 

  • Bleicher, K., and J. Winter. 1994 Formate production and utilization by methanogens and by sewage sludge consortia—interference with the concept of interspecies formate transfer Appl. Microbiol. Biotechnol. 40 910–915

    Article  CAS  Google Scholar 

  • Boetius, A., K. Ravenschlag, C. J. Schubert, D. Rickert, F. Widdel, A. Giesecke, R. Amann, B. B. Jorgensen, U. Witte, and O. Pfannkuche, O. 2000 A marine microbial consortium apparently mediating anaerobic oxidation of methane Nature 407 623–626

    Article  PubMed  CAS  Google Scholar 

  • Boone, D. R., and M. P. Bryant. 1980 Propionate-degrading bacterium, Syntrophobacter wolinii sp. nov. gen. nov., from methanogenic ecosystems Appl. Environ. Microbiol. 40 626–632

    PubMed  CAS  Google Scholar 

  • Boone, D. R., R. L. Johnson, and Y. Liu. 1989a Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems, and implications in the measurement of KM for H2 or formate uptake Appl. Environ. Microbiol. 55 1735–1741

    PubMed  CAS  Google Scholar 

  • Boone, D. R., R. L. Johnson, and Y. Liu. 1989b Microbial ecology of nterspecies hydrogen and formate transfer in methanogenic ecosystems In: T. Hattori, Y. Ishida, Y. Maruyama, R. Y. Morita, and A. Uchida (Eds.) Recent Advances in Microbial Ecology Japan Scientific Society Press, Tokyo, Japan 450–453

    Google Scholar 

  • Bryant, M. P., E. A. Wolin, M. J. Wolin, and R. S. Wolfe. 1967 Methanobacillus omelianskii, a symbiotic association of two species of bacteria Arch. Mikrobiol. 59 20–31

    Article  PubMed  CAS  Google Scholar 

  • Bryant, M. P., L. L. Campbell, C. A. Reddy, and M. R. Crabill. 1977 Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria Appl. Environ. Microbiol. 33 1162–1169

    PubMed  CAS  Google Scholar 

  • Bryant, M. P. 1979 Microbial methane production—theoretical aspects J. Anim. Sci. 48 193–201

    CAS  Google Scholar 

  • Buckel, W., and H. A. Barker. 1974 Two pathways of glutamate fermentation by anaerobic bacteria J. Bacteriol. 117 1248–1260

    PubMed  CAS  Google Scholar 

  • Cervantes, F. J., S. van der Velde, G. Lettinga, and J. A. Field. 2000 Quinones as terminal electron acceptors for anaerobic microbial oxidation of phenolic compounds Biodegradation 11 313–321

    Article  PubMed  CAS  Google Scholar 

  • Cheng, G., C. M. Plugge, W. Roelofsen, F. P. Houwen, and A. J. M. Stams. 1992 Selenomonas acidaminovorans sp. nov., a versatile thermophilic proton-reducing anaerobe able to grow by decarboxylation of succinate to propionate Arch. Microbiol. 157 169–175

    CAS  Google Scholar 

  • Cherepanov, D. A., A. Y. Mulkidjanian, and W. Junge. 1999 Transient accumulation of elastic energy in proton translocating ATP synthase FEBS Lett. 449 1–6

    Article  PubMed  CAS  Google Scholar 

  • Conrad, R., T. J. Phelps, and J. G. Zeikus. 1985 Gas metabolism evidence in support of the juxtaposition of hydrogen-producing and methanogenic bacteria in sewage sludge and lake sediments Appl. Environ. Microbiol. 50 595–601

    PubMed  CAS  Google Scholar 

  • Conrad, R., B. Schink, and T. J. Phelps. 1986 Thermodynamics of H2-consuming and H2-producing metabolic reactions in diverse methanogenic environments under in situ conditions FEMS Microbiol. Ecol. 38 353–360

    Article  CAS  Google Scholar 

  • Conrad, R., F. Bak, H. J. Seitz, B. Thebrath, H. P. Mayer, and H. Schütz. 1989 Hydrogen turnover by psychrotrophic homoacetogenic and mesophilic methanogenic bacteria in anoxic paddy soil and lake sediment FEMS Microbiol. Ecol. 62 285–294

    Article  CAS  Google Scholar 

  • Conrad, R., and B. Wetter. 1990 Influence of temperature on energetics of hydrogen metabolism in homoacetogenic, methanogenic, and other anaerobic bacteria Arch. Microbiol. 155 94–98

    Article  CAS  Google Scholar 

  • Cord-Ruwisch, R., D. R. Lovley, and B. Schink. 1998 Growth of Geobacter sulfurreducens with acetate in syntrophic cooperation with hydrogen-oxidizing anaerobic partners Appl. Environ. Microbiol. 64 2232–2236

    PubMed  CAS  Google Scholar 

  • Daniel, R., F. Warnecke, J. S. Potekhina, and G. Gottschalk. 1999 Identification of the syntrophic partners in a coculture coupling anaerobic methanol oxidation to Fe(III) reduction FEMS Microbiol. Lett. 180 197–203

    Article  PubMed  CAS  Google Scholar 

  • De Bok, F. A., A. J. Stams, C. Dijkema, and D. R. Boone. 2001 Pathway of propionate oxidation by a syntrophic culture of Smithella propionica and Methanospirillum hungatei Appl. Environ. Microbiol. 67 1800–1804

    Article  PubMed  Google Scholar 

  • Dimroth, K. 1983 Thermochemische Daten organischer VerbindungenIn In: C. Synowietz, D’Ans-Lax Taschenbuch für Chemiker und Physiker, Bd. 2 Springer-Verlag, Berlin, Germany 2 997–1038

    Google Scholar 

  • Dimroth, P. 1987 Sodium transport decarboxylases and other aspects of sodium ion cycling in bacteria Microbiol. Rev. 51 320–340

    PubMed  CAS  Google Scholar 

  • Dimroth, P. 2000 Operation of the F0 motor of the ATP synthase Biochem. Biophys. Acta 1458 374–386

