Skip to main content
Log in

Collective flow and nuclear stopping in heavy ion collisions in Fermi energy domain

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The effects of the in-medium nucleon–nucleon (NN) elastic cross section on the observables in heavy ion collisions in the Fermi energy domain are investigated within the framework of the ultrarelativistic quantum molecular dynamics model. The results simulated using medium correction factors of \({\mathcal{F}}=\sigma ^{\mathrm{in-medium}}_\mathrm{NN}/ \sigma ^{\mathrm{free}}_\mathrm{NN}=0.2,~0.3,~0.5,\) and the density- and momentum-dependent factor obtained from the FU3FP1 parametrization are compared with the FOPI and INDRA experimental data. It is found that the calculations using the correction factors \({\mathcal{F}} =\) 0.2 and 0.5 reproduce the experimental data (i.e., collective flow and nuclear stopping) at 40 and 150 MeV/nucleon, respectively. Calculations with the FU3FP1 parametrization can best fit these experimental data. These conclusions can be confirmed in both \(^{197}\text{Au}+^{197}\text{Au}\) and \(^{129}\text{Xe}+^{120}\text{Sn}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Aichelin, “Quantum” molecular dynamics—a dynamical microscopic n-body approach to investigate fragment formation and the nuclear equation of state in heavy ion collisions. Phys. Rep. 202, 233 (1991). https://doi.org/10.1016/0370-1573(91)90094-3

    Article  Google Scholar 

  2. G.F. Bertsch, S. Das Gupta, A guide to microscopic models for intermediate energy heavy ion collisions. Phys. Rep. 160, 189 (1988). https://doi.org/10.1016/0370-1573(88)90170-6

    Article  Google Scholar 

  3. J. Xu, L.W. Chen, M.B. Tsang et al., Understanding transport simulations of heavy-ion collisions at \(100A\) and \(400A\) MeV: comparison of heavy-ion transport codes under controlled conditions. Phys. Rev. C 93, 044609 (2016). https://doi.org/10.1103/PhysRevC.93.044609

    Article  Google Scholar 

  4. Y.X. Zhang, Y.J. Wang, M. Colonna et al., Comparison of heavy-ion transport simulations: collision integral in a box. Phys. Rev. C 97, 034625 (2018). https://doi.org/10.1103/PhysRevC.97.034625

    Article  Google Scholar 

  5. Z.F. Zhang, D.Q. Fang, Y.G. Ma, Decay modes of highly excited nuclei. Nucl. Sci. Tech. 29, 78 (2018). https://doi.org/10.1007/s41365-018-0427-8

    Article  Google Scholar 

  6. P. Danielewicz, R. Lacey, W.G. Lynch, Determination of the equation of state of dense matter. Science 298, 1592 (2002). https://doi.org/10.1126/science.1078070

    Article  Google Scholar 

  7. X.G. Deng, Y.G. Ma, Electromagnetic field effects on nucleon transverse momentum for heavy ion collisions around 100?\(A\)?MeV. Nucl. Sci. Tech. 28, 182 (2017). https://doi.org/10.1007/s41365-017-0337-1

    Article  MathSciNet  Google Scholar 

  8. Y.J. Wang, C.C. Guo, Q.F. Li, A. Le Fèvre, Y. Leifels, W. Trautmann, Determination of the nuclear incompressibility from the rapidity-dependent elliptic flow in heavy-ion collisions at beam energies 0.4 A–1.0 A GeV. Phys. Lett. B 778, 207 (2018). https://doi.org/10.1016/j.physletb.2018.01.035

    Article  Google Scholar 

  9. H.M. Xu, Disappearance of flow and the in-medium nucleon–nucleon cross section. Phys. Rev. C 46, R389 (1992). https://doi.org/10.1103/PhysRevC.46.R389

    Article  Google Scholar 

  10. G.D. Westfall, W. Bauer, D. Craig et al., Mass dependence of the disappearance of flow in nuclear collisions. Phys. Rev. Lett. 71, 1986 (1993). https://doi.org/10.1103/PhysRevLett.71.1986

    Article  Google Scholar 

  11. B.A. Li, A.T. Sustich, Differential flow in heavy-ion collisions at balance energies. Phys. Rev. Lett. 82, 5004 (1999). https://doi.org/10.1103/PhysRevLett.82.5004

    Article  Google Scholar 

  12. D.J. Magestro, W. Bauer, G.D. Westfall, Isolation of the nuclear compressibility with the balance energy. Phys. Rev. C 62, 041603 (2000). https://doi.org/10.1103/PhysRevC.62.041603

    Article  Google Scholar 

  13. J.Y. Liu, W.J. Guo, S.J. Wang et al., Nuclear stopping as a probe for in-medium nucleon–nucleon cross sections in intermediate energy heavy ion collisions. Phys. Rev. Lett. 86, 975 (2001). https://doi.org/10.1103/PhysRevLett.86.975

