Skip to main content

Advertisement

Log in

Nuclear dynamics and particle production near threshold energies in heavy-ion collisions

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Recent progress of the quantum molecular dynamics model for describing the dynamics of heavy-ion collisions is viewed, in particular the nuclear fragmentation, isospin physics, particle production and in-medium effect, hadron-induced nuclear reactions, hypernucleus, etc. The neck fragmentation in Fermi-energy heavy-ion collisions is investigated for extracting the symmetry energy at subsaturation densities. The isospin effects, in-medium properties, and the behavior of high-density symmetry energy in medium- and high-energy heavy-ion collisions are thoroughly discussed. The hypernuclide dynamics formed in heavy-ion collisions and in hadron-induced reactions is analyzed and addressed in the future experiments at the high-intensity heavy-ion accelerator facility (HIAF).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. E.A. Uehling, G.E. Uhlenbeck, Transport phenomena in Einstein-Bose and Fermi-Dirac gases. Phys. Rev. 43, 552 (1933). https://doi.org/10.1103/PhysRev.43.552

    Article  MATH  Google Scholar 

  2. G.F. Bertsch, S. Das Gupta, A guide to microscopic models for intermediate energy heavy ion collisions. Phys. Rep. 160, 189–233 (1988). https://doi.org/10.1016/0370-1573(88)90170-6

    Article  Google Scholar 

  3. J. Aichelin, H. Stöcker, Quantum molecular dynamics- A novel approach to N-body correlations in heavy ion collisions. Phys. Lett. B 176, 14–19 (1986). https://doi.org/10.1016/0370-2693(86)90916-0

    Article  Google Scholar 

  4. J. Aichelin, Quantum molecular dynamics—a dynamical microscopic N-body approach to investigate fragment formation and the nuclear equation of state in heavy ion collisions. Phys. Rep. 202, 233–360 (1991). https://doi.org/10.1016/0370-1573(91)90094-3

    Article  Google Scholar 

  5. J. Pochatlzalla, T. Möhlenkamp, T. Rubehn et al., Probing the nuclear liquid-gas phase transition. Phys. Rev. Lett. 1995, 75 (1040). https://doi.org/10.1103/PhysRevLett.75.1040

    Google Scholar 

  6. Y.G. Ma, Application of information theory in nuclear liquid gas phase transition. Phys. Rev. Lett. 83, 3617 (1999). https://doi.org/10.1103/PhysRevLett.83.3617

    Article  Google Scholar 

  7. E.V. Shuryak, Correlation functions in the QCD vacuum. Rev. Mod. Phys. 65, 1 (1993). https://doi.org/10.1103/RevModPhys.65.1

    Article  Google Scholar 

  8. W. Cassing, E.L. Bratkovskaya, Hadronic and electromagnetic probes of hot and dense nuclear matter. Phys. Rep. 308, 65 (1999). https://doi.org/10.1016/S0370-1573(98)00028-3

    Article  Google Scholar 

  9. J. Adams, M.M. Aggarwal, Z. Ahammed et al., Experimental and theoretical challenges in the search for the quark gluon plasma: the STAR Collaboration’s critical assessment of the evidence from RHIC collisions. Nucl. Phys. A 757, 102 (2005). https://doi.org/10.1016/j.nuclphysa.2005.03.085

    Article  Google Scholar 

  10. H. Song, Y. Zhou, K. Gajdošová, Collective flow and hydrodynamics in large and small systems at the LHC. Nucl. Sci. Tech. 28, 99 (2017). https://doi.org/10.1007/s41365-017-0245-4

    Article  Google Scholar 

  11. L. Adamczyk et al., (STAR Collaboration), Bulk properties of the medium produced in relativistic heavy-ion collisions from the beam energy scan program. Phys. Rev. C 96, 044904 (2017). https://doi.org/10.1103/PhysRevC.96.044904

  12. B.P. Abbott et al., (LIGO Scientific Collaboration and Virgo Collaboration). GW170817: Observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017). https://doi.org/10.1103/PhysRevLett.119.161101

  13. T.P. Li, S.L. Xiong, S.N. Zhang et al., Insight-HXMT observations of the first binary neutron star merger GW170817. Sci. China Phys. Mech. Astron. 61, 031011 (2018). https://doi.org/10.1007/s11433-017-9107-5

    Article  Google Scholar 

  14. J. Aichelin, C.M. Ko, Subthreshold kaon production as a probe of the nuclear equation of state. Phys. Rev. Lett. 55, 2661 (1985). https://doi.org/10.1103/PhysRevLett.55.2661

    Article  Google Scholar 

  15. C. Sturm, I. Böttche, M. Dȩbowski et al., Evidence for a soft nuclear equation-of-state from kaon production in heavy-ion collisions (KaoS Collaboration). Phys. Rev. Lett. 86, 39 (2001). https://doi.org/10.1103/PhysRevLett.86.39

    Article  Google Scholar 

  16. G.Q. Li, C.M. Ko, Subthreshold kaon production and the nuclear equation of state. Phys. Lett. B 349, 405 (1995). https://doi.org/10.1016/0370-2693(95)00301-Z

