Skip to main content

Advertisement

Log in

Retroelement Insertional Polymorphism and Genetic Diversity in Medicago sativa Populations Revealed by IRAP and REMAP Markers

  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Retrotransposons (RTNs) are common components of plant genomes, showing activity at transcription and integration levels. Their abundance, dispersion, ubiquity, and ability to transpose make them useful as molecular markers. In this study, we used multilocus PCR-based techniques, inter-retrotransposon amplified polymorphism (IRAP), and retrotransposon-microsatellite amplified polymorphism (REMAP) to study the integration events of native (Tms1Ret1) and non-native RTN (LORE1, LORE2, Tps12a, and Tps19) families in M. sativa genome. IRAP and REMAP markers derived from these RTNs were used to assess genetic diversity among and within 80 M. sativa genotypes belonging to eight populations. Results indicated the presence and transpositional activation of RTNs Tms1Ret1, LORE1, LORE2, and even Tps12a in M. sativa genome. REMAP analysis showed the insertion of studied RTN families near the microsatellites in M. sativa genome except for RTN Tps19. A total of 101 and 119 loci were amplified using 10 and 14 IRAP and REMAP primers, respectively. The number of polymorphic loci was 66 and 62 for IRAP and REMAP, respectively. Mantel test between IRAP and REMAP cophenetic matrices evidenced no significant correlation (r = 0.15). Although populations could be relatively differentiated based on IRAP + REMAP data, overall genetic differentiation among populations was low (PhiPT = 0.082, P = 0.0010). Analysis of molecular variance based on IRAP + REMAP analysis revealed the higher level of genetic variation within populations (92%) compared to among populations (8%). IRAP + REMAP-based cluster analysis of 80 M. sativa genotypes using complete linkage algorithm identified five heterotic groups that could be applied as crossing parents in M. sativa alfalfa breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdollahi Mandoulakani B, Bihamta MR, Zali AA, Yazdi-Samadi B, Naghavi MR, Schulman AH (2008) Fine mapping of stripe rust resistance gene Yr15 in durum wheat. Seed and Plant J (In Persian) 24:371–387

    Google Scholar 

  • Abdollahi Mandoulakani B, Bihamta MR, Schulman AH, Zali AB, Naghavi M (2009) Evaluation of retrotranposons as molecular markers in wheat. Modern Genet J (In Persian) 4:17–25

    Google Scholar 

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K, Albright LM, Coen DM, Varki A (1995) Current protocols in molecular biology. Wiley, New York

    Google Scholar 

  • Betran FJ, Ribaut JM, Beck D, Gonzalez de Leon D (2003) Genetic diversity, specific combining ability and heterosis in tropical maize under stress and non stress environments. Crop Sci 43:797–806

    Article  Google Scholar 

  • Biswas MK, Baig MNR, Cheng YJ, Deng XX (2010) Retro-transposon based genetic similarity within the genus citrus and its relatives. Genet Resour Crop Evol 7:963–972

    Article  Google Scholar 

  • Bourguiba H, Krichen L, Audergon JM, Khadari B, Tarifi-Farah N (2010) Impact of mapped SSR markers on the genetic diversity of apricot (Prunus armeniaca L.) in Tunisia. Plant Mol Biol Rep 28:578–587

    Article  Google Scholar 

  • Branco CJS, Vieira EA, Malone G, Kopp MM, Malone E, Bernardes A, Mistura CC, Carvalho FIF, Oliveira CA (2007) IRAP and REMAP assessments of genetic similarity in rice. J Appl Genet 2:107–113

    Article  Google Scholar 

  • Brummer EC (1999) Capturing heterosis in forage crop cultivar development. Crop Sci 39:943–954

    Article  Google Scholar 

  • Carvalho A, Guedes-Pinto H, Martins-Lopes P, Lima-Brito J (2010) Genetic variability of old Portuguese bread wheat cultivars assayed by IRAP and REMAP markers. Ann Appl Biol 3:337–345

    Article  Google Scholar 

  • Diers BW, Vetty PBE, Osborn TC (1996) Relationship between heterosis and genetic distance based on RFLP markers in oilseed rape (Brassica napus L.). Crop Sci 36:79–83

