Skip to main content
Log in

Genetic diversity of Aegilops tauschii accessions and its relationship with tetraploid and hexaploid wheat using retrotransposon-based molecular markers

  • Original Paper
  • Published:
Cereal Research Communications Aims and scope Submit manuscript

Abstract

Aegilops is known as the ancestor species of wheat and has a major role in the evolution of wheat. Considering the importance of this species and the fact that Iran is the center of the distribution, fifteen IRAP and REMAP markers were used to evaluate the genetic diversity of Ae. tauschii accessions from different regions of Iran and its relationship with Triticum durum and Triticum aestivum. A high level of polymorphism (99%) was observed for both retrotransposon markers. Polymorphism information content, the effective number of alleles (Ne), Nei’s genetic diversity (H), and Shannon’s information index (I) for IRAP markers were more than REMAP markers. The most genetic diversity was detected in Ae. tauschii accessions. The cluster analysis separated the accessions into three distinct groups. Ae. tauschii accessions from Golestan province grouped in the same cluster with T. aestivum genotypes, indicating that these accessions are probably more like to the progenitor of the bread wheat D genome. Our results revealed that retrotransposon-based molecular markers could be used as the appropriate and reliable marker system to evaluate genetic diversity and relationship in Triticum and Aegilops accessions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aalami A, Mandoulakani BA, Azizi H, Masoumi F, Safiyar S, Karami N (2014) RAP: a new marker for genetic characterization and evaluation of relationships among different Aegilops species. Crop Breed J 4:15–21

    Google Scholar 

  • Aghaali Z, Ghadmizadeh M, Abdollahi-Mandoulakani B, Bernousi I (2014) IRAP and REMAP-based assessment of genetic diversity in chickpea collection from Iran. Genetika 46:731–744

    Article  Google Scholar 

  • Assefa S, Fehrmann H (2004) Evaluation of Aegilops tauschii Coss. for resistance to wheat stem rust and inheritance of resistance genes in hexaploid wheat. Genet Res Crop Evol 51:663–669

    Article  CAS  Google Scholar 

  • Badr A, El-Sherif N, Aly S, Ibrahim SD, Ibrahim M (2020) Genetic diversity among selected Medicago sativa cultivars using inter-retrotransposon-amplified polymorphism, chloroplast DNA barcodes and morpho-agronomic trait analyses. Plants 9:995

    Article  CAS  PubMed Central  Google Scholar 

  • Bennetzen JL (2000) Transposable element contributions to plant gene and genome evolution. Plant Mol Biol 42:251–269

    Article  CAS  PubMed  Google Scholar 

  • Biswas MK, Baig M, Cheng Y-J, Deng X-X (2010) Retro-transposon based genetic similarity within the genus Citrus and its relatives. Genet Res Crop Evol 57:963–972

    Article  CAS  Google Scholar 

  • Carvalho A, Guedes-Pinto H, Martins-Lopes P, Lima-Brito J (2010) Genetic variability of old Portuguese bread wheat cultivars assayed by IRAP and REMAP markers. Ann Appl Biol 156:337–345

    Article  CAS  Google Scholar 

  • Council NR (1993) Managing global genetic resources: agricultural crop issues and policies. The National Academies Press

  • Cox T, Raupp W, Gill B (1994) Leaf rust-resistance genes Lr41, Lr42, and Lr43 transferred from Triticum tauschii to common wheat. Crop Sci 34:339–343

    Article  Google Scholar 

  • Delgado A, Carvalho A, Martín AC, Martín A, Lima-Brito J (2017) Genomic reshuffling in advanced lines of hexaploid tritordeum. Genet Res Crop Evol 64:1331–1353

    Article  CAS  Google Scholar 

  • Dudnikov AJ, Kawahara T (2006) Aegilops tauschii: genetic variation in Iran. Genet Res Crop Evol 53:579–586

    Article  Google Scholar 

  • Dvorak J, Luo M-C, Yang Z-L, Zhang H-B (1998) The structure of the Aegilops tauschii gene pool and the evolution of hexaploid wheat. Theor Appl Genet 97:657–670

    Article  CAS  Google Scholar 

  • Farkhari M, Naghavi M, Pyghambari S (2007) Genetic variation of jointed goatgrass (Aegilops cylindrica Host.) from Iran using RAPD-PCR and SDS-PAGE of seed proteins. Pak J Biol Sci PJBS 10:2868–2873

