Skip to main content
Log in

Decay modes of highly excited nuclei

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The deexcitation of single excited \(^{112}\)Sn nuclei at T = 1–30 MeV is simulated using the isospin-dependent quantum molecular dynamics (IQMD) model and GEMINI model. The fragmentation mechanism, critical behavior, and kinematic characteristics are investigated within these two models. The results show that the IQMD model can be applied to the analysis of fragmentation processes, critical points, and slope temperature extraction. The results of IQMD are generally consistent with experimental \(\langle M_{\text {IMF}}\rangle - Z_{\text {bound}}\) data. However, GEMINI can reproduce the experimental data better than IQMD for isotopic distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S.B. Kaufman, M.W. Weisfield, E.P. Steinberg et al., Nuclear reactions of \(^{197}{\rm Au}\) with 11.5- and 300-GeV protons. Phys. Rev. C 14, 1121 (1976). https://doi.org/10.1103/PhysRevC.14.1121

    Article  Google Scholar 

  2. A.I. Warwick, H.H. Wiemann, H.H. Gutbrod et al., Breakup of spectator residues in relativistic nuclear collisions. Phys. Rev. C 27, 1083 (1983). https://doi.org/10.1103/PhysRevC.27.1083

    Article  Google Scholar 

  3. R. Nebauer, J. Aichelin, Multifragmentation—what the data tell us about the different models. Nucl. Phys. A 681, 353 (2001). https://doi.org/10.1016/S0375-9474(00)00539-X

    Article  Google Scholar 

  4. D.Q. Fang, W.Q. Shen, J. Feng et al., Isospin effect of fragmentation reactions induced by intermediate energy heavy ion and its disapperance. Phys. Rev. C 61, 044610 (2000). https://doi.org/10.1103/PhysRevC.61.044610

    Article  Google Scholar 

  5. N. Marie, A. Chbihi, J.B. Natowitz et al., Experimental determination of fragment excitation energies in multifragmentation events. Phys. Rev. C 58, 256 (1998). https://doi.org/10.1103/PhysRevC.58.256

    Article  Google Scholar 

  6. T.T. Ding, C.W. Ma, An improved thermometer for intermediate-mass fragments. Nucl. Sci. Tech. 27, 132 (2016). https://doi.org/10.1007/s41365-016-0142-2

    Article  Google Scholar 

  7. K. Hagel, M. Gonin, R. Wada et al., Violent collisions and multifragment final states in the \(^{40}{\rm Ca}\) + \(^{40}{\rm Ca}\) reaction at 35 MeV/nucleon. Phys. Rev. C 50, 2017 (1994). https://doi.org/10.1103/PhysRevC.50.2017

    Article  Google Scholar 

  8. M. Mocko, M.B. Tsang, L. Andronenko et al., Projectile fragmentation of \(^{40}{\rm Ca}\), \(^{48}{\rm Ca}\), \(^{58}{\rm Ni}\), and \(^{64}{\rm Ni}\) at 140 MeV/nucleon. Phys. Rev. C 74, 054612 (2006). https://doi.org/10.1103/PhysRevC.74.054612

    Article  Google Scholar 

  9. P. Liu, J.H. Chen, Y.G. Ma et al., Production of light nuclei and hypernuclei at high intensity accelerator facility energy region. Nucl. Sci. Tech. 28, 55 (2017). https://doi.org/10.1007/s41365-017-0207-x

    Article  Google Scholar 

  10. R. Ogul, N. Buyukcizmeci, A. Ergun et al., Production of neutron-rich exotic nuclei in projectile fragmentation at Fermi energies. Nucl. Sci. Tech. 28, 18 (2016). https://doi.org/10.1007/s41365-016-0175-6

    Article  Google Scholar 

  11. Z.Q. Feng, Nuclear dynamics and particle production near threshold energies in heavy-ion collisions. Nucl. Sci. Tech. 29, 40 (2018). https://doi.org/10.1007/s41365-018-0379-z

    Article  Google Scholar 

  12. C.W. Ma, Y.G. Ma, Shannon information entropy in heavy-ion collisions. Prog. Part. Nucl. Phys. 99, 120 (2018). https://doi.org/10.1016/j.ppnp.2018.01.002

    Article  Google Scholar 

  13. J. Aichelin, “Quantum” molecular dynamics—a dynamical microscopic n-body approach to investigate fragment formation and the nuclear equation of state in heavy ion collisions. Phys. Rep. 202, 233 (1991). https://doi.org/10.1016/0370-1573(91)90094-3

