Skip to main content
Log in

Yield ratios and directed flows of light particles from proton-rich nuclei-induced collisions

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The neutron-to-proton and \({}^3{\hbox {H}}\)-to-\({}^3{\hbox {He}}\) yield ratios, and the directed flows of particles dependent on a reduced rapidity, the transverse momentum per nucleon, and a reduced impact parameter are investigated for \({}^{28}{\hbox {S}} + {}^{28}{\hbox {Si}}\) and \({}^{32}{\hbox {S}} + {}^{28}{\hbox {Si}}\) systems at 50 and 400 MeV/u using an isospin-dependent quantum molecular dynamics model. The results show that these yield ratios of projectile-like fragments are approximately equal to the constituent neutron-to-proton ratio of the projectile. There are clear differences of the directed flows for isospin-related fragments neutron and proton, \({}^3{\hbox {H}}\) and \({}^3{\hbox {He}}\) from \({}^{28}{\hbox {S}} + {}^{28}{\hbox {Si}}\) collisions. The differences in directed flows for neutrons and protons and \({}^3{\hbox {H}}\)\({}^3{\hbox {He}}\) from a proton-rich nucleus \({}^{28}{\hbox {S}}-\) induced collisions are noticeably larger than those from a stable nucleus \({}^{32}{\hbox {S}}-\) induced reactions under medium impact parameters. Thus, the yield ratios and differences in directed flows for the neutrons and protons and \({}^3{\hbox {H}}\)\({}^3{\hbox {He}}\) under medium impact parameters are proposed as possible observable items for studying isospin physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Z.J. Wang, Z.Z. Ren, Elastic electron scattering on exotic light proton-rich nuclei. Phys. Rev. C 70, 034303 (2004). https://doi.org/10.1103/PhysRevC.70.034303

    Article  Google Scholar 

  2. S. Yoshida, H. Sagawa, Neutron skin thickness and equation of state in asymmetric nuclear matter. Phys. Rev. C 69, 024318 (2004). https://doi.org/10.1103/PhysRevC.69.024318

    Article  Google Scholar 

  3. A. Bhagwat, Y.K. Gambhir, Recently measured reaction cross sections with low energy fp-shell nuclei as projectiles: microscopic description. Phys. Rev. C 73, 054601 (2006). https://doi.org/10.1103/PhysRevC.73.054601

    Article  Google Scholar 

  4. J.G. Chen, X.Z. Cai, H.Y. Zhang et al., Proton halo or skin in the excited states of light nuclei. Chin. Phys. Lett. 20(7), 1021–1024 (2003). https://doi.org/10.1088/0256-307X/20/7/314

    Article  Google Scholar 

  5. C.J. Horowitz, S.J. Pollock, P.A. Souder et al., Parity violating measurements of neutron densities. Phys. Rev. C 63, 025501 (2001). https://doi.org/10.1103/PhysRevC.63.025501

    Article  Google Scholar 

  6. P. Danielewicz, Surface symmetry energy. Nucl. Phys. A 727, 233 (2005). https://doi.org/10.1016/j.nuclphysa.2003.08.001

    Article  Google Scholar 

  7. M. Liu, N. Wang, Z.X. Li et al., Neutron skin thickness of nuclei and effective nucleon–nucleon interactions. Chin. Phys. Lett. 23(4), 804 (2006). https://doi.org/10.1088/0256-307X/23/4/012

    Article  Google Scholar 

  8. K. Bennaceur, F. Nowacki, J. Okolowicz et al., Study of the \(^7\)Be(p, y)\(^8\)B and \(^7\)Li(n, y)\(^8\)Li capture reactions using the shell model embedded in the continuum. Nucl. Phys. A 651, 289 (1999). https://doi.org/10.1016/S0375-9474(99)00133-5

    Article  Google Scholar 

  9. K. Kaneko, Y. Sun, G. Angelis, Enhancement of high-spin collectivity in N = Z nuclei by the isoscalar neutron–proton pairing. Nucl. Phys. A 957, 144 (2017). https://doi.org/10.1016/j.nuclphysa.2016.08.007

