Skip to main content
Log in

Growth parameters (K s, μmax, Y s) of Methanobacterium thermoautotrophicum

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Methanobacterium thermoautotrophicum was grown on a mineral salts medium in a fermenter gassed with H2 and CO2, which were the sole carbon and energy sources. Under the conditions used the bacterium grew exponentially. The dependence of the growth rate (μ) on the concentration of H2 and CO2 in the incoming gas and the dependence of the growth yield (\(Y_{CH_4 }\)) on the growth rate were determined at pH 7 (the pH optimum) and 65° C (the temperature optimum).

The curves relating growth rate to the H2 and CO2 concentration were hyperbolic. From reciprocal plots apparent K s values for H2 and CO2 and μmax were obtained: app. \(K_{{\text{H}}_{\text{2}} }\) = 20%; app. \(K_{{\text{CO}}_{\text{2}} }\) = 11%; μ = 0.69 h-1; t δ (max)=1 h.

\(Y_{CH_4 }\) was 1.6 g mol-1 and almost independent of the growth rate, when the rate of methane formation was not limited by the supply of either H2 or CO2. The yield increased to near 3 g mol-1 when H2 or CO2 were limiting. These findings indicate that methane formation and growth are less tightly coupled at high concentrations of H2 or CO2 in the medium than at low concentrations. The physiological significance of these findings is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balch, W. E., Fox, G. E., Magrum, L. J., Woese, C. R., Wolfe, R.: Methanogens: Reevaluation of a unique biological group. Microbiol. Rev. 43, 260–296 (1979)

    Google Scholar 

  • Balch, W. E., Wolfe, R. S.: New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere. Appl. Environ Microbiol. 32, 781–791 (1976)

    Google Scholar 

  • Coultate, T. P., Sundaram, T. K.: Energetics of Bacillus stearothermophilus growth: Molar growth yield and temperature effects on growth efficiency. J. Bacteriol. 121, 55–64 (1975)

    Google Scholar 

  • Diekert, G. B., Graf, E. G., Thauer, R. K.: Nickel requirement for carbon monoxide dehydrogenase formation in Clostridum pasteurianum. Arch. Microbiol. 122, 117–120 (1979)

    Google Scholar 

  • Diekert, G., Klee, B., Thauer, R. K.: Nickel, a component of factor F430 from Methanobacterium thermoautotrophicum. Arch. Microbiol. 124, 103–106 (1980)

    Google Scholar 

  • Downs, A. J., Jones, C. W.: Energy conservation in Bacillus megaterium. Arch. Microbiol. 105, 159–167 (1975)

    Google Scholar 

  • Fuchs, G., Moll, J., Scherer, P., Thauer, R.: Activity, acceptor specificity and function of hydrogenase in Methanobacterium thermoautotrophicum. In: Hydrogenases: Their catalytic activity, structure and function (H. G. Schlegel, ed.), pp. 83–92. Göttingen: Goltze 1979

    Google Scholar 

  • Fuchs, G., Stupperich, E.: Evidence for an incomplete reductive carboxylic acid cycle in Methanobacterium thermoautotrophicum. Arch. Microbiol. 118, 121–125 (1978)

    Google Scholar 

  • Fuchs, G., Stupperich, E., Thauer, R. K.: Acetate assimilation and the synthesis of alanine, aspartate, and glutamate in Methanobacterium thermoautotrophicum. Arch. Microbiol. 117, 61–66 (1978)

    Google Scholar 

  • Fuchs, G., Thauer, R. K., Ziegler, H., Stichler, W.: Carbon isotope fractionation by Methanobacterium thermoautotrophicum. Arch. Microbiol. 120, 135–139 (1979)

    Google Scholar 

  • Hippe, H., Caspari, D., Fiebig, K., Gottschalk, G.: Utilization of trimethylamine on other N-methyl compounds for growth and methane formation by Methanosarcina barkeri. Proc. Natl. Acad. Sci. USA 76, 494–498 (1979)

    Google Scholar 

  • Hungate, R. E.: Hydrogen as an intermediate in the rumen fermentation. Arch. Microbiol. 58, 158–164 (1967)

    Google Scholar 

  • Kuenen, J. G.: Growth yields and “maintenance energy requirement” in Thiobacillus species under energy limitation. Arch. Microbiol. 122, 183–188 (1979)

    Google Scholar 

  • Mah, R. A., Ward, D. M., Baresi, L., Glass, T. L.: Biogenesis of methane. Ann. Rev. Microbiol. 31, 309–341 (1977)

    Google Scholar 

  • Mainzer, S. E., Hempfling, W. P.: Effects of growth temperature on yield and maintenance during glucose limited continuous culture of Escherichia coli. J. Bacteriol. 126, 251–256 (1976)

    Google Scholar 

  • McInerney, M. J., Bryant, M. P., Pfennig, N.: Anaerobic bacterium that degrades fatty acids in syntrophic association with methanogens. Arch. Microbiol. 122, 129–135 (1979)