    Article  PubMed  CAS  Google Scholar 

  • Dong, X., G. Cheng, and A. J. M. Stams. 1994a Butyrate oxidation by Syntrophospora bryantii in coculture with different methanogens and in pure culture with pentenoate as electron acceptor Appl. Microbiol. Biotechnol. 42 647–652

    Article  CAS  Google Scholar 

  • Dong, X., C. M. Plugge, and A. J. M. Stams. 1994b Anaerobic degradation of propionate by a mesophilic acetogenic bacterium in co-and triculture with different methanogens Appl. Environ. Microbiol. 60 2834–2838

    PubMed  CAS  Google Scholar 

  • Dong, X., and A. J. M. Stams. 1995a Evidence for H2 and formate formation during syntrophic butyrate and propionate degradation Anaerobe 1 35–39

    Article  PubMed  CAS  Google Scholar 

  • Dong, X., and A. J. M. Stams. 1995b Localization of enzymes involved in H2 and formate metabolism in Syntrophospora bryantii Ant. v. Leeuwenhoek 67 345–350

    Article  CAS  Google Scholar 

  • Dörner, C. 1992 Biochemie und Energetik der Wasserstofffreisetzung in der syntrophen Vergärung von Fettsäuren und Benzoat (thesis) Universität Tübingen, Tübingen, Germany 58–61

    Google Scholar 

  • Dubourgier, H. C., G. Prensier, and G. Albagnac. 1988 Structure and microbial activities of granular anaerobic sludge In: G. Lettinga, A. J. B. Zehnder, J. T. C. Grotenhuis, and L. W. Hulshoff (Eds.) Granular Anaerobic Sludge: Microbiology and Technology Pudoc, Wageningen, The Netherlands 18–33

    Google Scholar 

  • Dwyer, D. F., E. Weeg-Aerssens, D. R. Shelton, and J. M. Tiedje. 1988 Bioenergetic conditions of butyrate metabolism by a syntrophic, anaerobic bacterium in coculture with hydrogen-oxidizing methanogenic and sulfidogenic bacteria Appl. Environ. Microbiol. 54 1354–1359

    PubMed  CAS  Google Scholar 

  • Egli, T. 1995 The ecological and physiological significance of the growth of heterotrophic microorganisms with mixtures of substrates In: J. G. Jones (Ed.) Advances in Microbial Ecology Plenum Press, New York, NY 14 305–386

    Google Scholar 

  • Eichler, B., and B. Schink. 1986 Fermentation of primary alcohols and diols, and pure culture of syntrophically alcohol-oxidizing anaerobes Arch. Microbiol. 143 60–66

    Article  Google Scholar 

  • Elshahed, M. S., V. K. Bhupathiraju, N. Q. Wofford, M. A. Nanny, and M. J. McInerney. 2001 Metabolism of benzoate, cyclohex-1-ene carboxylate, and cyclohexane carboxylate by “Syntrophus aciditrophicus” strain SB in syntrophic association with H2-using microorganisms Appl. Environ. Microbiol. 67 1728–1738

    Article  PubMed  CAS  Google Scholar 

  • Engelbrecht, S., and W. Junge. 1997 ATP synthase: A tentative structural model FEBS Lett. 414 485–491

    Article  PubMed  CAS  Google Scholar 

  • Fenchel, T., and B. J. Finlay. 1995 Ecology and Evolution in Anoxic Worlds Oxford University Press, Oxford, UK 108–171

    Google Scholar 

  • Fey, A., and R. Conrad. 2000 Effect of temperature on carbon and electron flow and on the archaeal community in methanogenic rice field soil Appl. Environ. Microbiol. 66 4790–4797

    Article  PubMed  CAS  Google Scholar 

  • Finlay, B. J., and T. Fenchel. 1992 Methanogens and other bacteria as symbionts of free-living anaerobic ciliates Symbiosis 14 375–390

    Google Scholar 

  • Friedrich, M., U. Laderer, and B. Schink. 1991 Fermentative degradation of glycolic acid by defined syntrophic cocultures Arch. Microbiol. 156 398–404

    Article  CAS  Google Scholar 

  • Friedrich, M., and B. Schink. 1993 Hydrogen formation from glycolate driven by reversed electron transport in membrane vesicles of a syntrophic glycolate-oxidizing bacterium Eur. J. Biochem. 217 233–240

    Article  PubMed  CAS  Google Scholar 

  • Friedrich, M., and B. Schink. 1995 Electron transport phosphorylation driven by glyoxylate respiration with hydrogen as electron donor in membrane vesicles of a glyoxylate-fermenting bacterium Arch. Microbiol. 163 268–275

    Article  PubMed  CAS  Google Scholar 

  • Friedrich, M., N. Springer, W. Ludwig, and B. Schink. 1996 Phylogenetic position of Desulfofustis glycolicus gen. nov. sp. nov. and Syntrophobotulus glycolicus gen. nov. sp. nov., two strict anaerobes growing with glycolic acid Int. J. Syst. Bacteriol. 46 1065–1069

    Article  PubMed  CAS  Google Scholar 

  • Fuchs, G. M., E. S. Mohamed, U. Altenschmidt, J. Roch, A. Lach, R. Brackmann, C. Lockmeyer, and B. Oswald. 1994 Biochemistry of anaerobic biodegradation of aromatic compounds In: C. Ratledge (Ed.) Biochemistry of Microbial Degradation Kluwer Academic Publishers, Dordrecht, The Netherlands 513–553

    Google Scholar 

  • Fukuzaki, S., N. Nishio, M. Shobayashi, and S. Nagai. 1990 Inhibition of the fermentation of propionate to methane by hydrogen, acetate, and propionate Appl. Environ. Microbiol. 56 719–723

    PubMed  CAS  Google Scholar 

  • Girbal, L., J. Ørlygsson, B. J. Reinders, and J. C. Gottschal. 1997 Why does Clostridium acetireducens not use interspecies hydrogen transfer for growth on leucine? Curr. Microbiol. 35 155–160