    Article  Google Scholar 

  10. Z.H. Sun, Q. Wu, Z.H. Zhao et al., Resonance and continuum Gamow shell model with realistic nuclear forces. Phys. Lett. B 769, 227–232 (2017). https://doi.org/10.1016/j.physletb.2017.03.054

    Article  Google Scholar 

  11. I. Tanihata, H. Hamagaki, O. Hashimoto et al., Measurements of interaction cross sections and nuclear radii in the light p-shell region. Phys. Rev. Lett. 55, 2676 (1985). https://doi.org/10.1103/PhysRevLett.55.2676

    Article  Google Scholar 

  12. D.Q. Fang, W. Guo, C.W. Ma et al., Examining the exotic structure of the proton-rich nucleus \(^{23}\rm Al\). Phys. Rev. C 76, 031601(R) (2007). https://doi.org/10.1103/PhysRevC.76.031601

    Article  Google Scholar 

  13. X.F. Li, D.Q. Fang, Y.G. Ma, Determination of the neutron skin thickness from interaction cross section and chargechanging cross section for B, C, N, O, F isotopes. Nucl. Sci. Tech. 27, 71 (2016). https://doi.org/10.1007/s41365-016-0064-z

    Article  Google Scholar 

  14. Y.D. Song, H.L. Wei, C.W. Ma et al., Improved FRACS parameterizations for cross sections of isotopes near the proton drip line in projectile fragmentation reactions. Nucl. Sci. Tech. 29, 96 (2018). https://doi.org/10.1007/s41365-018-0439-4

    Article  Google Scholar 

  15. B.A. Li, C.M. Ko, Isospin dependence of collective flow. Nucl. Phys. A 654, 797c–802c (1999). https://doi.org/10.1016/S0375-9474(00)88549-8.

    Article  Google Scholar 

  16. L.W. Chen, F.S. Zhang, Z.Y. Zhu, Isospin effects on rotational flow in intermediate energy heavy ion collisions. Phys. Rev. C 61, 067601 (2000). https://doi.org/10.1103/PhysRevC.61.067601

    Article  Google Scholar 

  17. V.N. Russkikh, Y.B. Ivanov, Collective flow in heavy-ion collisions for E\(_{\text{lab}}\) = 1–160 GeV/nucleon. Phys. Rev. C 74, 034904 (2006). https://doi.org/10.1103/PhysRevC.74.034904

    Article  Google Scholar 

  18. Z.Q. Feng, Dynamics of strangeness and collective flows in heavy-ion collisions near threshold energies. Nucl. Phys. A 919, 32–45 (2013). https://doi.org/10.1016/j.nuclphysa.2013.10.005

    Article  Google Scholar 

  19. H.Y. Zhang, W.Q. Shen, Y.G. Ma et al., Directed and elliptic flows in \(^{40}\)Ca + \(^{40}\)Ca and \(^{112}\)Sn + \(^{112}\)Sn collisions. Eur. Phys. J. A 15, 399–404 (2002). https://doi.org/10.1140/epja/i2002-10043-7

    Article  Google Scholar 

  20. S. Gautam, A.D. Sood, R.K. Puri et al., Isospin effects in the disappearance of flow as a function of colliding geometry. Phys. Rev. C 83, 014603 (2011). https://doi.org/10.1103/PhysRevC.83.014603

    Article  Google Scholar 

  21. X.Y. Sun, D.Q. Fang, Y.G. Ma et al., Neutron/proton ratio of nucleon emissions as a probe of neutron skin. Phys. Lett. B 682, 396–400 (2010). https://doi.org/10.1016/j.physletb.2009.11.031

    Article  Google Scholar 

  22. J.Y. Liu, Q. Zhao, S.J. Wang et al., Entrance channel dependence and isospin dependence of preequilibrium nucleon emission in intermediate energy heavy ion collisions. Nucl. Phys. A 687, 475–485 (2001). https://doi.org/10.1016/S0375-9474(00)00581-9

    Article  Google Scholar 

  23. X.C. Zhang, B.A. Li, L.W. Chen et al., Impact parameter dependence of the double neutron/proton ratio of nucleon emissions in isotopic reaction systems. Chin. Phys. Lett. 26(5), 052502 (2009). https://doi.org/10.1088/0256-307X/26/5/052502

