Skip to main content
Log in

Theoretical calculation and evaluation of n + 240,242,244Pu reactions

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The nuclear data of \({\text{n}}\,+\,^{240,242,244}\)Pu reactions for incident energy below 200 MeV are calculated and evaluated to meet the requirement in the design of an accelerator-driven subcritical system. The optical model is used to calculate the total, nonelastic, shape elastic cross sections, shape elastic scattering angular distributions, and transmission coefficients. The distorted-wave Born approximation is applied to calculate the direct inelastic scatterings to the discrete excited states. The nuclear reaction statistical models and fission theory are applied to describe neutron, proton, deuteron, triton, helium-3, alpha and \(\gamma\) emissions, and fission consistently. The results thus obtained are compared with experimental data and the evaluated data obtained from ENDF/B-VII.1 and JENDL-4.0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. C.D. Bowman, E.D. Arthur, P.W. Lisowski et al., Nuclear energy generation and waste transmutation using an accelerator-driven intense thermal neutron source. Nucl. Instrum. Meth. Phys. Res. A 320, 336–367 (1992). https://doi.org/10.1016/0168-9002(92)90795-6

    Article  Google Scholar 

  2. A.J. Koning, J.-P. Delaroche, O. Bersillon, Nuclear data for accelerator driven systems: nuclear models, experiments and data libraries. Nucl. Instrum. Meth. Phys. Res. A 414, 49–67 (1998). https://doi.org/10.1016/S0168-9002(98)00528-2

    Article  Google Scholar 

  3. H. Guo, Y. Han, T. Ye et al., Theoretical analysis and evaluation for neutron-induced reaction on \(^{239}\)Pu. Ann. Nucl. Energy 108, 151–162 (2017). https://doi.org/10.1016/j.anucene.2017.04.043

    Article  Google Scholar 

  4. K. Shibata, O. Iwamoto, T. Nakagawa et al., JENDL-4.0: a new library for nuclear science and engineering. J. Nucl. Sci. Technol. 48, 1–30 (2011). https://doi.org/10.1080/18811248.2011.9711675

    Article  Google Scholar 

  5. M.B. Chadwick, M. Herman, P. Oblozinsky et al., ENDF/B-VII.1 nuclear data for science and technology: cross sections, covariances, fission product yields and decay data. Nucl. Data Sheets 112, 2887–2996 (2011). https://doi.org/10.1016/j.nds.2011.11.002

    Article  Google Scholar 

  6. Y. Han, Y. Xu, H. Liang et al., Global phenomenological optical model potential of nucleon-actinide reaction for energies up to 300 MeV. Phys. Rev. C 81, 024616 (2010). https://doi.org/10.1103/PhysRevC.81.024616

    Article  Google Scholar 

  7. P.D. Kunz, Distorted Wave Code DWUCK4 (University of Colorado, Denver, 1994)

    Google Scholar 

  8. J. Zhang, A unified Hauser-Feshbach and exciton model for calculating double-differential cross sections of neutron-induced reactions below 20 MeV. Nucl. Sci. Eng. 114, 55–63 (1993). https://doi.org/10.13182/NSE93-3

    Article  Google Scholar 

  9. W. Dilg, W. Schantl, H. Vonach, Level density parameters for the back-shifted fermi gas model in the mass range 40\(<\)A\(<\)250. Nucl. Phys. A 217, 269–298 (1973). https://doi.org/10.1016/0375-9474(73)90196-6

    Article  Google Scholar 

  10. A. Iwamoto, K. Harada, Mechanism of cluster emission in nucleon-induced preequilibrium reactions. Phys. Rev. C 26, 1821–1834 (1982). https://doi.org/10.1103/PhysRevC.26.1821

    Article  Google Scholar 

  11. J. Zhang, S. Yan, C. Wang, The pick-up mechanism in composite particle emission processes. Z. Phys. A 344, 251–258 (1992). https://doi.org/10.1007/BF01303018