    Article  CAS  Google Scholar 

  • Gottschalk, G. 1986 Bacterial Metabolism, 2nd ed Springer-Verlag, New York, NY

    Book  Google Scholar 

  • Harmsen, H., B. Wullings, A. D. L. Akkermans, W. Ludwig, and A. J. M. Stams. 1993 Phylogenetic analysis of Syntrophobacter wolinii reveals a relationship with sulfate-reducing bacteria Arch. Microbiol. 160 238–240

    PubMed  CAS  Google Scholar 

  • Harmsen, H. J. M., H. M. P. Kengen, A. D. L. Akkermans, and A. J. M. Stams. 1995 Phylogenetic analysis of two syntrophic propionate-oxidizing bacteria in enrichment cultures Syst. Appl. Microbiol. 18 67–73

    Article  CAS  Google Scholar 

  • Harmsen, H. J. M., H. M. P. Kengen, A. D. L. Akkermans, A. J. M. Stams, and W. M. de Vos. 1996 Detection and localization of syntrophic propionate-oxidizing bacteria in granular sludge by in situ hybridization using 16S rRNA-based oligonucleotide probes Appl. Environ. Microbiol. 62 1656–1663

    PubMed  CAS  Google Scholar 

  • Harmsen, H. J., B. L. Van Kuijk, C. M. Plugge, A. D. Akkermans, W. M. De Vos, and A. J. Stams. 1998 Syntrophobacter fumaroxidans sp. nov., a syntrophic propionate-degrading sulfate-reducing bacterium Int. J. Syst. Bacteriol. 48 1383–1387

    Article  PubMed  CAS  Google Scholar 

  • Hattori, S., Y. Kamagata, S. Hanada, and H. Shoun. 2000 Thermacetogenium phaeum gen. nov., sp. nov., a strictly anaerobic, thermophilic, syntrophic acetate-oxidizing bacterium Int. J. Syst. Evol. Microbiol. 50 1601–1609

    Article  PubMed  CAS  Google Scholar 

  • Heider, J., and G. Fuchs. 1997 Anaerobic metabolism of aromatic compounds Eur. J. Biochem. 243 577–596

    Article  PubMed  CAS  Google Scholar 

  • Hinrichs, K. U., J. M. Hayes, S. P. Sylva, P. G. Brewer, and E. F. DeLong. 1999 Methane–consuming archaebacteria in marine sediments Nature 398 802–805

    Article  PubMed  CAS  Google Scholar 

  • Hoehler, T. M., M. J. Alperin, D. B. Albert, and C. S. Martens. 1994 Field and laboratory studies of methane oxidation in an anoxic marine sediment: Evidence for a methanogen-sulfate reducer consortium Global Biochem. Cycl. 8 451–463

    Article  CAS  Google Scholar 

  • Hoehler, T. M., M. J. Alperin, D. B. Albert, and C. S. Martens. 2001 Apparent minimum free energy requirements for methanogenic Archaea and sulfate-reducing bacteria in an anoxic marine sediment FEMS Microbiol. Ecol. 38 33–41

    Article  CAS  Google Scholar 

  • Houwen, F. P., C. Dijkema, C. H. H. Schoenmakers, A. J. M. Stams, and A. J. B. Zehnder. 1987 13C-NMR study of propionate degradation by a methanogenic coculture FEMS Microbiol. Lett. 41 269–274

    Article  CAS  Google Scholar 

  • Houwen, F. P., J. Plokker, A. J. M. Stams, and A. J. B. Zehnder. 1990 Enzymatic evidence for involvement of the methylmalonyl-CoA pathway in propionate oxidation by Syntrophobacter wolinii Arch. Microbiol. 155 52–55

    Article  CAS  Google Scholar 

  • Imachi, H., Y. Sekiguchi, Y. Kamagata, A. Ohashi, and H. Harada. 2000 Cultivation and in situ detection of a thermophilic bacterium capable of oxidizing propionate in syntrophic association with hydrogenotrophic methanogens in a thermophilic methanogenic granular sludge Appl. Environ. Microbiol. 66 3608–3615

    Article  PubMed  CAS  Google Scholar 

  • Iversen, N., and B. B. Jørgensen. 1985 Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark) Limnol. Oceanogr. 30 944–955

    Article  CAS  Google Scholar 

  • Jackson, B. E., V. K. Bhupathiraju, R. S. Tanner, C. R. Woese, and M. J. McInerney. 1999 Syntrophus aciditrophicus sp. nov., a new anaerobic bacterium that degrades fatty acids and benzoate in syntrophic association with hydrogen-using microorganisms Arch. Microbiol. 171 107–114

    Article  PubMed  CAS  Google Scholar 

  • Kaden, J., A. S. Galushko, B. Schink. 2002 Cysteine-mediated electron transfer in syntrophic acetate oxidation by cocultures of Geobacter sulfurreducens and Wolinella succinogenes Arch. Microbiol. 178(1) 53–58

    Article  CAS  Google Scholar 

  • Kleerebezem, R., and A. J. Stams. 2000 Kinetics of syntrophic cultures: A theoretical treatise on butyrate fermentation Biotechnol. Bioeng. 67 529–543

    Article  PubMed  CAS  Google Scholar 

  • Koch, M., J. Dolfing, K. Wuhrmann, and A. J. B. Zehnder. 1983 Pathway of propionate degradation by enriched methanogenic cultures Appl. Environ. Microbiol. 45 1411–1414

    PubMed  CAS  Google Scholar 

  • Kotsyurbenko, O. R., A. N. Nozhevnikova, T. I. Soloviova, and G. A. Zavarzin. 1996 Methanogenesis at low temperatures by microflora of tundra wetland soil Ant. v. Leeuwenhoek 69 75–86

    Article  CAS  Google Scholar 

  • Kremer, D. R., H. E. Nienhuis-Kuiper, and T. A. Hansen. 1988 Ethanol dissimilation in Desulfovibrio Arch. Microbiol. 150 552–557

    Article  CAS  Google Scholar 

  • Laanbroek, H. J., L. J. Stal, and H. Veldkamp. 1978 Utilization of hydrogen and formate by Campylobacter spec. under aerobic and anaerobic conditions Arch. Microbiol. 119 99–102