    Article  Google Scholar 

  17. C. Fuchs, A. Faessler, E. Zabrodin et al., Probing the nuclear equation of state by \(\text{K}^{+}\) production in heavy-ion collisions. Phys. Rev. Lett. 2001, 86 (1974). https://doi.org/10.1103/PhysRevLett.86.1974

    Google Scholar 

  18. C. Hartnack, H. Oeschler, J. Aichelin, Hadronic matter is soft. Phys. Rev. Lett. 96, 012302 (2006). https://doi.org/10.1103/PhysRevLett.96.012302

    Article  Google Scholar 

  19. Z.Q. Feng, Constraining the high-density behavior of the nuclear equation of state from strangeness production in heavy-ion collisions. Phys. Rev. C 83, 067604 (2011). https://doi.org/10.1103/PhysRevC.83.067604

    Article  Google Scholar 

  20. B.A. Li, Probing the high density behavior of the nuclear symmetry energy with high energy heavy-ion collisions. Phys. Rev. Lett. 88, 192701 (2002). https://doi.org/10.1103/PhysRevLett.88.192701

    Article  Google Scholar 

  21. Q. Li, Z. Li, E. Zhao et al., \(\Sigma ^{-}/\Sigma ^{+}\) ratio as a candidate for probing the density dependence of the symmetry potential at high nuclear densities. Phys. Rev. C 71, 054907 (2005). https://doi.org/10.1103/PhysRevC.71.054907

    Article  Google Scholar 

  22. G. Ferini, T. Gaitanos, M. Colonna et al., Isospin effects on subthreshold kaon production at intermediate energies. Phys. Rev. Lett. 97, 202301 (2006). https://doi.org/10.1103/PhysRevLett.97.202301

    Article  Google Scholar 

  23. M. Di Toro, V. Baran, M. Colonna et al., Probing the nuclear symmetry energy with heavy-ion collisions. J. Phys. G Nucl. Part Phys. 37, 083101 (2010). https://doi.org/10.1088/0954-3899/37/8/083101

    Article  Google Scholar 

  24. V. Prassa, T. Gaitanos, G. Ferini et al., Isospin effects on strangeness in heavy-ion collisions. Nucl. Phys. A 832, 88 (2010). https://doi.org/10.1016/j.nuclphysa.2009.11.009

    Article  Google Scholar 

  25. Z.Q. Feng, G.M. Jin, Dynamics of pion production in heavy-ion collisions around \(1A\) GeV energies. Phys. Rev. C 82, 044615 (2010). https://doi.org/10.1103/PhysRevC.82.044615

    Article  Google Scholar 

  26. Z.Q. Feng, G.M. Jin, Probing high-density behavior of symmetry energy from pion emission in heavy-ion collisions. Phys. Lett. B 683, 140–144 (2010). https://doi.org/10.1016/j.physletb.2009.12.006

    Article  Google Scholar 

  27. G.C. Yong, B.A. Li, Effects of nuclear symmetry energy on \(\eta \) meson production and its rare decay to the dark U-boson in heavy-ion reactions. Phys. Lett. B 723, 388 (2013). https://doi.org/10.1016/j.physletb.2013.05.059

    Article  Google Scholar 

  28. J. Chen, Z.Q. Feng, P.H. Chen et al., In-medium and isospin effects on eta production in heavy-ion collisions near threshold energies. Eur. Phys. J. A 53, 128 (2017). https://doi.org/10.1140/epja/i2017-12325-3

    Article  Google Scholar 

  29. V. Giordano, M. Colonna, M. Di Toro et al., Isospin emission and flow at high baryon density: a test of the symmetry potential. Phys. Rev. C 81, 044611 (2010). https://doi.org/10.1103/PhysRevC.81.044611

    Article  Google Scholar 

  30. Z.Q. Feng, Effective mass splitting of neutron and proton and isospin emission in heavy-ion collisions. Nucl. Phys. A 878, 3–13 (2012). https://doi.org/10.1016/j.nuclphysa.2012.01.014

    Article  Google Scholar 

  31. B.E. Gibson, E.V. Hungerford III, A survey of hypernuclear physics. Phys. Rep. 257, 349 (1995). https://doi.org/10.1016/0370-1573(94)00114-I

    Article  Google Scholar 

  32. E. Friedman, A. Gal, In-medium nuclear interactions of low-energy hadrons. Phys. Rep. 452, 89 (2007). https://doi.org/10.1016/j.physrep.2007.08.002

    Article  Google Scholar 

  33. M. Di Toro, B. Liu, V. Greco et al., Symmetry energy effects on the mixed hadron-quark phase at high baryon density. Phys. Rev. C 83, 014911 (2011). https://doi.org/10.1103/PhysRevC.83.014911

    Article  Google Scholar 

  34. G.Q. Li, C.H. Lee, G.E. Brown, Kaons in dense matter, kaon production in heavy-ion collisions, and kaon condensation in neutron stars. Nucl. Phys. A 625, 372 (1997). https://doi.org/10.1016/S0375-9474(97)00489-2

    Article  Google Scholar 

  35. G.Q. Li, G.E. Brown, \(\text{ K }^{+}\) versus \(\Lambda \) flow in relativistic heavy-ion collisions. Nucl. Phys. A 636, 487 (1998). https://doi.org/10.1016/S0375-9474(98)00206-1