    Article  Google Scholar 

  12. A.V. Ignatyuk, G.N. Smirenkin, A.S. Tishin, Phenomenological description of the energy dependence of the level density parameter. Sov. J. Nucl. Phys. 21, 255 (1975)

    Google Scholar 

  13. Q. Shen et al., Monte-Carlo calculations of nucleon emitted and energy deposition in cylindrical targets induced by intermediate energy protons, in The 2nd international conference on accelerator-driven transmutation technologies and applications, Kalmar, Sweden (1997) p. 686

  14. C. Kalbach, F.M. Mann, Phenomenology of continuum angular distributions. I. Systematics and parametrization. Phys. Rev. C 23, 112–123 (1981). https://doi.org/10.1103/PhysRevC.23.112

    Article  Google Scholar 

  15. C. Kalbach, Systematics of continuum angular distributions: Extensions to higher energies. Phys. Rev. C 37, 2350–2370 (1988). https://doi.org/10.1103/PhysRevC.37.2350

    Article  Google Scholar 

  16. J. Zhang, UNF code for fast neutron reaction data calculations. Nucl. Sci. Eng. 142, 207–219 (2002). https://doi.org/10.13182/NSE02-02

    Article  Google Scholar 

  17. C. Cai, MEND: a program for calculating the complete set of nuclear data of medium-heavy nuclei in a medium-low energy region. Nucl. Sci. Eng. 153, 93 (2006). https://doi.org/10.13182/NSE05-06CCA

    Article  Google Scholar 

  18. Z. Wu, H. Liang, Y. Han, Theoretical calculations and evaluations of n+\(^{23}\)Na reaction. Nucl. Sci. Tech. 27, 102 (2016). https://doi.org/10.1007/s41365-016-0092-8

    Article  Google Scholar 

  19. Y. Han, Y. Shi, Q. Shen, Deuteron global optical model potential for energies up to 200 MeV. Phys. Rev. C 74, 044615 (2006). https://doi.org/10.1103/PhysRevC.74.044615

    Article  Google Scholar 

  20. Y. Xu, H. Guo, Y. Han et al., Applicability of the systematic helium-3 potential for triton-nucleus reactions. Int. J. Mod. Phys. E 24, 1550005 (2015). https://doi.org/10.1142/S0218301315500056

    Article  Google Scholar 

  21. Y. Xu, H. Guo, Y. Han et al., Helium-3 global optical model potential with energies below 250 MeV. Sci. China Phys. Mech. Astron. 54, 2005 (2011). https://doi.org/10.1007/s11433-011-4488-5

    Article  Google Scholar 

  22. X. Su, Y. Han, Global optical model potential for alpha projectile. Int. J. Mod. Phys. E 24, 1550092 (2015). https://doi.org/10.1142/S0218301315500925

    Article  Google Scholar 

  23. A. Gilbert, A.G.W. Cameron, A composite nuclear-level density formula with shell corrections. Can. J. Phys. 43, 1446–1496 (1965). https://doi.org/10.1139/p65-139

    Article  Google Scholar 

  24. N. Bohr, J.A. Wheeler, The mechanism of nuclear fission. Phys. Rev. 56, 426–450 (1939). https://doi.org/10.1103/PhysRev.56.426

    Article  MATH  Google Scholar 

  25. D.L. Hill, J.A. Wheeler, Nuclear constitution and the interpretation of fission phenomena. Phys. Rev. 89, 1102–1145 (1953). https://doi.org/10.1103/PhysRev.89.1102

    Article  MATH  Google Scholar 

  26. D.G. Madland, J.R. Nix, New calculation of prompt fission neutron spectra and average prompt neutron multiplicities. Nucl. Sci. Eng. 81, 213–271 (1982). https://doi.org/10.13182/NSE82-5

