Skip to main content
Log in

Study on deuteron formation mechanism in nucleon-induced reactions

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The mechanism of deuteron formation in neutron-induced reactions is studied within the framework of the isospin-dependent quantum molecular dynamics model, using the GEMINI code. The influence of the \(\hbox {n}\,+\,\hbox {p}\,\rightarrow \,\hbox {d}\) reaction channel is investigated by analyzing the deuteron production cross sections in the neutron-induced reactions \(^{12}\)C(n,d), \(^{16}\)O(n,d), and \(^{28}\)Si(n,d), with incident energies of 20–100 MeV. By including the \(\hbox {n}\,+\,\hbox {p}\,\rightarrow \,\hbox {d}\) reaction channel when modeling the collision, the deuteron production cross sections increase, optimizing the cross-section results and bringing them closer to the experimental data values. This indicates that the \(\hbox {n}\,+\,\hbox {p}\,\rightarrow \,\hbox {d}\) reaction channel is an important mechanism for enhancing deuteron production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. C.D. Bowman, G.J. Russell, J.W. Davidson et al., Nuclear energy generation and waste transmutation using an accelerator-driven intense thermal neutron source. Nucl. Instrum. Methods A 320, 336 (1992). https://doi.org/10.1016/0168-9002(92)90795-6

    Article  Google Scholar 

  2. B. Rossi, Über die Eigenschaften der durchdringenden Korpuskularstrahlung im Meeresniveau. Z. Phys. 82, 151 (1933). https://doi.org/10.1007/BF01341486

    Article  Google Scholar 

  3. A.J. Koning, T. Fukahori, A. Hasegawa et al., Intermediate energy data. Tech. Rep. NEA-report NEA/WPEC-13,ECN-RX-98-014,OECD/NEA (1998)

  4. D. Filges, F. Goldenbaum, Handbook of Spallation Research: Theory Experiments and Applications (Wiley, Berlin, 2010). https://doi.org/10.1002/9783527628865.ch10

    Book  Google Scholar 

  5. H.A. Abderrahim, P. Baeten, D.D. Bruyn et al., Myrrha, a multipurpose hybrid research reactor for high-end applications. Nucl. Phys. News 20, 24 (2010). https://doi.org/10.1080/10506890903178913

    Article  Google Scholar 

  6. W. Gudowski, Accelerator-driven transmutation projects. The importance of nuclear physics research for waste transmutation. Nucl. Phys. A 654, C436 (1999). https://doi.org/10.1016/S0375-9474(99)00269-9

    Article  Google Scholar 

  7. H.R. Guo, Y.L. Han, C.H. Cai, Theoretical calculation and evaluation of n + 240,242,244Pu reactions. Nucl. Sci. Tech. 30, 13 (2019). https://doi.org/10.1007/s41365-018-0533-7

    Article  Google Scholar 

  8. S. Agostinelli, J. Allison, K. Amako et al., GEANT4-a simulation toolkit. Nucl. Instrum. Methods A 506, 250 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8

    Article  Google Scholar 

  9. M. Durante, Radiation protection in space. Riv. Nuovo. Cimento. 25, 1–70 (2002). https://doi.org/10.1103/RevModPhys.74.235

    Article  Google Scholar 

  10. M.S. Longair, High Energy Astrophysics (Cambridge University Press, New York, 1997). https://doi.org/10.1017/CBO9781139170505

    Book  Google Scholar 

  11. G. Kraft, The radiobiological and physical basis for radiotherapy with protons and heavier ions. Strahlenther. Onkol. 166, 10–13 (1990). https://doi.org/10.1002/ssu.2980060613

    Article  Google Scholar 

  12. A. Boudard, J. Cugnon, J.C. David et al., New potentialities of the Lieoge intranuclear cascade model for reactions induced by nucleons and light charged particles. Phys. Rev. C 87, 014606 (2013). https://doi.org/10.1103/PhysRevC.87.014606

    Article  Google Scholar 

  13. C.W. Ma, C.Y. Qiao, T.T. Ding, Y.D. Song, Temperature of intermediate mass fragments in simulated \(^{40}\)Ca+\(^{40}\)Ca reactions around the Fermi energies by AMD model. Nucl. Sci. Tech. 27, 111 (2016). https://doi.org/10.1007/s41365-016-0112-8