    Article  CAS  PubMed  Google Scholar 

  • Fu Y (2015) Understanding crop genetic diversity under modern plant breeding. Theor Appl Genet 128:2131–2142

    Article  PubMed  PubMed Central  Google Scholar 

  • Haji Karan M, Naghavi M, Taleii A, Aghaii M (2011) Evaluation of genetic diversity of Aegilops tauschii from northern area of Iran using SSR markers. Iran J Biol 24:390–399 ((in Persian))

    Google Scholar 

  • Hajjar R, Hodgkin T (2007) The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica 156:1–13

    Article  Google Scholar 

  • Hilger T, Lewandowski I, Winkler B, Ramsperger B, Kageyama P, Colombo C (2015) Seeds of change—plant genetic resources and people’s livelihoods. In: Agroecology. IntechOpen

  • Holasou HA, Mandoulakani BA, Jafari M, Bernousi I (2016) Use of IRAP and REMAP markers to interpret the population structure of Linum usitatissimum from Iran. Biologia 71:305–315

    Article  CAS  Google Scholar 

  • Holasou HA, Rahmati F, Rahmani F, Imani M, Talebzadeh Z (2019) Elucidate genetic diversity and population structure of bread wheat (Triticum aestivum L.) cultivars using IRAP and REMAP markers. J Crop Sci Biotech 22:139–151

    Article  Google Scholar 

  • Jam Baranduzi A, Sofalian O, Asghari Zakaria R, Asghari A, Shokrpour M (2013) Assessment of genetic diversity in Aegilops species in North-West of Iran using ISSR marker. Yuzuncu Yil University J Agric Sci 23:66–75

    Google Scholar 

  • Jia J et al (2013) Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 496:91–95

    Article  CAS  PubMed  Google Scholar 

  • Kalendar R, Schulman AH (2006) IRAP and REMAP for retrotransposon-based genotyping and fingerprinting. Nature Prot 1:2478

    Article  CAS  Google Scholar 

  • Kalendar R, Grob T, Regina M, Suoniemi A, Schulman A (1999) IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theor Appl Genet 98:704–711

    Article  CAS  Google Scholar 

  • Kalendar R, Flavell A, Ellis T, Sjakste T, Moisy C, Schulman AH (2011) Analysis of plant diversity with retrotransposon-based molecular markers. Heredity 106:520

    Article  CAS  PubMed  Google Scholar 

  • Karaca M, Izbirak A (2008) Comparative analysis of genetic diversity in Turkish durum wheat cultivars using RAPD and ISSR markers. J Food Agric Environ 6:219–225

    CAS  Google Scholar 

  • Karagöz A, Pilanali N, Polat T (2007) Agro-morphological characterization of some wild wheat (Aegilops L. and Triticum L.) species. Turk J Agric for 30:387–398

    Google Scholar 

  • Kerber E (1987) Resistance to leaf rust in hexaploid wheat: Lr32 a third gene derived from Triticum tauschii. Crop Sci 27:204–206

    Article  Google Scholar 

  • Kordrostami M, Rahimi M (2015) Molecular markers in plants: concepts and applications. Genet 3rd Millen 13:4024–4031

    Google Scholar 

  • Kordrostami M, Rabiei B, Kumleh HH (2016) Association analysis, genetic diversity and haplotyping of rice plants under salt stress using SSR markers linked to SalTol and morpho-physiological characteristics. Plant Sys Evol 302:871–890

    Article  CAS  Google Scholar 

  • Langridge P (2017) Achieving sustainable cultivation of wheat. In: Breeding, quality traits, pests and diseases, vol 1. Burleigh Dodds Science Publishing Limited

  • Lelley T, Stachel M, Grausgruber H, Vollmann J (2000) Analysis of relationships between Aegilops tauschii and the D genome of wheat utilizing microsatellites. Genome 43:661–668

    Article  CAS  PubMed  Google Scholar 

  • Lou Q, Chen J (2007) Ty1-copia retrotransposon-based SSAP marker development and its potential in the genetic study of cucurbits. Genome 50:802–810