    Article  PubMed  CAS  Google Scholar 

  • Laanbroek, H. J., A. J. Smit, G. Klein-Nulend, and H. Veldkamp. 1979 Competition for glutamate between specialized and versatile Clostridium species Arch. Microbiol. 120 330–335

    Google Scholar 

  • Lee, M. J., and S. H. Zinder. 1988a Carbon monoxide pathway enzyme activities in a thermophilic anaerobic bacterium grown acetogenically and in a syntrophic acetate-oxidizing coculture Arch. Microbiol. 150 513–518

    Article  CAS  Google Scholar 

  • Lee, M. J., and S. H. Zinder. 1988b Hydrogen partial pressures in a thermophilic acetate-oxidizing methanogenic cocultures Appl. Environ. Microbiol. 54 1457–1461

    PubMed  CAS  Google Scholar 

  • Lee, M. J., and S. H. Zinder. 1988c Isolation and characterization of a thermophilic bacterium which oxidizes acetate in syntrophic association with a methanogen and which grows acetogenically on H2-CO H2 Appl. Environ. Microbiol. 54 124–129

    PubMed  CAS  Google Scholar 

  • Lendenmann, U., M. Snozzi, and T. Egli. 1996 Kinetics of the simultaneous utilization of sugar mixtures by Escherichia coli in continuous culture Appl Environ. Microbiol. 62 1493–1499

    PubMed  CAS  Google Scholar 

  • Lettinga, G., A. J. B. Zehnder, J. T. C. Grotenhuis, and L. W. Hulshoff (Eds.). 1988 Granular Anaerobic Sludge: Microbiology and Technology Pudoc, Wageningen, The Netherlands

    Google Scholar 

  • Liu, Y., D. L. Balkwill, H. C. Aldrich, G. R. Drake, and D. R. Boone. 1999 Characterization of the anaerobic propionate-degrading syntrophs Smithella propionica gen. nov., sp. nov. and Syntrophobacter wolinii Int. J. Syst. Bacteriol. 49 545–556

    Article  PubMed  CAS  Google Scholar 

  • Lovley, D. R., J. D. Coates, E. L. Blunt-Harris, E. J. P. Phillips, and J. C. Woodward. 1996 Humic substances as electron acceptors for microbial respiration Nature 382 445–448

    Article  CAS  Google Scholar 

  • Matthies, C., and B. Schink. 1992 Reciprocal isomerization of butyrate and isobutyrate by strain WoGl3, and methanogenic isobutyrate degradation by a defined triculture Appl. Environ. Microbiol. 58 1435–1439

    PubMed  CAS  Google Scholar 

  • Matthies, C., and B. Schink. 1993 Anaerobic degradation of long-chain dicarboxylic acids by methanogenic enrichment cultures FEMS Microbiol. Lett. 111 177–182

    Article  CAS  Google Scholar 

  • McInerney, M. J., M. P. Bryant, and N. Pfennig. 1979 Anaerobic bacterium that degrades fatty acids in syntrophic association with methanogens Arch. Microbiol. 122 129–135

    Article  CAS  Google Scholar 

  • McInerney, M. J., M. P. Bryant, R. B. Hespell, and J. W. Costerton. 1981 Syntrophomonas wolfei gen. nov. sp. nov., an anaerobic, syntrophic, fatty acid-oxidizing bacterium Appl. Environ. Microbiol. 41 1029–1039

    PubMed  CAS  Google Scholar 

  • McInerney, M. J. 1988 Anaerobic hydrolysis and fermentation of fats and proteins In: A. J. B. Zehnder (Ed.) Biology of Anaerobic Microorganisms John Wiley and Sons, New York, NY 373–415

    Google Scholar 

  • McInerney, M. J., and N. Q. Wofford. 1992 Enzymes involved in crotonate metabolism in Syntrophomonas wolfei Arch. Microbiol. 158 344–349

    Article  CAS  Google Scholar 

  • Meckenstock, R. U. 1999 Fermentative toluene degradation in anaerobic defined syntrophic cocultures FEMS Microbiol. Lett. 177 67–73

    Article  PubMed  CAS  Google Scholar 

  • Meijer, W. G., M. E. Nienhuis-Kuiper, and T. A. Hansen. 1999 Fermentative bacteria from estuarine mud: Phylogenetic position of Acidaminobacter hydrogenoformans and description of a new type of Gram-negative, propionigenic bacterium as Propionibacter pelophilus gen.nov., sp.nov. 49 Int. J. Syst. Bacteriol. 49 1039–1044

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, P. 1966 Chemiosmotic coupling in oxidative and photosynthetic phosphorylation Biol. Rev. Cambridge Phil. Soc. 41 445–502

    Article  CAS  Google Scholar 

  • Mountfort, D. O., and M. P. Bryant. 1982 Isolation and characterization of an anaerobic syntrophic benzoate-degrading bacterium from sewage sludge Arch. Microbiol. 133 249–256

    Article  CAS  Google Scholar 

  • Mountfort, D. O., and H. F. Kaspar. 1986 Palladium-mediated hydrogenation of unsaturated hydrocarbons with hydrogen gas released during anaerobic cellulose degradation Appl. Environ. Microbiol. 52 744–750

    PubMed  CAS  Google Scholar 

  • Müller, M. 1988 Energy metabolism of protozoa without mitochondria Ann. Rev. Microbiol. 42 465–488

    Article  Google Scholar 

  • Nagase, M., and T. Matsuo. 1982 Interaction between amino-acid degrading bacteria and methanogenic bacteria in anaerobic digestion Biotechnol. Bioeng. 24 2227–2239

    Article  PubMed  CAS  Google Scholar 

  • Nanninga, H. J., and J. C. Gottschal. 1985 Amino acid fermentation and hydrogen transfer in mixed cultures FEMS Microbiol. Ecol. 31 261–269

    Article  CAS  Google Scholar 

  • Nanninga, H. J., W. J. Drent, and J. C. Gottschal. 1987 Fermentation of glutamate by Selenomonas acidaminophila sp. nov Arch. Microbiol. 147 152–157