    Article  Google Scholar 

  24. H.L. Liu, G.C. Yong, D.H. Wen, Probing the momentum dependence of the symmetry potential by the free n/p ratio of pre-equilibrium emission. Phys. Rev. C 91, 024604 (2015). https://doi.org/10.1103/PhysRevC.91.024604

    Article  Google Scholar 

  25. D. Theriault, J. Gauthier, F. Grenier et al., Neutron-to-proton ratios of quasiprojectile and midrapidity emission in the \(^{64}\)Zn + \(^{64}\)Zn reaction at 45 MeV/nucleon. Phys. Rev. C 74, 051602(R) (2006). https://doi.org/10.1103/PhysRevC.74.051602

    Article  Google Scholar 

  26. Y.X. Zhang, M.B. Tsang, Z.X. Li et al., Constraints on nucleon effective mass splitting with heavy ion collisions. Phys. Lett. B 732, 186–190 (2014). https://doi.org/10.1016/j.physletb.2014.03.030

    Article  MathSciNet  Google Scholar 

  27. W.J. Xie, J. Su, L. Zhu et al., Neutron–proton effective mass splitting in a Boltzmann–Langevin approach. Phys. Rev. C 88, 061601(R) (2013). https://doi.org/10.1103/PhysRevC.88.061601

    Article  Google Scholar 

  28. J. Su, L. Zhu, C.Y. Huang et al., Correlation between symmetry energy and effective \(\kappa\)-mass splitting with an improved isospin- and momentum-dependent interaction. Phys. Rev. C 94, 034619 (2016). https://doi.org/10.1103/PhysRevC.94.034619

    Article  Google Scholar 

  29. M. Yu, K.J. Duan, S.S. Wang et al., A nuclear density probe: isobaric yield ratio difference. Nucl. Sci. Tech. 26, S20503 (2015). https://doi.org/10.13538/j.1001-8042/nst.26.S20503

    Article  Google Scholar 

  30. B.A. Li, B.J. Cai, L.W. Chen et al., Isospin dependence of nucleon effective masses in neutron-rich matter. Nucl. Sci. Tech. 27, 141 (2016). https://doi.org/10.1007/s41365-016-0140-4

    Article  Google Scholar 

  31. J. Aichelin, “Quantum” molecular dynamics: a dynamical microscopic n-body approach to investigate fragment formation and the nuclear equation of state in heavy ion collisions. Phys. Rep. 202, 233–360 (1991). https://doi.org/10.1016/0370-1573(91)90094-3

    Article  Google Scholar 

  32. L.W. Chen, F.S. Zhang, G.M. Jin, Analysis of isospin dependence of nuclear collective flow in an isospin-dependent quantum molecular dynamics model. Phys. Rev. C 58, 2283 (1998). https://doi.org/10.1103/PhysRevC.58.2283

    Article  Google Scholar 

  33. Y.G. Ma, W.Q. Shen, Z.Y. Zhu, Collective motion of reverse-reaction system in the intermediate-energy domain via the quantum-molecular-dynamics approach. Phys. Rev. C 51, 1029 (1995). https://doi.org/10.1103/PhysRevC.51.1029

    Article  Google Scholar 

  34. Y.X. Zhang, Z.X. Li, C.S. Zhou et al., Effect of isospin-dependent cluster recognition on the observables in heavy ion collisions. Phys. Rev. C 85, 051602(R) (2012). https://doi.org/10.1103/PhysRevC.85.051602

    Article  Google Scholar 

  35. G.A. Lalazissis, A.R. Farhan, M.M. Sharma, Light nuclei near neutron and proton drip lines in relativistic mean-field theory. Nucl. Phys. A 628, 221–254 (1998). https://doi.org/10.1016/S0375-9474(97)00630-1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting-Zhi Yan.

Additional information

This work was supported by the National Natural Science Foundation of China (No. 11405025).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, TZ., Li, S., Wang, YN. et al. Yield ratios and directed flows of light particles from proton-rich nuclei-induced collisions. NUCL SCI TECH 30, 15 (2019). https://doi.org/10.1007/s41365-018-0534-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-018-0534-6

Keywords

Navigation