Skip to main content
Log in

Symbiosis of methanogenic bacteria and sapropelic protozoa

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Fluorescent bacteria were demonstrated to be abundantly spread as single cells throughout the cytoplasm of the giant amoeba Pelomyxa palustris, the sapropelic ciliate Metopus striatus and six other anaerobic protozoa examined. The endosymbionts of P. palustris and M. striatus were identified as methanogenic bacteria on the basis of the presence of the deazaflavin coenzyme F420 and the pterin compound F342. Moreover individuals of P. palustris produced methane over a long period of incubation. The number of methanogenic bacteria was above 1010 cells/ml protozoal cytoplasm. Two types of methanogenic bacteria together with unidentified thick bacteria were found in P. palustris.

The physiological background of this endosymbiosis and its functioning in degradation processes in the anoxic environment are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andresen N, Chapman-Andresen C, Nilsson JR (1968) The fine structure of Pelomyxa palustris. Compt Rend Trav Lab Carlsberg 36:285–317

    Google Scholar 

  • Balch WE, Wolfe RS (1979) Transport of coenzyme M (2-mercaptoethanesulfonic acid) in Methanobacterium ruminantium. J Bacteriol 137:264–273

    PubMed  Google Scholar 

  • Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: Reevaluation of a unique biological group. Microbiol Rev 43:260–296

    PubMed  Google Scholar 

  • Bick H (1972) Ciliated Protozoa. World Health Organization, Geneva Cappenberg ThE, Verdouw H (1982) Sedimentation and breakdown kinetics of organic matter in the anaerobic zone of Lake Vechten. Hydrobiologia 95:165–179

    Google Scholar 

  • Chapman-Andresen C (1971) Biology of the large amoebae. In: Clifton CE, Raffel S, Starr MP (eds) Annual review of microbiology, vol 25. Annual Reviews Inc, Palo Alto, California, pp 27–48

    Google Scholar 

  • Daniels EW, Breyer EP, Kudo RR (1966) Pelomyxa palustris Greeff. II. Its ultrastructure Z Zellforsch 73:367–383

    PubMed  Google Scholar 

  • De Puytorac P, Rodrigues de Santa Rosa (1976) Chondriome et bactéries chez certains ciliés de milieux mesosaprobes à polysaprobes. Compt Rend Soc Biol 170:100–103

    Google Scholar 

  • Doddema HJ, Vlaesen CA, Kell DB, Van der Drift C, Vogels GD (1980) An adenine nucleotide translocase in the procaryote Methanobacterium thermoautotrophicum. Biochem Biophys Res Commun 95:1288–1293

    PubMed  Google Scholar 

  • Doddema HJ, Vogels GD (1978) Improved identification of methanogenic bacteria by fluoresence microscopy. Appl Environ Microbiol 36:752–754

    PubMed  Google Scholar 

  • Eirich LD, Vogels GD, Wolfe RS (1979) Distribution of coenzyme F420 and properties of tis hydrolytic fragments. J Bacteriol 140:20–27

    PubMed  Google Scholar 

  • Eirich LD, Vogels GD, Wolfe RS (1982) An unusual flavin, coenzyme F420. In Massey V, Williams CH (eds) Flavins and flavoproteins. Elsevier North Holland, Inc, Amsterdam, Netherlands, pp 435–441

    Google Scholar 

  • Fenchel T, Perry T, Thane A (1977) Anaerobiosis and symbiosis with bacteria in free-living ciliates. J Protozool 24:154–163

    PubMed  Google Scholar 

  • Fortner H (1934) Untersuchungen an Pelomyxa palustris. Greeff. Studien zur Biologie und Physiologie des Tieres. I. Arch Protistenk 83:381–464

    Google Scholar 

  • Gould-Veley LJ (1905) A further contribution to the study of Pelomyxa palustris (Greeff) J Linn Soc 29:374–395

    Google Scholar 

  • Greeff R (1874) Pelomyxa palustris (Pelobius), ein amöbenartiger Organismus des süßen Wassers. Arch Mikroskop Anat 10:53–73

    Google Scholar 

  • Gunsalus RP, Wolfe RS (1978) Chromophoric factors F342 and F430 of Methanobacterium thermoautotrophicum. FEMS Microbiol Lett 3:191–193

    Article  Google Scholar 

  • Huser BA, Wuhrmann K, Zehnder AJB (1982) Methanothrix soehngenii gen. nov. sp. nov., a new acetotrophic non-hydrogen-oxidizing methane bacterium. Arch Microbiol 132:1–9

    Google Scholar 

  • Hutten TJ, De Jong MH, Peeters BPH, Van der Drift C, Vogels GD (1981) Coenzyme M (2-Mercaptoethanesulfonic acid)-derivatives and their effects on methane formation from carbon dioxide and methanol by cell-free extracts of Methanosarcina barkeri. J Bacteriol 145:27–34

    PubMed  Google Scholar 

  • Jankowski AW (1964) Morphology and evolution of ciliophora III. Arch Protistenk 107:185–294