    Article  Google Scholar 

  14. G.S. Bauer, Physics and technology of spallation neutron sources. Nucl. Instrum. Methods A 463, 505 (2001). https://doi.org/10.1016/s0168-9002(01)00167-x

    Article  Google Scholar 

  15. H. Iwase, K. Niita, T. Nakamura, Development of general-purpose particle and heavy ion transport monte carlo code. J. Nucl. Sci. Technol. 39, 1142 (2002). https://doi.org/10.1080/18811248.2002.9715305

    Article  Google Scholar 

  16. G.F. Bertsch, S.D. Gupta, A guide to microscopic models for intermediate energy heavy ion collisions. Phys. Rep. 160, 189 (1988). https://doi.org/10.1016/0370-1573(88)90170-6

    Article  Google Scholar 

  17. J. Aichelin, ’Quantum’ molecular dynamics: a dynamical microscopic n body approach to investigate fragment formation and the nuclear equation of state in heavy ion collisions. Phys. Rep. 202, 233 (1991). https://doi.org/10.1016/0370-1573(91)90094-3

    Article  Google Scholar 

  18. L. Ou, X.Y. He, In-medium nucleon-nucleon elastic cross-sections determined from the nucleon induced reaction cross-section data. Chin. Phys. C 43, 104 (2019)

    Article  Google Scholar 

  19. D.X. Wei, L.H. Mao, N. Wang et al., Further study on mechanism of production of light complex particles in nucleon-induced reactions. Nucl. Phys. A 933, 114 (2015). https://doi.org/10.1016/j.nuclphysa.2014.10.020

    Article  Google Scholar 

  20. Y. Nara, N. Otuka, A. Ohnishi et al., Relativistic nuclear collisions at 10A GeV energies from p+ Be to Au+ Au with the hadronic cascade model. Phys. Rev. C 61, 024901 (1999). https://doi.org/10.1103/PhysRevC.61.024901

    Article  Google Scholar 

  21. A. Boudard, J. Cugnon, S. Leray et al., Intranuclear cascade model for a comprehensive description of spallation reaction data. Phys. Rev. C 66, 044615 (2002). https://doi.org/10.1103/physrevc.66.044615

    Article  Google Scholar 

  22. Y. Yariv, Z. Fraenkel, Intranuclear cascade calculation of high-energy heavy-ion interactions Phys. Rev. C 20, 2227 (1979). https://doi.org/10.1103/PhysRevC.20.2227

    Article  Google Scholar 

  23. Y. Yariv, Z. Fraenkel, Intranuclear cascade calculation of high energy heavy ion collisions: effect of interactions between cascade particles. Phys. Rev. C 24, 488 (1981). https://doi.org/10.1103/PhysRevC.24.488

    Article  Google Scholar 

  24. V.N. Ivanchenko, Geant4 toolkit for simulation of HEP experiments. Nucl. Instrum. Methods A 502, 666 (2003). https://doi.org/10.1016/S0168-9002(03)00538-2

    Article  Google Scholar 

  25. H. Dong, D.Q. Fang, C. Li, Study on the performance of a large-size CsI detector for high energy \(\gamma \)-rays. Nucl. Sci. Tech. 29, 7 (2018). https://doi.org/10.1007/s41365-017-0345-1

    Article  Google Scholar 

  26. S. Furihata, T. Nakamura, Calculation of nuclide productions from proton induced reactions on heavy targets with INC/GEM. J. Nucl. Sci. Technol. 39, 758 (2002). https://doi.org/10.1080/00223131.2002.10875208

    Article  Google Scholar 

  27. S. Furihata, Statistical analysis of light fragment production from medium-energy proton induced reactions. Nucl. Instrum. Methods 171, 251 (2000). https://doi.org/10.1016/s0168-583x(00)00332-3

    Article  Google Scholar 

  28. R.J. Charity, M.A. McMahan, G.J. Wozniak, Systematics of complex fragment emission in niobium-induced reactions. Nucl. Phys. A 483, 371 (1988). https://doi.org/10.1016/0375-9474(88)90542-8