    Article  Google Scholar 

  27. A.B. Smith, J.F. Whalen, P. Lambropoulos, Fast neutron total and scattering cross sections of plutonium-240. Nucl. Sci. Eng. 47, 19–28 (1972). https://doi.org/10.13182/NSE72-A28417

    Article  Google Scholar 

  28. W.P. Poenitz, J.F. Whalen, A.B. Smith, Total neutron cross sections of heavy nuclei. Nucl. Sci. Eng. 78, 333–341 (1981). https://doi.org/10.13182/NSE81-A21367

    Article  Google Scholar 

  29. W. P. Poenitz, J. F. Whalen, Neutron total cross section measurements in the energy region from 47 keV to 20 MeV. ANL-NDM-80 (1983)

  30. A. B. Smith, P. T. Guenther, On neutron inelastic-scattering cross sections of \(^{232}\)Th, \(^{233}\)U, \(^{235}\)U, \(^{238}\)U, \(^{239}\)Pu and \(^{240}\)Pu. ANL-NDM-63 (1982)

  31. R.W. Hockenbury, W.R. Moyer, R.C. Block, Neutron Capture, Fission, and Total Cross Sections of \(^{240}\)Pu from 20 eV to 30 keV. Nucl. Sci. Eng. 49, 153–161 (1972). https://doi.org/10.13182/NSE72-A35503

    Article  Google Scholar 

  32. F. Tovesson, T.S. Hill, M. Mocko et al., Neutron induced fission of \(^{240,242}\)Pu from 1 eV to 200 MeV. Phys. Rev. C 79, 014613 (2009). https://doi.org/10.1103/PhysRevC.79.014613

    Article  Google Scholar 

  33. A.B. Laptev, AYu. Donets, V.N. Dushin et al., Neutron-induced fission cross sections of \(^{240}\)Pu, \(^{243}\)Am, and \(^{Nat}\)W in the energy range 1–200 MeV, in Proceedings of International Conference Nuclear Data for Science and Technology, Santa Fe (2004), pp. 865–869

  34. A. V. Fomichev, V.N. Dushin, S.M. Soloviev et al., Neutron induced fission cross sections For \(^{240}\)Pu, \(^{243}\)Am, \(^{209}\)Bi, \(^{nat}\)W measured relative to \(^{235}\)U in the energy range 1-350 MeV. RI-262 (2004)

  35. J.W. Behrens, R.S. Newbury, J.W. Magana, Measurements of the neutron-induced fission cross sections of \(^{240}\)Pu, \(^{242}\)Pu, and \(^{244}\)Pu relative to \(^{235}\)U from 0.1 to 30 MeV. Nucl. Sci. Eng. 66, 433–441 (1978). https://doi.org/10.13182/NSE78-A27227

    Article  Google Scholar 

  36. P. Staples, K. Morley, Neutron-induced fission cross section ratios for \(^{239}\)Pu, \(^{240}\)Pu, \(^{242}\)Pu, and \(^{244}\)Pu Relative to \(^{235}\)U from 0.5 to 400 MeV. Nucl. Sci. Eng. 129, 149–163 (1998). https://doi.org/10.13182/NSE98-A1969

    Article  Google Scholar 

  37. M. V. Savin, Yu.A. Khokhlov, Yu.S. Zamjatnin et al., The average number of prompt neutrons in fast neutron induced fission of \(^{235}\)U, \(^{239}\)Pu and \(^{240}\)Pu, in Nuclear Data for Reactors Conference, 2, Helsinki (1970), p. 157

  38. J. Frehaut, G. Mosinski, R. Bois et al., Measurement of the average number, nu-bar, of the prompt neutrons emitted in the \(^{240}\)Pu and \(^{241}\)Pu fission induced by neutrons of energy between 1.5 and 15 MeV. CEA-R-4626 (1974)

  39. V. G. Vorobeva, N.P. Dyachenko, B.D. Kuzminov et al., Determination of energy dependence of NU for uranium-238, plutonium-240 and plutonium-241 from an analysis of the fission energy balance. YK-15, 3 (1974)