    Article  Google Scholar 

  36. C. Fuchs, Kaon production in heavy ion reactions at intermediate energies. Prog. Part. Nucl. Phys. 56, 1 (2006). https://doi.org/10.1016/j.ppnp.2005.07.004

    Article  Google Scholar 

  37. C. Hartnack, H. Oeschler, Y. Leifels et al., Strangeness production close to the threshold in proton-nucleus and heavy-ion collisions. Phys. Rep. 510, 119 (2012). https://doi.org/10.1016/j.physrep.2011.08.004

    Article  Google Scholar 

  38. O. Hashimoto, H. Tamura, Spectroscopy of \(\Lambda \) hypernuclei. Prog. Part. Nucl. Phys. 57, 564 (2006). https://doi.org/10.1016/j.physrep.2011.08.004

    Article  Google Scholar 

  39. W.Z. Jiang, R.Y. Yang, D.R. Zhang, Symmetry energy softening in nuclear matter with non-nucleonic constituents. Phys. Rev. C 87, 064314 (2013). https://doi.org/10.1103/PhysRevC.87.064314

    Article  Google Scholar 

  40. W.Z. Jiang, R.Y. Yang, S.N. Wei, Strangeness to increase the density of finite nuclear systems in constraining the high-density nuclear equation of state. Nucl. Sci. Tech. 28, 180 (2017). https://doi.org/10.1007/s41365-017-0333-5

    Article  Google Scholar 

  41. S. Weissenborn, D. Chatterjee, J. Schaffner-Bielich, Hyperons and massive neutron stars: the role of hyperon potentials. Nucl. Phys. A 881, 62–77 (2012). https://doi.org/10.1016/j.nuclphysa.2012.02.012

    Article  Google Scholar 

  42. M. Danysz, J. Pniewski, Delayed disintegration of a heavy nuclear fragment: I. Philos. Mag. 44, 348 (1953). https://doi.org/10.1080/14786440308520318

    Article  Google Scholar 

  43. PANDA Collaboration, http://www-panda.gsi.de, arXiv: physics/0701090

  44. T.R. Saito, D. Nakajima, C. Rappold et al., Production of hypernuclei in peripheral HI collisions: the HypHI project at GSI. Nucl. Phys. A 881, 218 (2012). https://doi.org/10.1016/j.nuclphysa.2012.02.011

    Article  Google Scholar 

  45. S.T.A.R. Collaboration, Observation of an antimatter hypernucleus. Science 328, 58 (2010). https://doi.org/10.1126/science.1183980

    Article  Google Scholar 

  46. B. Dönigus et al., (ALICE Collaboration), (Anti-)matter and hyper-matter production at the LHC with ALICE. Nucl. Phys. A 904–905, 547c (2013). https://doi.org/10.1016/j.nuclphysa.2013.02.073

  47. NICA White Paper, http://theor.jinr.ru/twiki-cgi/view/NICA/WebHome

  48. H. Tamura, Strangeness nuclear physics experiments at J-PARC. Prog Theor Exp Phys, 02B012. (2012) https://doi.org/10.1093/ptep/pts056

  49. J.C. Yang, J.W. Xia, G.Q. Xiao et al., High Intensity heavy ion accelerator facility (HIAF) in China. Nucl. Inst. Methods B 317, 263–265 (2013). https://doi.org/10.1016/j.nimb.2013.08.046

    Article  Google Scholar 

  50. J. Rafelski, \(\overline{p}\) annihilation on heavy nuclei. Phys. Lett. B 91, 281 (1980). https://doi.org/10.1016/0370-2693(80)90450-5

    Article  Google Scholar 

  51. J. Rafelski, Quark-gluon plasma in 4 GeV/c antiproton annihilations on nuclei. Phys. Lett. B 207, 371 (1988). https://doi.org/10.1016/0370-2693(88)90666-1

    Article  Google Scholar 

  52. G. Peilert, J. Konopka, H. Stöker, W. Greiner, M. Blann, M.G. Mustafa, Dynamical treatment of Fermi motion in a microscopic description of heavy ion collisions. Phys. Rev. C 46, 1457 (1992). https://doi.org/10.1103/PhysRevC.46.1457

    Article  Google Scholar 

  53. M. Bleicher, E. Zabrodin, C. Spieles et al., Relativistic hadron-hadron collisions in the ultra-relativistic quantum molecular dynamics model. J. Phys. G Nucl. Part Phys. 1999, 25 (1859). https://doi.org/10.1088/0954-3899/25/9/308

    Google Scholar 

  54. T. Maruyama, A. Ohnishi, H. Horiuchi, Quantum molecular dynamics study of fusion and its fade out in the \(^{16}\text{ O }+^{16}\text{ O }\) system. Phys. Rev. C 42, 386 (1990). https://doi.org/10.1103/PhysRevC.42.386

    Article  Google Scholar 

  55. T. Maruyama, K. Niita, K. Oyamatsu et al., Quantum molecular dynamics approach to the nuclear matter below the saturation density. Phys. Rev. C 57, 655 (1998). https://doi.org/10.1103/PhysRevC.57.655