    Article  Google Scholar 

  29. J.J. Gaimard, K.H. Schmidt, A reexamination of the abrasion-ablation model for the description of the nuclear fragmentation reaction. Nucl. Phys. A 531, 709 (1991). https://doi.org/10.1016/0375-9474(91)90748-u

    Article  Google Scholar 

  30. C.W. Ma, D. Peng, H.L. Wei, Z.M. Niu, Y.T. Wang, R. Wada, Isotopic cross-sections in proton induced spallation reactions based on the Bayesian neural network method. Chin. Phys. C 44, 014104 (2020)

    Article  Google Scholar 

  31. K. Niita, S. Chiba, T. Maruyama et al., Analysis of the (N, x N-prime) reactions by quantum molecular dynamics plus statistical decay model. Phys. Rev. C 52, 2620 (1995). https://doi.org/10.1103/PhysRevC.52.2620

    Article  Google Scholar 

  32. D.X. Wei, N. Wang, L. Ou et al., Mechanism of the production of light complex particles in nucleon-induced reactions. J. Phys. G Nucl. Partic. 41, 035104 (2014). https://doi.org/10.1088/0954-3899/41/3/035104

    Article  Google Scholar 

  33. J. Su, F.S. Zhang, B.A. Bian, Odd-even effect in heavy-ion collisions at intermediate energies. Phys. Rev. C 83, 014608 (2011). https://doi.org/10.1103/PhysRevC.83.014608

    Article  Google Scholar 

  34. J. Su, F.S. Zhang, Isotopic dependence of nuclear temperatures. Phys. Rev. C 84, 037601 (2011). https://doi.org/10.1103/PhysRevC.84.037601

    Article  Google Scholar 

  35. J. Su, L. Zhu, W.J. Xie, F.S. Zhang et al., Nuclear temperatures from kinetic characteristics. Phys. Rev. C 85, 017604 (2012). https://doi.org/10.1103/PhysRevC.85.017604

    Article  Google Scholar 

  36. C.C. Guo, J. Su, F.S. Zhang, Comparison between nuclear thermometers in central Xe+Sn collision. Nucl. Sci. Tech. 24, 50513 (2013). https://doi.org/10.13538/j.1001-8042/nst.2013.05.013

    Article  Google Scholar 

  37. J. Su, F.S. Zhang, Non-equilibrium and residual memory in momentum space of fragmenting sources in central heavy-ion collisions. Phys. Rev. C 87, 017602 (2013). https://doi.org/10.1103/PhysRevC.87.017602

    Article  Google Scholar 

  38. J. Su, K. Cherevko, W.J. Xie et al., Nonisotropic and nonsingle explosion in central \({}^{129}\)Xe + \({}^{120}\)Sn collisions at 50–125 MeV/nucleon. Phys. Rev. C 89, 014619 (2014). https://doi.org/10.1103/PhysRevC.89.014619

    Article  Google Scholar 

  39. J. Su, L. Zhu, C.Y. Huang et al., Correlation between symmetry energy and effective \(k\)-mass splitting with an improved isospin-and momentum-dependent interaction. Phys. Rev. C 94, 034619 (2016). https://doi.org/10.1103/PhysRevC.94.034619

    Article  Google Scholar 

  40. J. Su, L. Zhu, C.Y. Huang et al., Effects of symmetry energy and effective \(k\)-mass splitting on central \({}^{96}\text{ Ru }({}^{96}\text{ Zr})+{}^{96}\text{ Zr }({}^{96}\text{ Ru})\) collisions at 50 to 400 MeV/nucleon. Phys. Rev. C 96, 024601 (2017). https://doi.org/10.1103/PhysRevC.96.024601

    Article  Google Scholar 

  41. J. Su, W. Trautmann, L. Zhu et al., Dynamical properties and secondary decay effects of projectile fragmentations in \({}^{124}\text{ Sn },{}^{107}\text{ Sn }+{}^{120}\text{ Sn }\) collisions at 600 MeV/nucleon. Phys. Rev. C 98, 014610 (2018). https://doi.org/10.1103/PhysRevC.98.014610

