Skip to main content

Advertisement

Log in

Production of high-energy neutron beam from deuteron breakup

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The deuteron breakup on heavy targets has been investigated in the framework of an improved quantum molecular dynamics model, focusing on the production of neutrons near zero degrees. The experimental differential cross sections of neutron production in the 102 MeV d+C reactions were reproduced by simulations. Based on the consistency between the model prediction and experiment, the feasibility of producing a neutron beam through the breakup of deuteron on a carbon target was demonstrated. Because of the nucleon Fermi motion inside the deuteron, the energy spectrum of the inclusive neutron near \(0^\circ\) in the laboratory exhibits considerable energy broadening in the main peak, whereas the long tail on the low-energy side is suppressed. By coincidentally measuring the accompanying deuteron breakup proton, the energy of the neutron can be tagged with an intrinsic uncertainty of approximately 5% (1\(\sigma\)). The tagging efficiency of the accompanying proton on the forward-emitted neutron can reach 90%, which ensures that the differential cross section in the (d,np) channel remains two orders higher than that in (p,n) after considering the measurement of accompanying protons. This enables the application of a well-defined energy neutron beam in an event-by-event scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T.J.O. Gorman, J.M. Ross, A.H. Taber et al., Field testing for cosmic ray soft errors in semiconductor memories. IBM J. Res. Dev. 40, 41–50 (1996). https://doi.org/10.1147/rd.401.0041

    Article  Google Scholar 

  2. R.C. Baumann, Soft errors in advanced semiconductor devices-part I: the three radiation sources. IEEE Trans. Device Mater. Reliab. 1, 17–22 (2001). https://doi.org/10.1109/7298.946456

    Article  Google Scholar 

  3. P. Pomp, Tutorial on neutron physics in dosimetry. Radiat. Meas. 45, 1090 (2010). https://doi.org/10.1016/j.radmeas.2010.06.021

    Article  Google Scholar 

  4. T. Baumann, J. Boike, J. Brown et al., Construction of a modular large-area neutron detector for the NSCL. Nucl. Instrum. Meth. A 543, 517–527 (2005). https://doi.org/10.1016/j.nima.2004.12.020

    Article  ADS  Google Scholar 

  5. J. Klug, J. Blomgren, A. Ataç et al., SCANDAL-a facility for elastic neutron scattering studies in the 50–130 MeV range. Nucl. Instrum. Meth. A 489, 282–303 (2002). https://doi.org/10.1016/S0168-9002(02)00576-4

    Article  ADS  Google Scholar 

  6. R. Nolte, M.S. Allie, P.J. Binns et al., High-energy neutron reference fields for the calibration of detectors used in neutron spectrometry. Nucl. Instrum. Meth. A 476, 369–373 (2002). https://doi.org/10.1016/S0168-9002(01)01472-3

    Article  ADS  Google Scholar 

  7. M. Österlund, J. Blomgren, S. Pomp et al., The Uppsala neutron beam facility for electronics testing. Nucl. Instrum. Meth. B 241, 419–422 (2005). https://doi.org/10.1016/j.nimb.2005.07.052

    Article  ADS  Google Scholar 

  8. C. Andreani, A. Pietropaolo, A. Salsano et al., Facility for fast neutron irradiation tests of electronics at the ISIS spallation neutron source. Appl. Phys. Lett. 92, 114101 (2008). https://doi.org/10.1063/1.2897309

    Article  ADS  Google Scholar 

  9. L. Ren, Y. Han, J. Zhang et al., Neutronics analysis of a stacked structure for a subcritical system with LEU solution driven by a D-T neutron source for 99Mo production. Nucl. Sci. Tech. 32, 123 (2021). https://doi.org/10.1007/s41365-021-00968-x

    Article  Google Scholar 

  10. I.S. Anderson, C. Andreani, J.M. Carpenter et al., Research opportunities with compact accelerator-driven neutron sources. Phys. Rep. 654, 1 (2016). https://doi.org/10.1016/j.physrep.2016.07.007

    Article  ADS  Google Scholar 

  11. H. Harano, T. Matsumoto, Y. Tanimura et al., Monoenergetic and quasi-monoenergetic neutron reference fields in Japan. Radiat. Meas. 45, 1076–1082 (2010). https://doi.org/10.1016/j.radmeas.2010.07.006

    Article  Google Scholar 

  12. Y. Iwamoto, M. Hagiwara, D. Satoh et al., Characterization of high-energy quasi-monoenergetic neutron energy spectra and ambient dose equivalents of 80–389 MeV \(^7\)Li(p, n) reactions using a time-of-flight method. Nucl. Instrum. Meth. A 804, 50–58 (2015). https://doi.org/10.1016/j.nima.2015.09.045

    Article  Google Scholar 

  13. H.C. Urey, E.G. Brickwedde, G.M. Murphy, A hydrogen isotope of mass 2. Phys. Rev. 39, 164 (1932). https://doi.org/10.1103/PhysRev.39.164