    Article  CAS  Google Scholar 

  • Naumann, E., H. Hippe, and G. Gottschalk. 1983 Betaine: New oxidant in the Stickland reaction and methanogenesis from betaine and L-alanine by a Clostridium sporogenes-Methanosarcina barkeri coculture Appl. Environ. Microbiol. 45 474–483

    PubMed  CAS  Google Scholar 

  • Ørlygsson, J., F. P. Houwen, and B. H. Svensson. 1993 Anaerobic degradation of protein and the role of methane formation in steady state thermophilic enrichment cultures Swedish J. Agric. Res. 23 45–54

    Google Scholar 

  • Ørlygsson, J. 1994 The role of interspecies hydrogen transfer on thermophilic protein and amino acid metabolism (PhD thesis) Swedish University of Agricultural Sciences, Uppsala, Sweden Chapter 4

    Google Scholar 

  • Orphan, V. J., K.-U. Hinrichs, W. Ussler, C. K. Paull, L. T. Taylor, S. P. Sylva, J. M. Hayes, and E. F. DeLong. 2001 Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments Appl. Environ. Microbiol. 67 1922–1934

    Article  PubMed  CAS  Google Scholar 

  • Oude Elferink, S. J. W. H., W. J. C. Vorstman, A. Sopjes, and A. J. M. Stams. 1998 Characterization of the sulfate-reducing and syntrophic population in granular sludge from a full-scale anaerobic reactor treating papermill wastewater FEMS Microbiol. Ecol. 27 185–194

    Article  Google Scholar 

  • Overmann, J. 2002 Phototrophic consortia: A tight cooperation between non-related eubacteria In: J. Seckbach (Ed.) Symbiosis: Mechanisms and Model Systems Kluwer, Dordrecht, The Netherlands 239–255

    Google Scholar 

  • Pancost, R. D., J. S. S. Damsté, S. de Lint, M. J. E. C. van der Maarel, K. C. Gottschal, and the Medinaut Shipboard Scientific Party. 2000 Biomarker evidence for widespread anaerobic methane oxidation in Meditterranean sediments by a consortium of methanogenic archaea and bacteria Appl. Environ. Microbiol. 66 1126–1132

    Article  PubMed  CAS  Google Scholar 

  • Pfennig, N. 1980 Syntrophic mixed cultures and symbiontic consortia with phototrophic bacteria: A review In: G. Gottschalk, N. Pfennig, H. Werner (Eds.) Anaerobes and Anaerobic Infections Fischer, Stuttgart, Germany, New York, NY 127–131

    Google Scholar 

  • Phelps, T. J., and J. G. Zeikus. 1984 Influence of pH on terminal carbon metabolism in anoxic sediments from a mildly acidic lake Appl. Environ. Microbiol. 48 1088–1095

    PubMed  CAS  Google Scholar 

  • Platen, H., and B. Schink. 1987 Methanogenic degradation of acetone by an enrichment culture Arch. Microbiol. 149 136–141

    Article  PubMed  CAS  Google Scholar 

  • Platen, H., P. H. Janssen, and B. Schink. 1994 Fermentative degradation of acetone by an enrichment culture in membrane-separated culture devices and in cell suspensions FEMS Microbiol. Lett. 122 27–32

    Article  PubMed  CAS  Google Scholar 

  • Plugge, C. M., C. Dijkema, and A. J. M. Stams. 1993 Acetyl-CoA cleavage pathway in a syntrophic propionate oxidizing bacterium growing on fumarate in the absence of methanogens FEMS Microbiol. Lett. 110 71–76

    Article  CAS  Google Scholar 

  • Plugge, C. M., E. G. Zoetendal, and A. J. M. Stams. 2000 Caloramator coolhaasii, sp. nov. a glutamate-degrading, moderately thermophilic anaerobe Int. J. Syst. Bacteriol. 50 1155–1162

    Article  CAS  Google Scholar 

  • Plugge, C. M., and A. J. M. Stams. 2001a Arginine catabolism by Thermanaerovibrio acidaminovorans FEMS Microbiol. Lett. 195 259–262

    Article  PubMed  CAS  Google Scholar 

  • Plugge, C. M., M. Balk, E. G. Zoetendal, and A. J. M. Stams. 2002 Gelria glutamica, gen.nov., sp.nov., a thermophilic obligate syntrophic glutamate-degrading anaerobe Int. J. Syst. Evol. Microbiol. 52(Pt 2) 401–407

    PubMed  CAS  Google Scholar 

  • Plugge, C. M., J. M. van Leeuwen, T. Hummelen, M. Balk, and A. J. M. Stams. 2001b Elucidation of the pathways of catabolic glutamate conversion in three thermophilic anaerobic bacteria Arch. Microbiol. 176 29–36

    Article  PubMed  CAS  Google Scholar 

  • Reeburgh, W. S. 1980 Anaerobic methane oxidation: Rate distributions in Skan Bay sediments Earth Plan. Sci. Lett. 47 345–352

    Article  CAS  Google Scholar 

  • Roy, F., E. Samain, H. C. Dubourgier, and G. Albagnac. 1986 Syntrophomonas sapovorans sp. nov., a new obligately proton reducing anaerobe oxidizing saturated and unsaturated long chain fatty acids Arch. Microbiol. 145 142–147

    Article  CAS  Google Scholar 

  • Santegoeds, C. M., L. R. Damgaard, G. Hesselink, J. Zopfi, P. Lens, G. Muyzer, and D. de Beer. 1999 Distribution of sulfate-reducing and methanogenic bacteria in anaerobic aggregates determined by microsensor and molecular analyses Appl. Environ. Microbiol. 65 4618–4629

    PubMed  CAS  Google Scholar 

  • Schink, B. 1984 Fermentation of 2.3-butanediol by Pelobacter carbinolicus sp. nov., and Pelobacter propionicus, sp. nov., and evidence for propionate formation from C2 compounds Arch. Microbiol. 137 33–41

    Article  CAS  Google Scholar 

  • Schink, B. 1985a Fermentation of acetylene by an obligate anaerobe, Pelobacter acetylenicus sp. nov Arch. Microbiol. 142 295–301