  40. Yu. A. Khokhlov, I.A. Ivanin, V.I. Inkov et al., Measurement results of average neutron multiplicity from neutron induced fission of actinides in 0.5–10 MeV energy range, in Proceedings of International Conference Nuclear Data for Science and Technology, Gatlinburg (1994), p. 272

  41. T.E. Young, S.D. Reeder, Total neutron cross section of \(^{242}\)Pu. Nucl. Sci. Eng. 40, 389–395 (1970). https://doi.org/10.13182/NSE70-A20190

    Article  Google Scholar 

  42. M. S. Moore, P.W. Lisowski, G.L. Morgan et al., Total cross section of \(^{242}\)Pu between 0.7 and 170 MeV. in Conference on Nuclear Cross Sections for Technology, Knoxville (1979), p. 703

  43. D. M. Drake, M. Drosg, P. Lisowski, et al., Neutron scattering cross sections for Pu-242. LA-7855 (1979)

  44. G. Haouat, J. Lachkar, C.H. Lagrange et al., Neutron scattering cross sections for \(^{232}\)Th, \(^{233}\)U, \(^{235}\)U, \(^{238}\)U, \(^{239}\)Pu and \(^{242}\)Pu between 0.6 and 3.4 MeV. Nucl. Sci. Eng. 81, 491–511 (1982). https://doi.org/10.13182/NSE82-A21439

    Article  Google Scholar 

  45. R. W. Hockenbury, A. J. Sanislo, N. N. Kaushal, keV capture cross section of \(^{242}\)Pu, in Conference on Nuclear Cross Sections and Technology, 2, Washington (1975), p. 584

  46. M.Q. Buckner, C.Y. Wu, R.A. Henderson et al., Absolute measurement of the \(^{242}\)Pu neutron-capture cross section. Phys. Rev. C 93, 044613 (2016). https://doi.org/10.1103/PhysRevC.93.044613

    Article  Google Scholar 

  47. P. Salvador-Castineira, T. Brys, R. Eykens et al., Neutron induced fission cross sections of \(^{242}\)Pu from 0.3 MeV to 3 MeV. Phys. Rev. C 92, 044606 (2015). https://doi.org/10.1103/PhysRevC.92.044606

    Article  Google Scholar 

  48. C. Matei, F. Belloni, J. Heyse et al., Absolute cross section measurements of neutron-induced fission of \(^{242}\)Pu from 1 to 2.5 MeV. Phys. Rev. C 95, 024606 (2017). https://doi.org/10.1103/PhysRevC.95.024606

    Article  Google Scholar 

  49. M.S. Moore, J.A. Wartena, H. Weigmann et al., Neutron induced fission cross section of \(^{244}\)Pu. Nucl. Phys. A 393, 1–14 (1983). https://doi.org/10.1016/0375-9474(83)90061-1

    Article  Google Scholar 

  50. B. M. Gokhberg, S. M. Dubrovina, V. A. Shigin, Fast neutron fission cross-section of \(^{244}\)Pu. YFI-22, 10 (1976)

  51. E. F. Fomushkin, B.K. Maslennikov, G.F. Novoselov et al., Fission Threshold Measurement of \(^{244}\)Pu by Neutrons. YFI-22, 11 (1976)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yin-Lu Han.

Additional information

This work was supported by the National Natural Science Foundation of China-NSAF (No. U1630122) and IAEA Coordinated Research Projects (CRPs) on Recommended Input Parameter Library (RIPL) for Fission Cross Section Calculations (No. 20464).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, HR., Han, YL. & Cai, CH. Theoretical calculation and evaluation of n + 240,242,244Pu reactions. NUCL SCI TECH 30, 13 (2019). https://doi.org/10.1007/s41365-018-0533-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-018-0533-7

Keywords

Navigation