    Article  Google Scholar 

  56. C. Hartnack, R.K. Puri, J. Aichelin et al., Modelling the many-body dynamics of heavy ion collisions: present status and future perspective. Eur. Phys. J. A 1, 151 (1998). https://doi.org/10.1007/s100500050045

    Article  Google Scholar 

  57. L.W. Chen, F.S. Zhang, G.M. Jin, Analysis of isospin dependence of nuclear collective flow in an isospin-dependent quantum molecular dynamics model. Phys. Rev. C 58, 2283 (1998). https://doi.org/10.1103/PhysRevC.58.2283

    Article  Google Scholar 

  58. M. Papa, T. Maruyama, A. Bonasera, Constrained molecular dynamics approach to fermionic systems. Phys. Rev. C 64, 024612 (2001). https://doi.org/10.1103/PhysRevC.64.024612

    Article  Google Scholar 

  59. N. Wang, Z. Li, X. Wu, Improved quantum molecular dynamics model and its applications to fusion reaction near barrier. Phys. Rev. C 65, 064608 (2002). https://doi.org/10.1103/PhysRevC.65.064608

    Article  Google Scholar 

  60. N. Wang, L. Ou, Y. Zhang et al., Microscopic dynamics simulations of heavy-ion fusion reactions induced by neutron-rich nuclei. Phys. Rev. C 89, 064601 (2014). https://doi.org/10.1103/PhysRevC.89.064601

    Article  Google Scholar 

  61. J. Tian, X. Wu, K. Zhao et al., Properties of the composite systems formed in the reactions of \(^{238}\text{ U }+^{238}\text{ U }\) and \(^{232}\text{ Th }+^{250}\text{ Cf }\). Phys. Rev. C 77, 064603 (2008). https://doi.org/10.1103/PhysRevC.77.064603

    Article  Google Scholar 

  62. K. Zhao, Z. Li, X. Wu et al., Production probability of superheavy fragments at various initial deformations and orientations in the \(^{238}\text{ U }+^{238}\text{ U }\) reaction. Phys. Rev. C 88, 044605 (2013). https://doi.org/10.1016/PhysRevC.42.386

    Article  Google Scholar 

  63. Y. Zhang, M.B. Tsang, Z. Li et al., Constraints on nucleon effective mass splitting with heavy ion collisions. Phys. Lett. B 732, 186 (2014). https://doi.org/10.1016/j.physletb.2014.03.030

    Article  MathSciNet  Google Scholar 

  64. Z.Q. Feng, F.S. Zhang, G.M. Jin et al., Improved isospin dependent quantum molecular dynamics model and its application to fusion reactions near Coulomb barrier. Nucl. Phys. A 750, 232–244 (2005). https://doi.org/10.1016/j.nuclphysa.2005.01.001

    Article  Google Scholar 

  65. Z.Q. Feng, G.M. Jin, F.S. Zhang, Dynamical analysis on heavy-ion fusion reactions near Coulomb barrier. Nucl. Phys. A 802, 91–106 (2008). https://doi.org/10.1016/j.nuclphysa.2008.01.022

    Article  Google Scholar 

  66. W.B. He, Y.G. Ma, X.G. Cao et al., Giant dipole resonance as a fingerprint of \(\alpha \) clustering configurations in \({}^{12}\text{ C }\) and \({}^{16}\text{ O }\). Phys. Rev. Lett. 113, 032506 (2014). https://doi.org/10.1103/PhysRevLett.113.032506

    Article  Google Scholar 

  67. C. Tao, Y.G. Ma, G.Q. Zhang et al., Isoscalar giant monopole resonance in Sn isotopes using a quantum molecular dynamics model. Phys. Rev. C 88, 064615 (2013). https://doi.org/10.1103/PhysRevC.88.064615

    Article  Google Scholar 

  68. Z.Q. Feng, Dynamics of strangeness and collective flows in heavy-ion collisions near threshold energies. Nucl. Phys. A 919, 32–45 (2013). https://doi.org/10.1016/j.nuclphysa.2013.10.005

    Article  Google Scholar 

  69. Z.Q. Feng, W.J. Xie, P.H. Chen et al., In-medium and isospin effects on particle production near threshold energies in heavy-ion collisions. Phys. Rev. C 92, 044604 (2015). https://doi.org/10.1103/PhysRevC.92.044604

    Article  Google Scholar 

  70. Z.Q. Feng, H. Lenske, Particle production in antiproton-induced nuclear reactions. Phys. Rev. C 89, 044617 (2014). https://doi.org/10.1103/PhysRevC.89.044617

    Article  Google Scholar 

  71. Z.Q. Feng, Momentum dependence of the symmetry potential and its influence on nuclear reactions. Phys. Rev. C 84, 024610 (2011). https://doi.org/10.1103/PhysRevC.84.024610

    Article  Google Scholar 

  72. Z.Q. Feng, Nuclear in-medium effects and collective flows in heavy-ion collisions at intermediate energies. Phys. Rev. C 85, 014604 (2012). https://doi.org/10.1103/PhysRevC.85.014604

    Article  Google Scholar 

  73. G.M. Brown, W. Weise, Pion scattering and isobars in nuclei. Phys. Rep. 22, 279–337 (1975). https://doi.org/10.1016/0370-1573(75)90026-5