    Article  CAS  Google Scholar 

  • Schink, B. 1985b Mechanism and kinetics of succinate and propionate degradation in anoxic freshwater sediments and sewage sludge J. Gen. Microbiol. 131 643–650

    CAS  Google Scholar 

  • Schink, B., and R. K. Thauer. 1988 Energetics of syntrophic methane formation and the influence of aggregation In: G. Lettinga, A. J. B. Zehnder, J. T. C. Grotenhuis, and L. W. Hulshoff (Eds.) Granular Anaerobic Sludge: Microbiology and Technology Pudoc, Wageningen, The Netherlands 5–17

    Google Scholar 

  • Schink, B. 1990 Conservation of small amounts of energy in fermenting bacteria In: R. K. Finn and P. Präve (Eds.) Biotechnology: Focus 2 Hanser Publishers, New York, NY 63–89

    Google Scholar 

  • Schink, B. 1991 Syntrophism among prokaryotes In: A. Balows, H. G. Trüper, M. Dworkin, and K. H. Schleifer (Eds.) [{http://www.prokaryotes.com} The Prokaryotes, 2nd ed.] Springer, New York, NY 276–299

    Google Scholar 

  • Schink, B. 1994 Diversity, ecology, and isolation of acetogenic bacteria In: H. L. Drake (Ed.) Acetogenesis Chapman and Hall, New York, NY 197–235

    Google Scholar 

  • Schink, B., and M. Friedrich. 1994 Energetics of syntrophic fatty acid degradation FEMS Microbiol. Rev. 15 85–94

    Article  CAS  Google Scholar 

  • Schink, B. 1997 Energetics of syntrophic cooperations in methanogenic degradation Microbiol. Molec. Biol. Rev. 61 262–280

    CAS  Google Scholar 

  • Schink, B., B. Philipp, and J. Müller. 2000 Anaerobic degradation of phenolic compounds Naturwissenschaften 87 12–23

    Article  PubMed  CAS  Google Scholar 

  • Schnürer, A., F. P. Houwen, and B. H. Svensson. 1994 Mesophilic syntrophic acetate oxidation during methane formation by a triculture at high ammonium concentration Arch. Microbiol. 162 70–74

    Article  Google Scholar 

  • Schnürer, A., B. Schink, and B. H. Svensson. 1996 Clostridium ultunense sp. nov., a mesophilic bacterium oxidizing acetate in syntrophic association with a hydrogenotrophic methanogenic bacterium Int. J. Syst. Bacteriol. 46 1145–1152

    Article  PubMed  Google Scholar 

  • Schnürer, A., B. H. Svensson, and B. Schink. 1997 Enzyme activities in and energetics of acetate metabolism by the mesophilic syntrophically acetate-oxidizing anaerobe Clostridium ultunense FEMS Microbiol. Lett. 154 331–336

    Article  Google Scholar 

  • Schöcke, L., and B. Schink. 1997 Energetics of methanogenic benzoate degradation by Syntrophus gentianae in syntrophic coculture Microbiology 143 2345–2351

    Article  Google Scholar 

  • Schöcke, L., and B. Schink. 1998 Membrane-bound proton-translocating pyrophosphatase of Syntrophus gentianae, a syntrophically benzoate-degrading fermenting bacterium Eur. J. Biochem. 256 589–594

    Article  PubMed  Google Scholar 

  • Schöcke, L., and B. Schink. 1999 Biochemistry and energetics of fermentative benzoate degradation by Syntrophus gentianae Arch. Microbiol. 171 331–337

    Article  Google Scholar 

  • Scholten, J. C. M., and R. Conrad. 2000 Energetics of syntrophic propionate oxidation in defined batch and chemostat cocultures Appl. Environ. Microbiol. 66 2934–2942

    Article  PubMed  CAS  Google Scholar 

  • Schönheit, P., J. Moll, and R. K. Thauer. 1980 Growth parameters (Ks, vmax, Ys) of Methanobacterium thermoautotrophicum Arch. Microbiol. 127 59–65

    Article  Google Scholar 

  • Seelert, H., A. Poetsch, N. A. Dencher, A. Engel, H. Stahlberg, and D. J. Müller. 2000 Proton-powered turbine of a plant motor Nature 405 418–419

    Article  PubMed  CAS  Google Scholar 

  • Sekiguchi, Y., Y. Kamagata, K. Nakamura, A. Ohashi, and H. Harada. 2000 Syntrophothermus lipocalidus gen. nov., sp. nov., a novel thermophilic, syntrophic, fatty-acid-oxidizing anaerobe which utilizes isobutyrate Int. J. Syst. Evol. Microbiol. 50 771–779

    Article  PubMed  CAS  Google Scholar 

  • Stams, A. J. M., and T. A. Hansen. 1984 Fermentation of glutamate and other compounds by Acidaminobacter hydrogenoformans gen.nov., sp.nov., an obligate anaerobe isolated from black mud. Studies with pure cultures and mixed cultures with sulfate-reducing and methanogenic bacteria Arch. Microbiol. 137 329–337

    Article  CAS  Google Scholar 

  • Stams, A. J. M., J. T. C. Grotenhuis, and A. J. B. Zehnder. 1989 Structure-function relationship in granular sludge In: T. Hattori, Y. Ishida, Y. Maruyama, R. Y. Morita, and A. Uchida (Eds.) Recent Advances in Microbial Ecology Japan Scientific Society Press, Tokyo, Japan 440–445

    Google Scholar 

  • Stams, A. J. M., and C. M. Plugge. 1990 Isolation of syntrophic bacteria on metabolic intermediates In: J. P. Belaich, M. Bruschi, and J. L. Garcia (Eds.) Microbiology and Biochemistry of Strict Anaerobes Involved in Interspecies Hydrogen Transfer Plenum Publishing, New York, NY 473–476

    Google Scholar 

  • Stams, A. J. M., J. B. van Dijk, C. Dijkema, and Plugge, C. M. 1993 Growth of syntrophic propionate-oxidizing bacteria with fumarate in the absence of methanogenic bacteria Appl. Environ. Microbiol. 59 1114–1119