    Article  Google Scholar 

  42. J. Su, L. Zhu, C.C. Guo et al., Uniform description of breakup mechanisms in central collision, projectile fragmentation, and proton-induced spallation. Phys. Rev. C 100, 014602 (2019). https://doi.org/10.1103/PhysRevC.100.014602

    Article  Google Scholar 

  43. L.W. Chen, F.S. Zhang, G.M. Jin, Analysis of isospin dependence of nuclear collective flow in an isospin-dependent quantum molecular dynamics model. Phys. Rev. C 58, 2283 (1998). https://doi.org/10.1103/PhysRevC.58.2283

    Article  Google Scholar 

  44. Z.Q. Feng, Nuclear dynamics and particle production near threshold energies in heavy-ion collisions. Nucl. Sci. Tech. 29, 40 (2018). https://doi.org/10.1007/s41365-018-0379-z

    Article  Google Scholar 

  45. T.Z. Yan, S. Li, Y.N. Wang, F. Xie, T.F. Yan, Yield ratios and directed flows of light particles from proton-rich nuclei-induced collisions. Nucl. Sci. Tech. 30, 15 (2019). https://doi.org/10.1007/s41365-018-0534-6

    Article  Google Scholar 

  46. J. Xu, L.W. Chen, M.B. Tsang et al., Understanding transport simulations of heavy-ion collisions at \(100A\) and \(400A\) MeV: Comparison of heavy-ion transport codes under controlled conditions. Phys. Rev. C 93, 044609 (2016). https://doi.org/10.1103/PhysRevC.93.044609

    Article  Google Scholar 

  47. Y.X. Zhang, Y.J. Wang, M. Colonna et al., Comparison of heavy-ion transport simulations: Collision integral in a box. Phys. Rev. C 97, 034625 (2018). https://doi.org/10.1103/PhysRevC.97.034625

    Article  Google Scholar 

  48. P.C. Li, Y.J. Wang, Q.F. Li, H.F. Zhang, Collective flow and nuclear stopping in heavy ion collisions in Fermi energy domain. Nucl. Sci. Tech. 29, 177 (2018). https://doi.org/10.1007/s41365-018-0510-1

    Article  Google Scholar 

  49. Y.X. Zhang, N. Wang, Q.F. Li et al., Progress of quantum molecular dynamics model and its applications in heavy ion collisions. Front. Phys. 15, 54301 (2020). https://doi.org/10.1007/s11467-020-0961-9

    Article  Google Scholar 

  50. J. Cugnon, T. Mizutani, J. Vandermeulen, Equilibration in relativistic nuclear collisions. A Monte Carlo calculation. Nucl. Phys. A 3, 505 (1981). https://doi.org/10.1016/0375-9474(81)90427-9

    Article  Google Scholar 

  51. D.D.S. Coupland, W.G. Lynch, M.B. Tsang et al., Influence of transport variables on isospin transport ratios. Phys. Rev. C 84, 054603 (2011). https://doi.org/10.1103/PhysRevC.84.054603

    Article  Google Scholar 

  52. M. Papa, T. Maruyama, A. Bonasera, Constraint molecular dynamics approach to fermionic systems. Phys. Rev. C 64, 024612 (2001). https://doi.org/10.1103/PhysRevC.64.024612

    Article  Google Scholar 

  53. R.J. Charity, Distributions of secondary fragments and the evaporation attractor line. Phys. Rev. C 58, 1073 (1988). https://doi.org/10.1103/PhysRevC.58.1073

    Article  Google Scholar 

  54. Z. Kohley, M. Colonna, A. Bonasera et al., Sensitivity of intermediate mass fragment flows to the symmetry energy. Phys. Rev. C 85, 064605 (2012). https://doi.org/10.1103/PhysRevC.85.064605

    Article  Google Scholar 

  55. Z.F. Zhang, D.Q. Fang, Y.G. Ma, Decay modes of highly excited nuclei. Nucl. Sci. Tech. 29, 78 (2018). https://doi.org/10.1007/s41365-018-0427-8

    Article  Google Scholar 

  56. T. Stiehler, J. Moesner, G. Schmidt et al., The total n-p capture cross section measured at E/sub n/ = 25 MeV. Ann. Phys. Berl. 498, 602 (2010). https://doi.org/10.1002/andp.19864980620