    Article  Google Scholar 

  74. Z.Q. Feng, Preequilibrium particle emissions and in-medium effects on the pion production in heavy-ion collisions. Eur. Phys. J. A 53, 30 (2017). https://doi.org/10.1140/epja/i2017-12217-6

    Article  Google Scholar 

  75. L. Xiong, C.M. Ko, V. Koch, Transport model with quasipions. Phys. Rev. C 47, 788 (1993). https://doi.org/10.1103/PhysRevC.47.788

    Article  Google Scholar 

  76. P.Z. Ning, Strangeness Nuclear Physics (in Chinese) (Science Press, Beijing, 2008)

    Google Scholar 

  77. J. Schaffner-Bielich, I.N. Mishustin, J. Bondorf, In-medium kaon production at the mean-field level. Nucl. Phys. A 625, 325 (1997). https://doi.org/10.1016/S0375-9474(97)81464-9

    Article  Google Scholar 

  78. A.B. Larionov, I.A. Pshenichnov, I.N. Mishustin et al., Antiproton-nucleus collisions simulation within a kinetic approach with relativistic mean fields. Phys. Rev. C 80, 021601(R) (2009). https://doi.org/10.1103/PhysRevC.80.021601

    Article  Google Scholar 

  79. J. Côté, M. Lacombe, B. Loiseau et al., Nucleon-antinucleon optical potential. Phys. Rev. Lett. 48, 1319–1322 (1982). https://doi.org/10.1103/PhysRevLett.48.1319

    Article  Google Scholar 

  80. D.J. Millener, C.B. Dover, A. Gal, \(\Lambda \)-nucleus single-particle potentials. Phys. Rev. C 38, 2700–2708 (1988). https://doi.org/10.1103/PhysRevC.38.2700

    Article  Google Scholar 

  81. J. Aichelin, A. Rosenhauer, G. Peilert et al., Importance of momentum-dependent interactions for the extraction of the nuclear equation of state from high-energy heavy-ion collisions. Phys. Rev. Lett. 1987, 58 (1926). https://doi.org/10.1103/PhysRevLett.58.1926

    Google Scholar 

  82. L. Catherine, L. François, Nucleon-nucleon elastic scattering and total cross sections. Rev. Mod. Phys. 65, 47 (1993). https://doi.org/10.1103/RevModPhys.65.47

    Article  Google Scholar 

  83. D. Persram, C. Gale, Elliptic flow in intermediate energy heavy ion collisions and in-medium effects. Phys. Rev. C 65, 064611 (2002). https://doi.org/10.1103/PhysRevC.65.064611

    Article  Google Scholar 

  84. B.A. Li, L.W. Chen, Nucleon-nucleon cross sections in neutron-rich matter and isospin transport in heavy-ion reactions at intermediate energies. Phys. Rev. C 72, 064611 (2005). https://doi.org/10.1103/PhysRevC.72.064611

    Article  Google Scholar 

  85. Z.Q. Feng, G.M. Jin, Pion production in heavy-ion collisions in the 1 A GeV region. Chin. Phys. Lett. 26, 062501 (2009). https://doi.org/10.1088/0256-307X/26/6/062501

    Article  Google Scholar 

  86. S. Huber, J. Aichelin, Production of \(\Delta \)- and \(\text{ N }^{\ast }\)- resonances in the one-boson exchange model. Nucl. Phys. A 573, 587–625 (1994). https://doi.org/10.1016/0375-9474(94)90232-1

    Article  Google Scholar 

  87. R. Holzmann, A. Schubert, S. Hlaváĉ et al., Pion reabsorption in heavy-ion collisions interpreted in terms of the \(\Delta \) capture process. Phys. Lett. B 366, 63 (1996). https://doi.org/10.1016/0370-2693(95)01342-3

    Article  Google Scholar 

  88. R. Holzmann, A. Schubert, S. Hlaváĉ, et al., Pion reabsorption in heavy-ion collisions interpreted in terms of the \(\Delta \) capture process [Phys. Lett. B 366 (1996) 63]. Phys Lett B, 375: 359 1996 (erratum). https://doi.org/10.1016/0370-2693(96)00207-9

  89. G. Wolf, W. Cassing, U. Mosel, Eta and dilepton production in heavy-ion reactions. Nucl. Phys. A 552, 549–570 (1993). https://doi.org/10.1016/0375-9474(93)90285-6

    Article  Google Scholar 

  90. B. Haar, R. Malfliet, Pion production, pion absorption, and nucleon properties in dense nuclear matter: relativistic Dirac-Brueckner approach at intermediate and high energies. Phys. Rev. C 36, 1611 (1987). https://doi.org/10.1103/PhysRevC.36.1611

    Article  Google Scholar 

  91. P. Danielewicz, G.F. Bertsch, Production of deuterons and pions in a transport model of energetic heavy-ion reactions. Nucl. Phys. A 533, 712–748 (1991). https://doi.org/10.1016/0375-9474(91)90541-D

    Article  Google Scholar 

  92. K.A. Olive et al., Review of particle physics. Chin. Phys. C 38, 090001 (2014). https://doi.org/10.1088/1674-1137/38/9/090001

    Article  Google Scholar 

  93. Z.Q. Feng, Nuclear fragmentation and charge-exchange reactions induced by pions in the \(\Delta \)-resonance region. Phys. Rev. C 94, 054617 (2016). https://doi.org/10.1103/PhysRevC.94.054617