    PubMed  CAS  Google Scholar 

  • Stams, A. J. M. 1994 Metabolic interactions between anaerobic bacteria in methanogenic environments Ant. v. Leeuwenhoek 66 271–294

    Article  CAS  Google Scholar 

  • Stams, A. J. M., C. Dijkema, C. M. Plugge, and P. Lens. 1998 Contribution of 13C-NMR spectroscopy to the elucidation of pathways of propionate formation and degradation in methanogenic environments Biodegradation 9 463–473

    Article  CAS  Google Scholar 

  • Stieb, M., and B. Schink. 1985 Anaerobic oxidation of fatty acids by Clostridium bryantii sp. nov., a spore-forming, obligately syntrophic bacterium Arch. Microbiol. 140 387–390

    Article  CAS  Google Scholar 

  • Stieb, M., and B. Schink. 1986 Anaerobic degradation of isovalerate by a defined methanogenic coculture Arch. Microbiol. 144 291–295

    Article  CAS  Google Scholar 

  • Stieb, M., and B. Schink. 1989 Anaerobic degradation of isobutyrate by methanogenic enrichment cultures and by a Desulfococcus multivorans strain Arch. Microbiol. 151 126–132

    Article  CAS  Google Scholar 

  • Stock, D., A. G. W. Leslie, and J. E. Walker. 1999 Molecular architecture of the rotary motor in ATP synthase Science 286 1700–1705

    Article  PubMed  CAS  Google Scholar 

  • Stumm, C. K., H. J. Gijzen, and G. D. Vogels. 1982 Association of methanogenic bacteria with ovine rumen ciliates Br. J. Nutr. 47 95–99

    Article  PubMed  CAS  Google Scholar 

  • Svetlitshnyi, V., F. Rainey, and J. Wiegel. 1996 Thermosyntropha lipolytica gen. nov., sp. nov., a lipolytic, anaerobic, alkalitolerant, thermophilic bacterium utilizing short-and long-chain fatty acids in syntrophic coculture with a methanogenic archaeum Int. J. Syst. Bacteriol. 46 1131–1137

    Article  PubMed  CAS  Google Scholar 

  • Tarlera, S., L. Muxi, M. Soubes, and A. J. M. Stams. 1997 Caloramator proteoclasticus sp. nov., a new moderately thermophilic anaerobic proteolytic bacterium Int. J. Syst. Bacteriol. 47 651–656

    Article  PubMed  CAS  Google Scholar 

  • Tarlera, S., and A. J. M. Stams. 1999 Degradation of proteins and amino acids by Caloramator proteoclasticus in pure culture and in coculture with Methanobacterium thermoautotrophicum Z245 Appl. Microbiol. Biotechnol. 53 133–138

    Article  CAS  Google Scholar 

  • Thauer, R. K., K. Jungermann, and K. Decker. 1977 Energy conservation in chemotrophic anaerobic bacteria Bacteriol. Rev. 41 100–180

    PubMed  CAS  Google Scholar 

  • Thauer, R. K., and J. G. Morris. 1984 Metabolism of chemotrophic anaerobes: Old views and new aspects In: D. P. Kelly and N. G. Carr (Eds.) The Microbe 1984. Part II: Prokaryotes and Eukaryotes Cambridge University Press, Cambridge, UK 123–168

    Google Scholar 

  • Thiele, J. H., and J. G. Zeikus. 1988 Control of interspecies electron flow during anaerobic digestion: Significance of formate transfer versus hydrogen transfer during syntrophic methanogenesis in flocs Appl. Environ. Microbiol. 54 20–29

    PubMed  CAS  Google Scholar 

  • Tholozan, J. L., E. Samain, J. P. Grivet, R. Moletta, H. C. Dubourguier, and G. Albagnac. 1988 Reductive carboxylation of propionate to butyrate in methanogenic ecosystems Appl. Environ. Microbiol. 54 441–445

    PubMed  CAS  Google Scholar 

  • Tholozan, J. L., E. Samain, J. P. Grivet, and G. Albagnac. 1990 Propionate metabolism in a methanogenic enrichment culture: Direct reductive carboxylation and acetogenesis pathways FEMS Microbiol. Ecol. 73 291–298

    Article  CAS  Google Scholar 

  • Thomsen, T. R., K. Finster, and N. B. Ramsing. 2001 Biogeochemical and molecular signatures of anaerobic methane oxidation in a marine sediment Appl. Environ. Microbiol. 67 1646–1656

    Article  PubMed  CAS  Google Scholar 

  • Valentine, D. L., and W. S. Reeburgh. 2000a New perspectives on anaerobic methane oxidation Environ. Microbiol. 2 477–484

    Article  PubMed  CAS  Google Scholar 

  • Valentine, D. L., D. C. Blanton, and W. S. Reeburgh. 2000b Hydrogen production by methanogens under low-hydrogen conditions Arch. Microbiol. 174 415–421

    Article  PubMed  CAS  Google Scholar 

  • Valentine, D. L., W. S. Reeburgh, and D. C. Blanton. 2000c A culture apparatus for maintaining H2 at sub-nanomolar concentrations J. Microbiol. Meth. 39 243–251

    Article  CAS  Google Scholar 

  • van Bruggen, J. J. A., C. K. Stumm, and G. D. Vogels. 1983 Symbiosis of methanogenic bacteria and sapropelic protozoa Arch. Microbiol. 136 89–95

    Article  Google Scholar 

  • van Bruggen, J. J. A., C. K. Stumm, K. B. Zwart, and G. D. Vogels. 1985 Endosymbiontic methanogenic bacteria of the sapropelic amoeba Mastigella FEMS Microbiol. Ecol. 31 187–192

    Article  Google Scholar 

  • van Lier, J. B., K. C. Grolle, C. T. Frijters, A. J. M. Stams, and G. Lettinga. 1993 Effects of acetate, propionate, and butyrate on the thermophilic anaerobic degradation of propionate by methanogenic sludge and defined cultures Appl. Environ. Microbiol. 59 1003–1011