    Article  ADS  Google Scholar 

  14. G.N. Lewis, N.S. Livingstone, E.O. Lawrence, The emission of alpha-particles from various targets bombarded by deutons of high speed. Phys. Rev. 44, 55 (1933). https://doi.org/10.1103/PhysRev.44.55

    Article  ADS  Google Scholar 

  15. J. Chadwick, M. Goldhaber, A nuclear photo-effect: disintegration of the diplon by -Rays. Nature 134, 237–238 (1934). https://doi.org/10.1038/134237a0

    Article  MATH  ADS  Google Scholar 

  16. G.M. Murphy, H. Johnston, The nuclear spin of deuterium. Phys. Rev. 46, 95 (1934). https://doi.org/10.1103/PhysRev.46.95

    Article  ADS  Google Scholar 

  17. J.M.B. Kellogg, I.I. Rabi, N.F. Ramsey et al., An electrical quadrupole moment of the deuteron. Phys. Rev. 55, 318 (1939). https://doi.org/10.1103/PhysRev.55.318

    Article  MATH  ADS  Google Scholar 

  18. N.K. Glendenning, G. Kramer, Nucleon-nucleon triplet-even potentials. Phys. Rev. 126, 2159 (1962). https://doi.org/10.1103/PhysRev.126.2159

    Article  ADS  Google Scholar 

  19. M. Garcon, J.W. Van Orden, The deuteron: structure and form factors, in Advances in Nuclear Physics. ed. by J.W. Negele et al. (Springer, New York, 2001)

    Google Scholar 

  20. G. Berg, J. Blomgren, J. Cameron et al., Measurements of the proton-neutron correlation in deuteron breakup at 260 MeV. IUCF Sci. and Tech. Rep. p. 70-75 (1992). https://hdl.handle.net/2022/610

  21. M. Jin, S. Xu, G. Yang et al., Yield of long-lived fission product transmutation using proton-, deuteron-, and alpha particle-induced spallation. Nucl. Sci. Tech. 32, 96 (2021). https://doi.org/10.1007/s41365-021-00933-8

    Article  Google Scholar 

  22. W. Qiu, W. Sun, J. Su, Neutronic analysis of deuteron-driven spallation target. Nucl. Sci. Tech. 32, 94 (2021). https://doi.org/10.1007/s41365-021-00932-9

    Article  Google Scholar 

  23. J. Aichelin, C. Hartnack, A. Bohnet et al., QMD versus BUU/VUU: same results from different theories. Phys. Lett. B 224(1–2), 34 (1989). https://doi.org/10.1016/0370-2693(89)91045-9

    Article  ADS  Google Scholar 

  24. J. Aichelin,“Quantum” molecular dynamics-a dynamical microscopic n-body approach to investigate fragment formation and the nuclear equation of state in heavy ion collisions. Phys. Rep. 202, 233-360 (1991). https://doi.org/10.1016/0370-1573(91)90094-3

  25. L. Ou, Z. Xiao, H. Yi et al., Dynamic Isovector Reorientation of Deuteron as a Probe to Nuclear Symmetry Energy. Phys. Rev. Lett. 115, 212501 (2015). https://doi.org/10.1103/PhysRevLett.115.212501

    Article  ADS  Google Scholar 

  26. H. Liu, N. Ma, R. Wang, Nuclear Fermi momenta of 2H, 27Al and 56Fe from an analysis of CLAS data. Nucl. Phys. A 1018, 122377 (2022). https://doi.org/10.1016/j.nuclphysa.2021.122377

    Article  Google Scholar 

  27. Y. Zhang, Z. Li, Probing the density dependence of the symmetry potential with peripheral heavy-ion collisions. Phys. Rev. C 71, 024604 (2005). https://doi.org/10.1103/PhysRevC.71.024604

    Article  ADS  Google Scholar 

  28. Y. Zhang, Z. Li, Elliptic flow and system size dependence of transition energies at intermediate energies. Phys. Rev. C 74, 014602 (2006). https://doi.org/10.1103/PhysRevC.74.014602

    Article  ADS  Google Scholar 

  29. L. Ou, Z. Li, X. Wu et al., A study of proton-induced spallation reactions by the improved quantum molecular dynamics model plus statistical decay models. J. Phys. G Nucl. Part. Phys. 36, 125104 (2009). https://doi.org/10.1088/0954-3899/36/12/125104

    Article  ADS  Google Scholar 

  30. L. Ou, Z. Li, X. Wu, Dynamical isospin effects in nucleon-induced reactions. Phys. Rev. C 78, 044609 (2008). https://doi.org/10.1103/PhysRevC.78.044609

    Article  ADS  Google Scholar 

  31. L. Ou, Z. Xiao, Orientation dichroism effect of proton scattering on deformed nuclei. Chin. Phys. C 44, 114103 (2020). https://doi.org/10.1088/1674-1137/abadf1

    Article  ADS  Google Scholar 

  32. Y. Zhang, N. Wang, Q.F. Li et al., Progress of quantum molecular dynamics model and its applications in heavy ion collisions. Front. Phys. 15(5), 54301 (2020). https://doi.org/10.1007/s11467-020-0961-9