    Article  CAS  PubMed  Google Scholar 

  • Mafakheri M, Kordrostami M, Rahimi M, Matthews PD (2020) Evaluating genetic diversity and structure of a wild hop (Humulus lupulus L.) germplasm using morphological and molecular characteristics. Euphytica 216:1–19

    Article  CAS  Google Scholar 

  • Mahjoub A, El MG, Mguis K, El MG, Brahim N (2009) Evaluation of genetic diversity in Aegilops geniculata Roth accessions using morphological and RAPD markers. Pak J Biol Sci PJBS 12:994–1003

    Article  CAS  PubMed  Google Scholar 

  • Mandoulakani BA, Piri Y, Darvishzadeh R, Bernoosi I, Jafari M (2012) Retroelement insertional polymorphism and genetic diversity in Medicago sativa populations revealed by IRAP and REMAP markers. Plant Mol Biol Rep 30:286–296

    Article  CAS  Google Scholar 

  • Mandoulakani BA, Yaniv E, Kalendar R, Raats D, Bariana HS, Bihamta MR, Schulman AH (2015) Development of IRAP-and REMAP-derived SCAR markers for marker-assisted selection of the stripe rust resistance gene Yr15 derived from wild emmer wheat. Theor Appl Genet 128:211–219

    Article  CAS  Google Scholar 

  • Mandoulakani BA, Nasri S, Dashchi S, Arzhang S, Bernousi I, Holasou HA (2017) Preliminary evidence for associations between molecular markers and quantitative traits in a set of bread wheat (Triticum aestivum L.) cultivars and breeding lines. C R Biol 340:307–313

    Article  Google Scholar 

  • Maroof MS, Biyashev R, Yang G, Zhang Q, Allard R (1994) Extraordinarily polymorphic microsatellite DNA in barley: species diversity, chromosomal locations, and population dynamics. Proc Natl Acad Sci 91:5466–5470

    Article  CAS  Google Scholar 

  • Marzang N, Abdollahi Mandoulakani B, Shaaf S, Ghadimzadeh M, Bernousi I, Abbasi Holasou H, Sadeghzadeh B (2020) IRAP and REMAP-based genetic diversity among Iranian, Turkish, and International Durum wheat (Triticum turgidum L.) cultivars. J Agric Sci Technol 22:271–285

    Google Scholar 

  • Matsuoka Y, Aghaei MJ, Abbasi MR, Totiaei A, Mozafari J, Ohta S (2008) Durum wheat cultivation associated with Aegilops tauschii in northern Iran. Genet Res Crop Evol 55:861–868

    Article  Google Scholar 

  • Miranda LM, Murphy JP, Marshall D, Cowger C, Leath S (2007) Chromosomal location of Pm35, a novel Aegilops tauschii derived powdery mildew resistance gene introgressed into common wheat (Triticum aestivum L.). Theor Appl Genet 114:1451–1456

    Article  CAS  PubMed  Google Scholar 

  • Mohammadi SA, Prasanna B, Sudan C, Singh NN (2002) A microsatellite marker-based study of chromosomal regions and gene effects on yield and yield components in maize. Cell Mol Biol Lett 7:599–606

    CAS  PubMed  Google Scholar 

  • Mohammadi M, Mirlohi A, Majidi MM, Kartalaei ES (2021) Emmer wheat as a source for trait improvement in durum wheat: a study of general and specific combining ability. Euphytica 217:1–20

    Article  CAS  Google Scholar 

  • Naghavi M, Aghaei M, Taleei A, Omidi M, Mozafari J, Hassani M (2009) Genetic diversity of the D-genome in T. aestivum and Aegilops species using SSR markers. Genet Res Crop Evol 56:499–506

    Article  CAS  Google Scholar 

  • Naghavi MR, Hajikram M, Taleei AR, Aghaei MJ (2010) Microsatellite analysis of genetic diversity and population genetic structure of Aegilops tauschii Coss. in Northern Iran. Genet Res Crop Evol 57:423–430

    Article  CAS  Google Scholar 

  • Najaphy A, Parchin RA, Farshadfar E (2011) Evaluation of genetic diversity in wheat cultivars and breeding lines using inter simple sequence repeat markers. Biotech Biotechnol Equip 25:2634–2638