    Article  Google Scholar 

  • Diwan N, Bhagwat AA, Bauchan GR, Cregan PB (1997) Simple sequence repeat DNA markers in alfalfa and perennial and annual Medicago species. Genome 40:887–895

    Article  PubMed  CAS  Google Scholar 

  • Falahati-Anbaran M, Habashi AA, Esfahani M, Mohammadi SA, Gharayazi B (2007) Population genetic structure based on SSR markers in alfalfa (Medicago sativa L.) from various regions contiguous to the centers of origin of the species. J Genet 1:59–63

    Article  Google Scholar 

  • Fiuk A, Bednarek PT, Rybczynski JJ (2010) Flow cytometry, HPLC-RP, and metAFLP analysis to assess genetic variability in somatic embryo-derived plantlets of Gentiana pannonica scop. Plant Mol Biol Rep 28:413–420

    Article  CAS  Google Scholar 

  • Flavell AJ, Knox MR, Pearce SR, Ellis ΤΗΝ (1998) Retrotransposon-based insertion polymorphisms (RBIP) for high throughput marker analysis. Plant J 16:643–650

    Article  PubMed  CAS  Google Scholar 

  • Fukai E, Dobrowolska AD, Madsen LH, Madsen EB, Umehara Y, Kouchi H, Hirochika H, Stougaard J (2008) Transposition of a 600 thousand-year-old LTR retrotransposon in the model legume Lotus japonicus. Plant Mol Biol 68:653–663

    Article  PubMed  CAS  Google Scholar 

  • Kalendar R, Grob T, Regina M, Souniemi A, Schulman AH (1999) IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theor Appl Genet 98:704–711

    Article  CAS  Google Scholar 

  • Kalendar R, Flavell AJ, Ellis THN, Sjakste T, Moisy C, Schulman AH (2011) Analysis of plant diversity with retrotransposon-based molecular markers. Heredity 106:520–530

    Article  PubMed  CAS  Google Scholar 

  • Kidwell KK, Austin DF, Osborn TC (1994a) RFLP evaluation of nine Medicago accessions representing the original germplasm sources for North American alfalfa cultivars. Crop Sci 34:230–236

    Article  Google Scholar 

  • Kidwell KK, Woodfield DR, Bingham ET, Osborn TC (1994b) Molecular marker diversity and yield of isogenic 2x and 4x single crosses of alfalfa. Crop Sci 34:784–788

    Article  Google Scholar 

  • Kidwell KK, Hartweck LM, Yandell BS, Crump PM, Brummer JE, Moutray J, Osborn TC (1999) Forage yields of alfalfa populations derived from parents selected on the basis of molecular marker diversity. Crop Sci 39:223–227

    Article  Google Scholar 

  • Lou Q, Chen J (2007) Ty1-copia retrotransposon-based SSAP marker development and its potential in the genetic study of cucurbits. Genome 50:802–810

    Article  PubMed  CAS  Google Scholar 

  • Lynch M, Milligan BG (1994) Analysis of population genetic structure with RAPD markers. Mol Ecology 3:91–99

    Article  CAS  Google Scholar 

  • Madsen LH, Fukai E, Radutoiu S, Karl Yost C, Sandal N, Schauser L, Stougaard J (2005) LORE1, an active low-copy-number TY3-gypsy retrotransposon family in the model legume Lotus japonicus. Plant J 44:372–381

    Article  PubMed  CAS  Google Scholar 

  • Mengoni A, Gori A, Bazzicalupo M (2000) Use of RAPD and microsatellite (SSR) variation to assess genetic relationships among populations of tetraploid alfalfa, Medicago sativa. Plant Breed 119:113–117

    Google Scholar 

  • Michaud R, Lehman WF, Runbaugh MD (1988) World distribution and historical development. In: Hanson AA, Barnes DK, Hill RR (eds) Alfalfa and alfalfa improvement. Agronomy Monograph 29, Madison, pp 25–92

    Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    PubMed  CAS  Google Scholar 

  • Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. PNAS 76:5269–5273

    Article  PubMed  CAS  Google Scholar 

  • Oliviera EJ, Amorim VBO, Matos ELS, Costa JL, Castellen MS, Padua JG, Dantas JLL (2010) Polymorphism of microsatellite markers in papaya (Carica papaya L.). Plant Mol Biol Rep 28:519–530