    Article  ADS  Google Scholar 

  33. L.W. Chen, C.M. Ko, B.A. Li et al., Density slope of the nuclear symmetry energy from the neutron skin thickness of heavy nuclei. Phys. Rev. C 82, 024321 (2010). https://doi.org/10.1103/PhysRevC.82.024321

    Article  ADS  Google Scholar 

  34. M. Dutra, O. Lourenço, J.S. Sá Martins et al., Skyrme interaction and nuclear matter constraints. Phys. Rev. C 85, 035201 (2012). https://doi.org/10.1103/PhysRevC.85.035201

  35. Y. Zhang, Z.X. Li, C.S. Zhou et al., Effect of isospin-dependent cluster recognition on observables in heavy-ion collisions. Phys. Rev. C 85, 051602(R) (2012). https://doi.org/10.1103/PhysRevC.85.051602

    Article  ADS  Google Scholar 

  36. Z. Lin, L. Zheng, Further developments of a multi-phase transport model for relativistic nuclear collisions. Nucl. Sci. Tech. 32, 113 (2021). https://doi.org/10.1007/s41365-021-00944-5

    Article  Google Scholar 

  37. R.J. Charity, M.A. McMahan, G.J. Wozniak et al., Systematics of complex fragment emission in niobium-induced reactions. Nucl. Phys. A 483, 371–405 (1988). https://doi.org/10.1016/0375-9474(88)90542-8

    Article  ADS  Google Scholar 

  38. R.J. Charity, L.G. Sobotka, J. Cibor et al., Emission of unstable clusters from hot Yb compound nuclei. Phys. Rev. C 63, 024611 (2001). https://doi.org/10.1103/PhysRevC.63.024611

    Article  ADS  Google Scholar 

  39. S. Araki, Y. Watanabe, M. Kitajima et al., Systematic measurement of double-differential neutron production cross sections for deuteron-induced reactions at an incident energy of 102 MeV. Nucl. Instrum. Meth. A 842, 62–70 (2017). https://doi.org/10.1016/j.nima.2016.10.043

    Article  ADS  Google Scholar 

  40. Y. He, C. Guo, J. Su et al., Study on deuteron formation mechanism in nucleon-induced reactions. Nucl. Sci. Tech. 31, 84 (2020). https://doi.org/10.1007/s41365-020-00788-5

    Article  Google Scholar 

  41. W. Sun, W.W. Qiu, J. Su, Production of high-energy neutrons by interaction of a deuteron beam with matter. Appl. Radia. Isotopes 174, 109752 (2021). https://doi.org/10.1016/j.apradiso.2021.109752

    Article  Google Scholar 

  42. S.Y. Xu, G.M. Yang, M.T. Jin et al., Probing the deuteron breakup and linking the cross sections of residue production between the neutron- and deuteron-induced spallation at 500 MeV/nucleon. Phys. Rev. C 101, 024609 (2020). https://doi.org/10.1103/PhysRevC.101.024609

    Article  ADS  Google Scholar 

  43. T. Wakasa, S. Goto, M. Matsuno et al., Neutron production cross sections for (d,n) reactions at 55 MeV. Prog. Theor. Exp. Phys. 2017, 083D01 (2017). https://doi.org/10.1093/ptep/ptx099

  44. H. Okamura, S. Ishida, N. Sakamoto et al., Mechanism of the forward-angle (d, pn) reaction at intermediate energies. Phys. Rev. C 58, 2180 (1998). https://doi.org/10.1103/PhysRevC.58.2180

    Article  ADS  Google Scholar 

  45. S.D. Schery, L.E. Young, R.R. Doering et al., Activation and angular distribution measurements of 7Li(p, n)7Be(0.0+0.49 MeV) for \(E_p\)=25-45 MeV—a technique for absolute neutron yield determination. Nucl. Instrum. Meth. 147, 399–404 (1977). https://doi.org/10.1016/0029-554X(77)90275-0

  46. M. Baba, Y. Nauchi, T. Iwasaki et al., Characterization of a 40–90 MeV 7Li(p, n) neutron source at TIARA using a proton recoil telescope and a TOF method. Nucl. Instrum. Meth. A 428, 454 (1999). https://doi.org/10.1016/S0168-9002(99)00161-8

    Article  ADS  Google Scholar 

  47. T.N. Taddeuchi, C.A. Goulding, T.A. Carey et al., The (p, n) reaction as a probe of beta decay strength. Nucl. Phys. A 469, 125–172 (1987). https://doi.org/10.1016/0375-9474(87)90089-3

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Ren-Sheng Wang, Li Ou and Zhi-Gang Xiao. The first draft of the manuscript was written by Zhi-Gang Xiao and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ren-Sheng Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, RS., Ou, L. & Xiao, ZG. Production of high-energy neutron beam from deuteron breakup. NUCL SCI TECH 33, 92 (2022). https://doi.org/10.1007/s41365-022-01075-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-022-01075-1

Keywords

Navigation