    Google Scholar 

  • Kahl A (1930–1935) Wimpertiere oder Ciliata (Infusoria). In: Dahl: Die Tierwelt Deutschlands. G. Fischer, Jena, part 18, 21, 25 and 30

    Google Scholar 

  • Kandler O, Koenig H (1978) Chemical composition of the peptidoglycan-free cell walls of methanogenic baceria. Arch Microbiol 118:141–152

    PubMed  Google Scholar 

  • Kristjansson JK, Schönheit P, Thauer RK (1982) Different Ks values for hydrogen of methanogenic bacteria and sulfate reducing bacteria: an explanation for the apparent inhibition of methanogenesis by sulfate. Arch Microbiol 131:278–282

    Google Scholar 

  • Leiner M (1967) Über Pelomyxa palustris Greeff. Z Mikrosk Anat Forsch 77:529–552

    PubMed  Google Scholar 

  • Leiner M, Wohlfeil W (1953) Pelomyxa palustris Greeff und ihre symbiontischen Bakterien. Arch Protistenk 98:227–286

    Google Scholar 

  • Liebmann H (1936) Auftreten, Verhalten und Bedeutung der Protozoen bei der Selbstreinigung stehenden Abwassers. Z Hyg Infektionskr 118:29–63

    Google Scholar 

  • Liebmann H (1937) Bakteriensymbiose bei Faulschlammciliaten. Biol Zbl 57:442–445

    Google Scholar 

  • Mah RA (1980) Isolation and characterization of Methanococcus mazei. Curr Microbiol 3:321–326

    Google Scholar 

  • Mah RA (1981) The methanogenic bacteria, their ecology and physiology. In: Hollaender A, Rabson R, Rogers P, San Pietro A, Valentine R, Wolfe R (eds) Trends in the biology of fermentations for fuels and chemicals. Plenum Press, New York London, pp 357–374

    Google Scholar 

  • Page FC (1976) An illustrated key to freshwater and soil amoebae. Freshwater Biol Assoc, Scientific Publ no. 34, Ambleside, UK

    Google Scholar 

  • Pénard E (1902) Faune rhizopodique du bassin du Léman. Geneva

  • Robinson JA, Tiedje JM (1982) Kinetics of hydrogen consumption by rumen fluid, anaerobic digestor sludge, and sediment. Appl Environ Microbiol 44:1374–1384

    PubMed  Google Scholar 

  • Stumm CK, Gijzen HJ, Vogels GD (1982) Association of methanogenic bacteria with ovine rumen ciliates. Br J Nutr 47:95–99

    PubMed  Google Scholar 

  • Touzel JP, Albagnac G (1983) Isolation and characterization of Methanococcus mazei strain MC3. FEMS Microbiol Lett 16:241–245

    Article  Google Scholar 

  • Van Beelen P, Geerts WJ, Pol A, Vogels GD (1983) Quantification of coenzymes and related compounds from methanogenic bacteria by high-performance liquid chromatography. Anal Biochem 131:285–290

    PubMed  Google Scholar 

  • Vogels GD (1979) The global cycle of methane. Antonie van Leeuwenhoek J Microbiol 45:347–352

    PubMed  Google Scholar 

  • Vogels GD, Hoppe WF, Stumm CK (1980) Association of methanogenic bacteria with rumen ciliates. Appl Environ Microbiol 40:608–612

    PubMed  Google Scholar 

  • Whatley JM (1976) Bacteria and nuclei in Pelomyxa palustris: comments on the theory of serial endosymbiosis New Phytol 76:111–120

    Google Scholar 

  • Woese CR (1981) Archaebacteria. Sci Am 244:94–106

    Google Scholar 

  • Wolin MJ (1979) The rumen fermentation: a model for microbial interactions in anaerobic systems. In: Alexander M (ed) Advances in microbial ecology, vol 3. Plenum Publishing Corporation New York London, pp 49–77

    Google Scholar 

  • Zaiss U (1981) Seasonal studies of methanogenesis and desulfurication in sediments of the river Saar. Zbl Bakt Hyg, I Abt Orig C 2:76–89

    Google Scholar 

  • Zeikus JG (1977) The biology of methanogenic bacteria. Bacteriol Rev 41:514–541

    PubMed  Google Scholar 

  • Zeikus JG, Winfrey MR (1976) Temperature limitation of methanogenesis in aquatic sediments. Appl Environ Microbiol 31:99–107

    PubMed  Google Scholar 

  • Zinder SH, Mah RA (1979) Isolation and characterization of a thermophilic strain of Methanosarcina unable to use hydrogen-carbon dioxide for methanogenesis. Appl Environ Microbiol 38:996–1008

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Bruggen, J.J.A., Stumm, C.K. & Vogels, G.D. Symbiosis of methanogenic bacteria and sapropelic protozoa. Arch. Microbiol. 136, 89–95 (1983). https://doi.org/10.1007/BF00404779

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00404779

Key words

Navigation