    Google Scholar 

  • Pirt, S. J.: Principles of microbe and cell cultivation. Oxford: Blackwell Scientific Publications 1975

    Google Scholar 

  • Pirt, S. J.: The maintenance energy of bacteria in growing cultures. Proc. Roy. Soc. London B 163, 224–231 (1965)

    Google Scholar 

  • Roberton, A. M., Wolfe, R. S.: Adenosine triphosphate pools in Methanobacterium. J. Bacteriol. 102, 43–51 (1970)

    Google Scholar 

  • Schönheit, P., Moll, J., Thauer, R. K.: Nickel, cobalt and molypdenum requirement for growth of Methanobacterium thermoautotrophicum. Arch. Microbiol. 123, 105–107 (1979)

    Google Scholar 

  • Stadtman, T. C.: Methane fermentation. Annu. Rev. Microbiol. 21, 121–142 (1967)

    Google Scholar 

  • Stephen, H., Stephen, T.: Solubilities of inorganic and organic compounds. Vol. 1. Oxford, London, New York, Paris: Pergamon Press 1963

    Google Scholar 

  • Stouthamer, A. H., Bettenhaussen, C.: Utilization of energy for growth and maintenance in continuous and batch cultures of microorganisms. Biochim. Biophys. Acta 301, 53–70 (1973)

    Google Scholar 

  • Stouthamer, A. H., Bettenhaussen, C. W.: Determination of the efficiency of oxidative phosphorylation in continuous cultures of Aerobacter aerogenes. Arch. Microbiol. 102, 187–192 (1975)

    Google Scholar 

  • Taylor, G. T., Pirt, S. J.: Nutrition and factors limiting the growth of methanogenic bacterium (Methanobacterium thermoautotrophicum). Arch. Microbiol. 113, 17–22 (1977)

    Google Scholar 

  • Tempest, D. W.: The biochemical significance of microbial growth yields: a reassessment. Trends Biochem. Sciences 3, 180–184 (1978)

    Google Scholar 

  • Tewes, F. J., Thauer, R. K.: Regulation of ATP-synthesis in Glucose fermenting bacteria involved in interspecies hydrogen transfer. In: Syntrophism and other microbial interactions. Stuttgart: Fischer 1979

    Google Scholar 

  • Thauer, R. K., Fuchs, G.: Methanogene Bakterien. Naturwissenschaften 66, 89–94 (1979)

    Google Scholar 

  • Thauer, R. K., Jungermann, K., Decker, K.: Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41, 100–180 (1977)

    Google Scholar 

  • Uden, N. van: Kinetics of nutrient-limited growth. Ann. Rev. Microbiol. 23, 473–486 (1969)

    Google Scholar 

  • Weimer, P. J., Zeikus, J. G.: One carbon metabolism in methanogenic bacteria: Cellular characterization and growth of Methanosarcina barkeri. Arch. Microbiol. 119, 175–182 (1978)

    Google Scholar 

  • Wolfe, R. S.: Microbial biochemistry of methane: a study in contrasts. Part I: Methanogenesis. In: Microbial Biochemistry, Vol. 21 (J. R. Quayle, ed.), pp. 268–300. Baltimore: University Park Press 1979

    Google Scholar 

  • Wolin, E. A., Wolfe, R. S., Wolin, M. J.: Viologen dye inhibition of methane fermentation by Methanobacilus omelianskii. J. Bacteriol. 87, 993–998 (1964)

    Google Scholar 

  • Zehnder, A. J. B.: Ecology of methane formation: In: Water pollution microbiology, Vol. 2 (R. Mitchell, ed.), pp. 349–376. New York: John Wiley and Sons, Inc. 1978

    Google Scholar 

  • Zehnder, A., Wuhrmann, K.: Physiology of a Methanobacterium strain AZ. Arch. Microbiol. 111, 199–205 (1977)

    Google Scholar 

  • Zeikus, J. G.: The biology of methanogenic bacteria. Bact. Rev. 41, 514–541 (1977)

    Google Scholar 

  • Zeikus, J. G., Wolfe, R. S.: Methanobacterium thermoautotrophicum sp. n., an anerobic, autotrophic, extreme thermophile. J. Bacteriol. 109, 707–712 (1972)

    Google Scholar 

  • Zeikus, J. G., Fuchs, G., Kenealy, W., Thauer, R. K.: Oxidoreductases involved in cell carbon synthesis of Methanobacterium thermoautotrophicum. J. Bacteriol. 132, 604–613 (1977)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

K s: H2 and CO2 concentration supporting 0.5 μmax; μmax: specific growth rate at “infinite” substrate concentration; Y s:growth yield (g dry weight/mol substrate); t δ: doubling time

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schönheit, P., Moll, J. & Thauer, R.K. Growth parameters (K s, μmax, Y s) of Methanobacterium thermoautotrophicum . Arch. Microbiol. 127, 59–65 (1980). https://doi.org/10.1007/BF00414356

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00414356

Key words

Navigation