    Article  Google Scholar 

  14. C. Hartnack, R.K. Puri, J. Aichelin et al., Modelling the many-body dynamics of heavy ion collisions: present status and future perspective. Eur. Phys. J. A 1, 151 (1998). https://doi.org/10.1007/s100500050045

    Article  Google Scholar 

  15. R.J. Charity, M.A. McMahan, G.J. Wozniak et al., Systematics of complex fragment emission in niobium-induced reactions. Nucl. Phys. A 483, 371 (1988). https://doi.org/10.1016/0375-9474(88)90542-8

    Article  Google Scholar 

  16. J. Hubele, P. Kreutz, V. Lindenstruth et al., Statistical fragmentation of Au projectiles at E/A = 600 MeV. Phys. Rev. C 46, 1577 (1992). https://doi.org/10.1103/PhysRevC.46.R1577

    Article  Google Scholar 

  17. W. Müller, M. Begemann-Blaich, J. Aichelin, Deexcitation of single excited nuclei in the QMD model. Phys. Lett. B 298, 27 (1993). https://doi.org/10.1016/0370-2693(93)91700-W

    Article  Google Scholar 

  18. X.G. Cao, X.Z. Cai, Y.G. Ma et al., Nucleon–nucleon momentum–correlation function as a probe of the density distribution of valence neutrons in neutron–rich nuclei. Phys. Rev. C 86, 044620 (2012). https://doi.org/10.1103/PhysRevC.86.044620

    Article  Google Scholar 

  19. X.Y. Sun, D.Q. Fang, Y.G. Ma et al., Neutron/proton ratio of nucleon emissions as a probe of neutron skin. Phys. Lett. B 682, 396 (2010). https://doi.org/10.1016/j.physletb.2009.11.031

    Article  Google Scholar 

  20. D.Q. Fang, Y.G. Ma, C.L. Zhou, Shear viscosity of hot nuclear matter by the mean free path method. Phys. Rev. C 89, 047601 (2014). https://doi.org/10.1103/PhysRevC.89.047601

    Article  Google Scholar 

  21. Z.T. Dai, D.Q. Fang, Y.G. Ma et al., Effect of neutron skin thickness on projectile fragmentation. Phys. Rev. C 91, 034618 (2015). https://doi.org/10.1103/PhysRevC.91.034618

    Article  Google Scholar 

  22. G. Audi, A.H. Wapstra, C. Thibault, The Ame 2003 atomic mass evaluation: (II). Tables, graphs and references. Nucl. Phys. A 729, 337 (2003). https://doi.org/10.1016/j.nuclphysa.2003.11.003

    Article  Google Scholar 

  23. M. Wang, G. Audi, F.G. Kondev et al., The AME2016 atomic mass evaluation (II). Tables, graphs and references. Chin. Phys. C 41, 030003 (2017). https://doi.org/10.1088/1674-1137/41/3/030003

    Article  Google Scholar 

  24. T.Z. Yan, Y.G. Ma, X.Z. Cai et al., Scaling of anisotropic flows and nuclear equation of state in intermediate energy heavy ion collisions. Chin. Phys. 16, 9 (2007). https://doi.org/10.1088/1009-1963/16/9/031

    Google Scholar 

  25. C. Lewenkopf, J. Dreute, A. Abul-Magd et al., Fragmentation of gold projectiles with energies of 200–980 MeV/nucleon. II. Multiplicity distributions and correlations. Phys. Rev. C 44, 1065 (1991). https://doi.org/10.1103/PhysRevC.44.1065

    Article  Google Scholar 

  26. J.B. Natowitz, R. Wada, K. Hagel et al., Caloric curves and critical behavior in nuclei. Phys. Rev. C 65, 034618 (2002). https://doi.org/10.1103/PhysRevC.65.034618

    Article  Google Scholar 

  27. Y.G. Ma, J.B. Natowitz, R. Wada et al., Critical behavior in light nuclear systems: experimental aspects. Phys. Rev. C 71, 054606 (2005). https://doi.org/10.1103/PhysRevC.71.054606

    Article  Google Scholar 

  28. M.E. Fisher, The theory of equilibrium critical phenomena. Rep. Prog. Phys. 30, 615 (1969). https://doi.org/10.1088/0034-4885/31/1/508