    Article  Google Scholar 

  • Peakall R, Smouse PE (2006) GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Pearce SR, Knox M, Ellis THN, Flavell AJ, Kumar A (2000) Pea Ty1-copia group retrotransposons: transpositional activity and use as markers to study genetic diversity in pisum. Mol Genet Genomics 263:898–907

    Article  CAS  Google Scholar 

  • Porceddu A, Albertini E, Barcaccia G, Marconi G, Bertoli FB, Veronesi F (2002) Development of S-SAP markers based on an LTR-like sequence from Medicago sativa L. Mol Genet Genomics 267:107–114

    Article  PubMed  CAS  Google Scholar 

  • Queen RA, Gribbon BM, James C, Jack P, Falvell AJ (2004) Retrotransposon-based molecular markers for linkage and genetic diversity analysis in wheat. Mol Genet Genomics 271:91–97

    Article  PubMed  CAS  Google Scholar 

  • Riaz A, Li G, Quresh Z, Swati MS, Quiros CF (2001) Genetic diversity of oilseed Brassica napus inbred lines based on sequence-related amplified polymorphism and its relation to hybrid performance. Plant Breed 120:411–415

    Article  CAS  Google Scholar 

  • Riday H, Brummer CE, Campbell TA, Luth D, Cazcarro PM (2003) Comparisons of genetic and morphological distance with heterosis between Medicago sativa subsp. sativa and subsp. Falcate. Euphytica 131:37–45

    Article  CAS  Google Scholar 

  • Robins JG, Luth D, Campbell TA, Bauchan GR, He C, Viands DR, Hansen JL, Brummer EC (2007) Genetic mapping of biomass production in tetraploid Alfalfa. Crop Sci 47:1–10

    Article  CAS  Google Scholar 

  • Rohlf FJ (2000) NTSYS-pc: numerical taxonomy and multivariate analysis system, version 2.1. Exeter Software, New York

    Google Scholar 

  • Tam SM, Mhiri C, Vogelaar A, Kerkveld M, Pearce SR, Le Grandbastien MA (2005) Comparative analyses of genetic diversities within tomato and pepper collections detected by retrotransposon-based SSAP, AFLP and SSR. Theor Appl Genet 110:819–831

    Article  PubMed  CAS  Google Scholar 

  • Vicient CM, Kalendar R, Anamthawat-Jonsson K, Suoniemi A, Schulman AH (1999) Structure, functionality, and evolution of the BARE-1 retrotransposon of barley. Genetica 107:53–63

    Article  PubMed  CAS  Google Scholar 

  • Vicient CM, Kalendar R, Schulman AH (2005) Variability, recombination and mosaic evolution of the barley BARE-1 retrotransposon. J Mol Evol 61:275–291

    Article  PubMed  CAS  Google Scholar 

  • Waugh R, McLean K, Flavell AJ, Pearce SR, Kumar A, Thomas BBT, Powell W (1997) Genetic distribution of Bare1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol General Genomics 253:687–694

    Article  CAS  Google Scholar 

  • Wei Z, Zhang K, Yang C, Liu G, Liu G, Lian L, Zhang H (2010) Genetic linkage maps of Betula platyphylla suk based on ISSR and AFLP markers. Plant Mol Biol Rep 28:169–175

    Article  CAS  Google Scholar 

  • Zaccardelli M, Gnocchi S, Carelli M, Scotti C (2003) Variation among and within Italian alfalfa ecotypes by means of bio-agronomic characters and amplified fragment length polymorphism analyses. Plant Breed 122:61–65

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Institute of Biotechnology, Urmia University, Iran, for the financial support of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babak Abdollahi Mandoulakani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdollahi Mandoulakani, B., Piri, Y., Darvishzadeh, R. et al. Retroelement Insertional Polymorphism and Genetic Diversity in Medicago sativa Populations Revealed by IRAP and REMAP Markers. Plant Mol Biol Rep 30, 286–296 (2012). https://doi.org/10.1007/s11105-011-0338-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-011-0338-x

Keywords

Navigation