    Article  Google Scholar 

  94. K. Tsushima, A. Sibirtsev, A.W. Thomas et al., Resonance model study of kaon production in baryon-baryon reactions for heavy-ion collisions. Phys. Rev. C 59, 369 (1999). https://doi.org/10.1103/PhysRevC.59.369

    Article  Google Scholar 

  95. K. Tsushima, S.W. Huang, A. Faessler, The role of the \(\Delta \)(1920) resonance for kaon production in heavy ion collisions. Phys. Lett. B 337, 245–253 (1994). https://doi.org/10.1016/0370-2693(94)90971-7

    Article  Google Scholar 

  96. K. Tsushima, S.W. Huang, A. Faessler, Resonance model of pi Delta to YK for kaon production in heavy-ion collisions. J Phys G 21, 33 (1995). https://doi.org/10.1088/0954-3899/21/1/005

    Article  Google Scholar 

  97. J. Cugnon, R.M. Lombard, \(\text{ K }^{+}\) production in a cascade model for high-energy nucleus-nucleus collisions. Nucl. Phys. A 422, 635–653 (1984). https://doi.org/10.1016/0375-9474(84)90369-5

    Article  Google Scholar 

  98. W. Cassing, E.L. Bratkovskaya, U. Mosel et al., Kaon versus antikaon production at SIS energies. Nucl. Phys. A 614, 415–432 (1997). https://doi.org/10.1016/S0375-9474(96)00461-7

    Article  Google Scholar 

  99. J. Cugnon, P. Deneye, J. Vandermeulen, Strangeness production in antiproton annihilation on nuclei. Phys. Rev. C 41, 1701 (1990). https://doi.org/10.1103/PhysRevC.41.1701

    Article  Google Scholar 

  100. Z.Q. Feng, Nuclear in-medium and isospin effects on subthreshold kaon production in heavy-ion collisions. Phys. Rev. C 87, 064605 (2013). https://doi.org/10.1103/PhysRevC.87.064605

    Article  Google Scholar 

  101. B.A. Li, A.T. Sustich, B. Zhang, C.M. Ko, Studies of superdense hadronic matter in a relativistic model. Int. J. Mod. Phys. E 10, 267 (2001). https://doi.org/10.1142/S0218301301000575

    Article  Google Scholar 

  102. Z.Q. Feng, Production of fragments and hyperfragments in antiproton-nucleus collisions. Phys. Rev. C 93, 041601(R) (2016). https://doi.org/10.1103/PhysRevC.93.041601

    Article  Google Scholar 

  103. O. Buss, T. Gaitanos, K. Gallmeister et al., Transport-theoretical description of nuclear reactions. Phys. Rep. 512, 1–124 (2012). https://doi.org/10.1016/j.physrep.2011.12.001

    Article  Google Scholar 

  104. E.S. Golubeva, A.S. Iljinov, B.V. Krippa, I.A. Pshenichnov, Effects of mesonic resonance production in annihilation of stopped antiprotons on nuclei. Nucl. Phys. A 537, 393–417 (1992). https://doi.org/10.1016/0375-9474(92)90362-N

    Article  Google Scholar 

  105. Z.Q. Feng, Nuclear fragmentation induced by low-energy antiprotons within a microscopic transport approach. Phys. Rev. C 94, 064601 (2016). https://doi.org/10.1103/PhysRevC.94.064601

    Article  Google Scholar 

  106. Z.Q. Feng, Unexpected neutron/proton ratio and isospin effect in low-energy antiproton-induced reactions. Phys. Rev. C 96, 034607 (2017). https://doi.org/10.1103/PhysRevC.96.034607

    Article  Google Scholar 

  107. P. Chomaz, M. Colonna, J. Randrup, Nuclear spinodal fragmentation. Phys. Rep. 389, 263 (2004). https://doi.org/10.1016/j.physrep.2003.09.006

    Article  Google Scholar 

  108. M. Colonna, Toro M. Di, A. Guarnera, V. Latora, A. Smerzi, Searching for instabilities in nuclear dynamics. Phys. Lett. B 307, 273 (1993). https://doi.org/10.1016/0370-2693(93)90218-7

    Article  Google Scholar 

  109. M. Colonna, M. Di Toro, A. Guarnera, Memory effects in nuclear fragmentation? Nucl. Phys. A 580, 313 (1994). https://doi.org/10.1016/0375-9474(94)90776-5

    Article  Google Scholar 

  110. H.Y. Wu, G.X. Dai, Evolution of the decay of highly excited nuclei. Phys. Rev. C 57, 3178 (1998). https://doi.org/10.1103/PhysRevC.57.3178

    Article  Google Scholar 

  111. H.Y. Wu, Z.G. Xiao, G.M. Jin et al., Evidence of slow relaxation of isospin degree of freedom. Phys. Lett. B 538, 39 (2002). https://doi.org/10.1016/S0370-2693(02)01971-8

    Article  Google Scholar 

  112. X.G. Deng, Y.G. Ma, Electromagnetic field effects on nucleon transverse momentum for heavy ion collisions around 100 A MeV. Nucl. Sci. Tech. 28, 182 (2017). https://doi.org/10.1007/s41365-017-0337-1