    Article  CAS  Google Scholar 

  • Otwe EP, Agyirifo DS, Galyuon IK, Heslop-Harrison JS (2017) Molecular diversity in some Ghanaian cowpea [Vigna unguiculata L. (Walp)] accessions. Trop Plant Biol 10:57–67

    Article  CAS  Google Scholar 

  • Phuke RM et al (2020) Association mapping of seedling resistance to tan spot (Pyrenophora tritici-repentis Race 1) in CIMMYT and South Asian wheat germplasm. Front Plant Sci 11:1309

    Article  PubMed  PubMed Central  Google Scholar 

  • Queen R, Gribbon B, James C, Jack P, Flavell A (2004) Retrotransposon-based molecular markers for linkage and genetic diversity analysis in wheat. Mol Genet Genom 271:91–97

    Article  CAS  Google Scholar 

  • Rabiei B, Rastjoo M, Aliakbar A, Kordrostami M (2019) Phylogenetic relationships and genetic diversity of landrace populations of thyme (Thymus spp.) of Iran using AFLP markers and GC–MS. Braz J Bot 42:613–621

    Article  Google Scholar 

  • Ranjbar M, Naghavi MR, Zali AA, Aghaii MJ, Pirseiedi M, Mardi M (2008) Evaluation of genetic diversity of Aegilops crassa of Iran using SSR markers. J Genet 3:29–38 ((in Persian))

    Google Scholar 

  • Rohlf FJ (1988) NTSYS-pc: numerical taxonomy and multivariate analysis system. Exeter Publishing Ltd., New York

    Google Scholar 

  • Saeidi H, Rahiminejad MR, Heslop-Harrison J (2008) Retroelement insertional polymorphisms, diversity and phylogeography within diploid, D-genome Aegilops tauschii (Triticeae, Poaceae) sub-taxa in Iran. Ann Bot 101:855–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawalha K, Sa L, Hasasneh H, Mezeid B (2008) Genetic diversity studies on wheat landraces in Palestine using RAPD markers in comparison to phenotypic classification. J Appl Biol Sci 2:29–34

    CAS  Google Scholar 

  • Schneider A, Molnár I, Molnár-Láng M (2008) Utilisation of Aegilops (goatgrass) species to widen the genetic diversity of cultivated wheat. Euphytica 163:1–19

    Article  CAS  Google Scholar 

  • Schulman AH (2007) Molecular markers to assess genetic diversity. Euphytica 158:313–321

    Article  CAS  Google Scholar 

  • Sorkheh K, Dehkordi MK, Ercisli S, Hegedus A, Halász J (2017) Comparison of traditional and new generation DNA markers declares high genetic diversity and differentiated population structure of wild almond species. Sci Rep 7:5966

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tam SM, Mhiri C, Vogelaar A, Kerkveld M, Pearce SR, Grandbastien M-A (2005) Comparative analyses of genetic diversities within tomato and pepper collections detected by retrotransposon-based SSAP, AFLP and SSR. Theor Appl Genet 110:819–831

    Article  CAS  PubMed  Google Scholar 

  • Thomas KG, Bebeli PJ (2010) Genetic diversity of Greek Aegilops species using different types of nuclear genome markers. Mol Phylogenet Evol 56:951–961

    Article  CAS  PubMed  Google Scholar 

  • Vicient CM, Kalendar R, Schulman AH (2005) Variability, recombination, and mosaic evolution of the barley BARE-1 retrotransposon. J Mol Evol 61:275–291

    Article  CAS  PubMed  Google Scholar 

  • Yeh F, Yang R (1999) POPGENE version 1.31, Microsoft window-based freeware for population genetic analysis. University of Alberta and Tim Boyle, Centre for International Forestry Research

Download references

Acknowledgements

The authors are grateful to the Department of Genetics Research and National Plant Gene Bank of Iran, Seed and plant improvement institute, Karaj, Iran for providing the genotypes seeds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Aalami.

Additional information

Communicated by M. Molnár-Láng.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safiyar, S., Aalami, A., Abdollahi Mandoulakani, B. et al. Genetic diversity of Aegilops tauschii accessions and its relationship with tetraploid and hexaploid wheat using retrotransposon-based molecular markers. CEREAL RESEARCH COMMUNICATIONS 50, 219–226 (2022). https://doi.org/10.1007/s42976-021-00167-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42976-021-00167-9

Keywords

Navigation