    PubMed  Google Scholar 

  • Wallrabenstein, C., and B. Schink. 1994a Evidence of reversed electron transport involved in syntrophic butyrate and benzoate oxidation by Syntrophomonas wolfei and Syntrophus buswellii Arch. Microbiol. 162 136–142

    Article  CAS  Google Scholar 

  • Wallrabenstein, C., E. Hauschild, and B. Schink. 1994b Pure culture and cytological properties of Syntrophobacter wolinii FEMS Microbiol. Lett. 123 249–254

    Article  CAS  Google Scholar 

  • Wallrabenstein, C., N. Gorny, N. Springer, W. Ludwig, and B. Schink. 1995a Pure culture of Syntrophus buswellii, definition of its phylogenetic status, and description of Syntrophus gentianae sp. nov Syst. Appl. Microbiol. 18 62–66

    Article  CAS  Google Scholar 

  • Wallrabenstein, C., E. Hauschild, and B. Schink. 1995b Syntrophobacter pfennigii sp. nov., a new syntrophically propionate-oxidizing anaerobe growing in pure culture with propionate and sulfate Arch. Microbiol. 164 346–352

    Article  CAS  Google Scholar 

  • Warikoo, V., M. J. McInerney, J. A. Robinson, and J. M. Suflita. 1996 Interspecies acetate transfer influences the extent of anaerobic benzoate degradation by syntrophic consortia Appl. Environ. Microbiol. 62 26–32

    PubMed  CAS  Google Scholar 

  • Widdel, F. 1988 Microbiology and ecology of sulfate-and sulfur-reducing bacteria In: A. J. B. Zehnder (Ed.) Biology of Anaerobic Microorganisms John Wiley and Sons, New York, NY 469–585

    Google Scholar 

  • Wildenauer, F. X., and J. Winter. 1986 Fermentation of isoleucine and arginine by pure and syntrophic cultures of Clostridium sporogenes FEMS Microbiol. Ecol. 38 373–379

    Article  CAS  Google Scholar 

  • Winter, J., F. Schindler, and F. X. Wildenauer. 1987 Fermentation of alanine and glycine by pure and syntrophic cultures of Clostridium sporogenes FEMS Microbiol. Ecol. 45 153–161

    Article  CAS  Google Scholar 

  • Wofford, N. Q., P. S. Beaty, and M. J. McInerney. 1986 Preparation of cell-free extracts and the enzymes involved in fatty acid metabolism in Syntrophomonas wolfei J. Bacteriol. 167 179–185

    PubMed  CAS  Google Scholar 

  • Wu, W.-M., M. K. Jain, R. F. Hickey, and J. G. Zeikus. 1991 Characterization of metabolic performance of methanogenic granules treating brewery wastewater: Role of sulfate-reducing bacteria Appl. Environ. Microbiol. 57 3438–3449

    PubMed  CAS  Google Scholar 

  • Wu, W.-M., R. F. Hickey, M. Jain, and J. G. Zeikus. 1993 Energetics and regulations of formate and hydrogen metabolism by Methanobacterium formicicum Arch. Microbiol. 159 57–65

    Article  CAS  Google Scholar 

  • Wu, W.-M., M. K. Jain, R. F. Hickey, and J. G. Zeikus. 1994 Anaerobic degradation of normal-and branched-chain fatty acids with four or more carbons to methane by a syntrophic methanogenic triculture Appl. Environ. Microbiol. 57 2220–2226

    Google Scholar 

  • Wu, W.-M., M. K. Jain, R. F. Hickey, and J. G. Zeikus. 1996 Perturbation of syntrophic isobutyrate and butyrate degradation with formate and hydrogen Biotechnol. Bioeng. 52 404–411

    Article  PubMed  CAS  Google Scholar 

  • Zehnder, A. J. B. 1978 Ecology of methane formation In: R. Mitchell (Ed.) Water Pollution Microbiology John Wiley and Sons, London, UK 2 349–376

    Google Scholar 

  • Zehnder, A. J. B., and T. D. Brock. 1979 Methane formation and methane oxidation by methanogenic bacteria J. Bacteriol. 137 420–432

    PubMed  CAS  Google Scholar 

  • Zehnder, A. J. B., K. Ingvorsen, and T. Marti. 1982 Microbiology of methane bacteria In: D. E. Hughes, D. A. Stafford, B. I. Wheatley, W. Baader, G. Lettinga, E. J. Nyns, W. Verstraete (Eds.) Anaerobic Digestion Elsevier Biomedical Press, Amsterdam, The Netherlands 45–68

    Google Scholar 

  • Zeikus, J. G., and M. Winfrey. 1976 Temperature limitation of methanogenesis in aquatic sediments Appl. Environ. Microbiol. 31 99–107

    PubMed  CAS  Google Scholar 

  • Zhao, H., D. Yang, C. R. Woese, and M. P. Bryant. 1989 Assigment of Clostridium bryantii to Syntrophospora bryantii gen. nov., nov. comb., based on 16S rRNA sequence analysis of its crotonate-grown pure culture Int. J. Syst. Bacteriol. 40 40–44

    Article  Google Scholar 

  • Zindel, U., W. Freudenberg, M. Rieth, J. R. Andreesen, J. Schnell, and F. Widdel. 1988 Eubacterium acidaminophilum sp. nov., a versatile amino acid-degrading anaerobe producing or utilizing H2 or formate: Description and enzymatic studies Arch. Microbiol. 150 254–266

    Article  CAS  Google Scholar 

  • Zinder, S. H., and M. Koch. 1984 Non-aceticlastic methanogenesis from acetate: Acetate oxidation by a thermophilic syntrophic coculture Arch. Microbiol. 138 263–272

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this entry

Cite this entry

Schink, B., Stams, A.J.M. (2006). Syntrophism among Prokaryotes. In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, KH., Stackebrandt, E. (eds) The Prokaryotes. Springer, New York, NY. https://doi.org/10.1007/0-387-30742-7_11

Download citation

Publish with us

Policies and ethics