    Article  MathSciNet  Google Scholar 

  113. E. De Filippo, A. Pagano, Experimental effects of dynamics and thermodynamics in nuclear reactions on the symmetry energy as seen by the CHIMERA 4\(\pi \) detector. Eur. Phys. J. A 50, 32 (2014). https://doi.org/10.1140/epja/i2014-14032-y

    Article  Google Scholar 

  114. P. Russotto et al., Production cross sections for intermediate mass fragments from dynamical and statistical decay of projectile-like fragments in \(^{124}\text{ Sn }+^{64}\text{ Ni }\) and \(^{112}\text{ Sn }+^{58}\text{ Ni }\) collisions at \(35A\) MeV. Phys. Rev. C 91, 014610 (2015). https://doi.org/10.1103/PhysRevC.91.014610

    Article  Google Scholar 

  115. R.J. Charity, M.A. McMahan, G.J. Wozniak et al., Systemactics of complex fragment emission in niobium-induced reactions. Nucl. Phys. A 483, 371 (1988). https://doi.org/10.1016/0375-9474(88)90542-8

    Article  Google Scholar 

  116. Z.Q. Feng, Effects of isospin dynamics on neck fragmentation in isotopic nuclear reactions. Phys. Rev. C 94, 014609 (2016). https://doi.org/10.1103/PhysRevC.94.014609

    Article  Google Scholar 

  117. V. Baran, M. Colonna, M. Di Toro, Neck fragmentation reaction mechanism. Nucl. Phys. A 730, 329 (2004). https://doi.org/10.1016/j.nuclphysa.2003.10.022

    Article  Google Scholar 

  118. E. De Filippo, A. Pagano, P. Russotto et al., Correlations between emission timescale of fragments and isospin dynamics in \(^{124}\text{ Sn }+^{64}\text{ Ni }\) and \(^{112}\text{ Sn }+^{58}\text{ Ni }\) reactions at 35\(\textit{A}\) MeV. Phys. Rev. C 86, 014610 (2012). https://doi.org/10.1103/PhysRevC.86.014610

    Article  Google Scholar 

  119. D.D.S. Coupland, M. Youngs, Z. Chajecki et al., Probing effective nucleon masses with heavy-ion collisions. Phys. Rev. C 94, 011601(R) (2016). https://doi.org/10.1103/PhysRevC.94.011601

    Article  Google Scholar 

  120. Y.F. Guo, P.H. Chen, F. Niu et al., Isospin splitting of nucleon effective mass and symmetry energy in isotopic nuclear reactions. Chin. Phys. C 41, 104104 (2017). https://doi.org/10.1088/1674-1137/41/10/104104

    Article  Google Scholar 

  121. Z.Q. Feng, Transverse emission of isospin ratios as a probe of high-density symmetry energy in isotopic nuclear reactions. Phys. Lett. B 707, 83–87 (2012). https://doi.org/10.1016/j.physletb.2011.12.001

    Article  Google Scholar 

  122. C.W. Ma, C.Y. Qiao, T.T. Ding et al., Temperature of intermediate mass fragments in simulated \(^{40}\)Ca+\(^{40}\)Ca reactions around the Fermi energies by AMD model. Nucl. Sci. Tech. 27, 111 (2016). https://doi.org/10.1007/s41365-016-0112-8

    Article  Google Scholar 

  123. Z.Q. Feng, G.M. Jin, Dynamics of strangeness production in heavy-ion collisions near threshold energies. Phys. Rev. C 82, 057901 (2010). https://doi.org/10.1103/PhysRevC.82.057901

    Article  Google Scholar 

  124. W. Reisdorf et al., (FOPI Collaboration), Systematics of pion emission in heavy ion collisions in the 1\(A\) GeV regime. Nucl. Phys. A 781, 459 (2007). https://doi.org/10.1016/j.nuclphysa.2006.10.085

  125. R. Averbeck, R. Holzmann, V. Metag et al., Neutral pions and \(\eta \) mesons as probes of the hadronic fireball in nucleus-nucleus collisions around 1\(A\) GeV. Phys. Rev. C 67, 024903 (2003). https://doi.org/10.1103/PhysRevC.67.024903

    Article  Google Scholar 

  126. Z.Q. Feng, W.J. Xie, G.M. Jin, Nuclear in-medium effects of strange particles in proton-nucleus collisions. Phys. Rev. C 90, 064604 (2014). https://doi.org/10.1103/PhysRevC.90.064604

    Article  Google Scholar 

  127. F. Laue et al., (KaoS Collaboration), Medium effects in kaon and antikaon production in nuclear collisions at subthreshold beam energies. Phys. Rev. Lett. 82, 1640 (1999). https://doi.org/10.1103/PhysRevLett.82.1640

  128. A. Förster et al., (KaoS Collaboration), First evidence for different freeze-out conditions for kaons and antikaons observed in heavy-ion collisions. Phys. Rev. Lett. 91, 152301 (2003). https://doi.org/10.1103/PhysRevLett.91.152301

  129. W. Scheinast et al., (KaoS Collaboration), In-medium effects on phase space distributions of antikaons measured in proton-nucleus collisions. Phys. Rev. Lett. 96, 072301 (2006). https://doi.org/10.1103/PhysRevLett.96.072301