    Article  Google Scholar 

  29. J.E. Finn, S. Agarwal, A. Bujak et al., Nuclear fragment mass yields from high-energy proton–nucleus interactions. Phys. Rev. Lett. 49, 1321 (1982). https://doi.org/10.1103/PhysRevLett.49.1321

    Article  Google Scholar 

  30. X. Campi, Multifragmentation: nuclei break up like percolation clusters. J. Phys. A 19, 917 (1986). https://doi.org/10.1088/0305-4470/19/15/010

    Article  Google Scholar 

  31. X. Campi, H. Krivine, Observables in nuclear fragmentation. Z. Phys. A 344, 81 (1992). https://doi.org/10.1007/BF01291024

    Article  Google Scholar 

  32. N. Bohr, Neutron capture and nuclear constitution. Nature 137, 351 (1936). https://doi.org/10.1038/137344a0

    Article  MATH  Google Scholar 

  33. P.M. Milazzo, G. Vannini, M. Azzano et al., Temperature measurement of fragment emitting systems in Au + Au 35 MeV/nucleon collisions. Phys. Rev. C 58, 953 (1998). https://doi.org/10.1103/PhysRevC.58.953

    Article  Google Scholar 

  34. T. Odeh, R. Bassini, M. Begemann-Blaich et al., Fragment kinetic energies and modes of fragment formation. Phys. Pev. Lett. 84, 4557 (2000). https://doi.org/10.1103/PhysRevLett.84.4557

    Article  Google Scholar 

  35. A.S. Hirsh, A. Bujak, J.E. Finn et al., Experimental results from high energy proton–nucleus interactions, critical phenomena, and the thermal liquid drop model of fragment production. Phys. Rev. C 29, 508 (1984). https://doi.org/10.1103/PhysRevC.29.508

    Article  Google Scholar 

  36. P.J. Siemens, J.O. Rasmussen, Evidence for a blast wave from compressed nuclear matter. Phys. Rev. Lett. 42, 880 (1979). https://doi.org/10.1103/PhysRevLett.42.880

    Article  Google Scholar 

  37. K.S. Lee, U. Heinz, E. Schnedermann, Search for collective transverse flow using particle transverse momentum spectra in relativistic heavy-ion collisions. Z. Phys. C 48, 525 (1990). https://doi.org/10.1007/BF01572035

    Article  Google Scholar 

  38. J. Su, L. Zhu, W.J. Xie et al., Nuclear temperatures from kinetic characteristics. Phys. Rev. C 85, 017604 (2012). https://doi.org/10.1103/PhysRevC.85.017604

    Article  Google Scholar 

  39. C.C. Guo, J. Su, F.S. Zhang, Comparison between nuclear thermometers in central Xe + Sn collision. Nucl. Sci. Technol. 24, 050513 (2013). https://doi.org/10.13538/j.1001-8042/nst.2013.05.013

    Google Scholar 

  40. X. Liu, W. Lin, M. Huang et al., Freezeout concept and dynamical transport model in intermediate-energy heavy-ion reactions. Phys. Rev. C 92, 014623 (2015). https://doi.org/10.1103/PhysRevC.92.014623

    Article  Google Scholar 

  41. X.Q. Liu, M.R. Huang, R. Wada et al., Symmetry energy extraction from primary fragments in intermediate heavy-ion collisions. Nucl. Sci. Tech. 26, S20508 (2015). https://doi.org/10.13538/j.1001-8042/nst.26.S20508

    Google Scholar 

  42. R. Ogul, A.S. Botvina, U. Atav et al., Isospin-dependent multifragmentation of relativistic projectiles. Phys. Rev. C 83, 024608 (2011). https://doi.org/10.1103/PhysRevC.83.024608

    Article  Google Scholar 

  43. A.S. Botvina, I.N. Mishustin, M. Begemann-Blaich et al., Multifragmentation of spectators in relativistic heavy-ion reactions. Nucl. Phys. A 584, 737 (1995). https://doi.org/10.1016/0375-9474(94)00621-S

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-Qing Fang.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 11421505, 11475244, and 11175231) and the National Key Research and Development Program of China (High Precision Nuclear Physics Experiments).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, ZF., Fang, DQ. & Ma, YG. Decay modes of highly excited nuclei. NUCL SCI TECH 29, 78 (2018). https://doi.org/10.1007/s41365-018-0427-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-018-0427-8

Keywords

Navigation