    Article  Google Scholar 

  57. S.T. Hwang, K.J. Lee, K.O. Choi et al., Determination of the ratio of the hydrogen and manganese absorption cross sections by the manganese bath technique. J. Radioanal. Nucl. Ch. 139, 37 (1990). https://doi.org/10.1007/bf02060450

    Article  Google Scholar 

  58. P. Michel, K. Moeller, J. Moesner et al., Measurement of the capture reaction H(n, d)\(\gamma \) at 25.6 MeV. J. Phys. G Nucl. Partic. 15, 1025 (1999). https://doi.org/10.1088/0954-3899/15/7/010

    Article  Google Scholar 

  59. J. Tudoric-Ghemo, Neutron–proton radiative capture at 14.4 MeV. Nucl. Phys. A92, 233 (1967). https://doi.org/10.1016/0375-9474(67)90687-2

    Article  Google Scholar 

  60. M. Cerineo, K. Ilakovac, I. Šlaus et al., Capture of 14.4-Mev neutrons by protons and deuterons. Phys. Rev. 124, 1947 (1961). https://doi.org/10.1103/PhysRev.124.1947

    Article  Google Scholar 

  61. A. Tomyo, Y. Nagai, T.S. Suzuki et al., Measurement of the p(n,\(\gamma \))d reaction cross section between E n = 100 and 350 keV. Nucl. Phys. A718, 401 (2003). https://doi.org/10.1016/S0375-9474(03)00814-5

    Article  Google Scholar 

  62. Y. Nagai, T.S. Suzuki, T. Kikuchi et al., Measurement of H-1 (n, gamma) H-2 reaction cross section at a comparable M-1/ E-1 strength. Phys. Rev. C 56, 3173 (1997). https://doi.org/10.1103/PhysRevC.56.3173

    Article  Google Scholar 

  63. T.S. Suzuki, Y. Nagai, T. Shima et al., First measurement of a p( n, gamma )d reaction cross section between 10 and 80 keV. Astrophys. J. 439(2), L59 (1995). https://doi.org/10.1086/187744

    Article  Google Scholar 

  64. P. Wauters, C. Dupont, P. Leleux et al., Total cross section for the Hn, d) ? reaction at 39, 61, and 76 MeV. Few-Body Syst. 8(1), 1–10 (1990). https://doi.org/10.1007/BF01078871

    Article  Google Scholar 

  65. M. Bosman, A. Bol, J.F. Gilot et al., Measurement of the total cross section for the 1H(n, \(\gamma \)) 2H reaction between 37 and 72 MeV. Phys. Lett. B 82(2), 212–215 (1979). https://doi.org/10.1016/0370-2693(79)90738-X

    Article  Google Scholar 

  66. S. Benck, I. Slypen, J.P. Meulders et al., Experimental cross sections for light-charged particle production induced by neutrons with energies between 25 and 65 MeV incident on aluminum Atom. Data Nucl. Data 78, 161–181 (2001). https://doi.org/10.1006/adnd.2001.0860

    Article  Google Scholar 

  67. S. Benck, I. Slypen, J.P. Meulders, Experimental cross sections for light-charged particle production induced by neutrons with energies between 25 and 65 MeV incident on oxygen. Atom. Data Nucl. Data 78, 1–20 (1999). https://doi.org/10.1006/adnd.1999.0806

    Article  Google Scholar 

  68. I. Slypen, S. Benck, J.P. Meulders, Light charged particle production in fast neutron-induced reactions on carbon (En=20 to 75 MeV): (I). Protons and deuterons. Nucl. Phys. A 671, 3–19 (2000). https://doi.org/10.1016/S0375-9474(99)00829-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen-Chen Guo.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 11875328 and U1832182), the Natural Science Foundation of Guangdong Province, China (No. 18zxxt65), and Fundamental Research Funds for the Central Universities (19lgpy306 and 18lgpy87).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, YJ., Guo, CC., Su, J. et al. Study on deuteron formation mechanism in nucleon-induced reactions. NUCL SCI TECH 31, 84 (2020). https://doi.org/10.1007/s41365-020-00788-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-020-00788-5

Keywords

Navigation