  130. A. Andronic, P. Braun-Munzinger, J. Stachel et al., Production of light nuclei, hypernuclei and their antiparticles in relativistic nuclear collisions. Phys. Lett. B 697, 203–207 (2011). https://doi.org/10.1016/j.physletb.2011.01.053

    Article  Google Scholar 

  131. R. Honda, M. Agnello, J.K. Ahn et al., Missing-mass spectroscopy with the \(^{6}\text{ Li }\)(\(\pi ^{-}, \text{ K }^{+}\))X reaction to search for \(_{\Lambda }^{6}\)H. Phys. Rev. C 96, 014005 (2017). https://doi.org/10.1103/PhysRevC.96.014005

    Article  Google Scholar 

  132. O. Chamberlain, E. Segrè, C. Wiegand et al., Observation of antiprotons. Phys. Rev. 100, 947 (1955). https://doi.org/10.1103/PhysRev.100.947

    Article  Google Scholar 

  133. O. Chamberlain, D.V. Keller, R. Mermod et al., Experiments on antiprotons: antiproton-nucleon cross sections. Phys. Rev. 108, 1553 (1957). https://doi.org/10.1103/PhysRev.108.1553

    Article  Google Scholar 

  134. L.E. Agnew et al., Antiproton interactions in hydrogen and carbon below 200 MeV. Phys. Rev. 118, 1371 (1960). https://doi.org/10.1103/PhysRev.118.1371

    Article  Google Scholar 

  135. LEAR Design Study Team, Design Study of a Facility for Experiments with Low Energy Antiprotons (LEAR), CERN Report CERN/PS/DL 80-7 (1980)

  136. J. Eades, F.J. Hartmann, Forty years of antiprotons. Rev. Mod. Phys. 71, 373 (1999). https://doi.org/10.1103/RevModPhys.71.373

    Article  Google Scholar 

  137. UA1 Collaboration, Experimental observation of isolated large transverse energy electrons with associated missing energy at s=540 GeV. Phys. Lett. B 122, 103–116 (1983). https://doi.org/10.1016/0370-2693(83)91177-2

  138. UA1 Collaboration, Further evidence for charged intermediate vector bosons at the SPS collider. Phys. Lett. B 129, 273–282 (1983). https://doi.org/10.1016/0370-2693(83)90860-2

  139. M. Amoretti et al., Production and detection of cold antihydrogen atoms. Nature 419, 456–459 (2002). https://doi.org/10.1038/nature01096

    Article  Google Scholar 

  140. The STAR Collaboration, Measurement of interaction between antiprotons. Nature 527, 345–348 (2015). https://doi.org/10.1038/nature15724

  141. D. Polster, D. Hilscher, H. Rossner et al., Light particle emission induced by stopped antiprotons in nuclei: energy dissipation and neutron-to-proton ratio. Phys. Rev. C 51, 1167 (1995). https://doi.org/10.1103/PhysRevC.51.1167

    Article  Google Scholar 

  142. J. Cugnon, P. Deneye, J. Vandermeulen, Multipion dynamics following antiproton annihilation on nuclei. Nucl. Phys. A 500, 701–730 (1989). https://doi.org/10.1016/0375-9474(89)90236-4

    Article  Google Scholar 

  143. C.M. Ko, R. Yuan, Lambda production from anti-proton annihilation in nuclei. Phys. Lett. B 192, 31–34 (1987). https://doi.org/10.1016/0370-2693(87)91136-1

    Article  Google Scholar 

  144. A.B. Larionov, T. Gaitanos, U. Mosel, Kaon and hyperon production in antiproton-induced reactions on nuclei. Phys. Rev. C 85, 024614 (2012). https://doi.org/10.1103/PhysRevC.85.024614

    Article  Google Scholar 

  145. A.B. Larionov, Antiproton-nucleus reactions at intermediate energies. Nucl. Sci. Tech. 26, S20506 (2015). https://doi.org/10.13538/j.1001-8042/nst.26.S20506

    Google Scholar 

  146. J.P. Bondorf, A.S. Botvina, A.S. Iljinov et al., Statistical multifragmentation of nuclei. Phys. Rep. 257, 133 (1995). https://doi.org/10.1016/0370-1573(94)00097-M

    Article  Google Scholar 

  147. Z.Q. Feng, Nuclear dynamics induced by antiprotons. Nucl. Sci. Tech. 26, S20512 (2015). https://doi.org/10.13538/j.1001-8042/nst.26.S20512

    Google Scholar 

  148. H. Takahashi et al., Observation of a \(_{\Lambda \Lambda }^{6}\)He double hypernucleus. Phys. Rev. Lett. 87, 212502 (2001). https://doi.org/10.1103/PhysRevLett.87.212502

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao-Qing Feng.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 11675226 and 11722546) and the Major State Basic Research Development Program of China (Nos. 2014CB845405 and 2015CB856903).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, ZQ. Nuclear dynamics and particle production near threshold energies in heavy-ion collisions. NUCL SCI TECH 29, 40 (2018). https://doi.org/10.1007/s41365-018-0379-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-018-0379-z

Keywords

Navigation