    Article  Google Scholar 

  14. D. Persram, C. Gale, Elliptic flow in intermediate energy heavy ion collisions and in-medium effects. Phys. Rev. C 65, 064611 (2002). https://doi.org/10.1103/PhysRevC.65.064611

    Article  Google Scholar 

  15. T. Gaitanos, C. Fuchs, H.H. Wolter, Nuclear stopping and flow in heavy-ion collisions and the in-medium NN cross section. Phys. Lett. B 609, 241 (2005). https://doi.org/10.1016/j.physletb.2005.01.069

    Article  Google Scholar 

  16. B.A. Li, P. Danielewicz, W.G. Lynch, Probing the isospin dependence of the in-medium nucleon–nucleon cross sections with radioactive beams. Phys. Rev. C 71, 054603 (2005). https://doi.org/10.1103/PhysRevC.71.054603

    Article  Google Scholar 

  17. B.A. Li, L.W. Chen, Nucleon–nucleon cross sections in neutron-rich matter and isospin transport in heavy-ion reactions at intermediate energies. Phys. Rev. C 72, 064611 (2005). https://doi.org/10.1103/PhysRevC.72.064611

    Article  Google Scholar 

  18. Q.F. Li, Z.X. Li, S. Soff et al., Medium modifications of the nucleon–nucleon elastic cross section in neutron-rich intermediate energy HICs. J. Phys. G Nucl. Part. Phys. 32, 407 (2006). https://doi.org/10.1088/0954-3899/32/4/001

    Article  Google Scholar 

  19. Y.X. Zhang, Z.X. Li, Elliptic flow and system size dependence of transition energies at intermediate energies. Phys. Rev. C 74, 014602 (2006). https://doi.org/10.1103/PhysRevC.74.014602

    Article  Google Scholar 

  20. Y.X. Zhang, Z.X. Li, P. Danielewicz, In-medium \(\rm NN\) cross sections determined from the nuclear stopping and collective flow in heavy-ion collisions at intermediate energies. Phys. Rev. C 75, 034615 (2007). https://doi.org/10.1103/PhysRevC.75.034615

    Article  Google Scholar 

  21. Y. Yuan, Q.F. Li, Z.X. Li et al., Transport model study of nuclear stopping in heavy-ion collisions over the energy range from \(0.09A\) to \(160A\) GeV. Phys. Rev. C 81, 034913 (2010). https://doi.org/10.1103/PhysRevC.81.034913

    Article  Google Scholar 

  22. G.Q. Zhang, Y.G. Ma, X.G. Cao et al., Unified description of nuclear stopping in central heavy-ion collisions from 10\(A\) MeV to 1.2\(A\) GeV. Phys. Rev. C 84, 034612 (2011). https://doi.org/10.1103/PhysRevC.84.034612

    Article  Google Scholar 

  23. D.D.S. Coupland, W.G. Lynch, M.B. Tsang et al., Influence of transport variables on isospin transport ratios. Phys. Rev. C 84, 054603 (2011). https://doi.org/10.1103/PhysRevC.84.054603

    Article  Google Scholar 

  24. Z.Q. Feng, Nuclear in-medium effects and collective flows in heavy-ion collisions at intermediate energies. Phys. Rev. C 85, 014604 (2012). https://doi.org/10.1103/PhysRevC.85.014604

    Article  Google Scholar 

  25. Y.X. Zhang, D.D.S. Coupland, P. Danielewicz et al., Influence of in-medium \(\rm {NN}\) cross sections, symmetry potential, and impact parameter on isospin observables. Phys. Rev. C 85, 024602 (2012). https://doi.org/10.1103/PhysRevC.85.024602

    Article  Google Scholar 

  26. J. Su, ChY Huang, W.J. Xie et al., Effects of in-medium nucleon–nucleon cross sections on stopping observable and ratio of free protons in heavy-ion collisions at 400 MeV/nucleon. Eur. Phys. J. A 52, 207 (2016). https://doi.org/10.1140/epja/i2016-16207-x

    Article  Google Scholar 

  27. W.G. Love, M.A. Franey, Effective nucleon–nucleon interaction for scattering at intermediate energies. Phys. Rev. C 24, 3 (1981). https://doi.org/10.1103/PhysRevC.24.1073

    Article  Google Scholar 

  28. G.Q. Li, R. Machleidt, Microscopic calculation of in-medium nucleon–nucleon cross sections. Phys. Rev. C 48, 1702 (1993). https://doi.org/10.1103/PhysRevC.48.1702

    Article  Google Scholar 

  29. G.Q. Li, R. Machleidt, Microscopic calculation of in-medium proton–proton cross sections. Phys. Rev. C 49, 566 (1994). https://doi.org/10.1103/PhysRevC.49.566

    Article  Google Scholar 

  30. G.J. Mao, Z.X. Li, Y.Z. Zhuo et al., Medium effects on the NN inelastic cross section in relativistic heavy-ion collisions. Phys. Lett. B 327, 183 (1994). https://doi.org/10.1016/0370-2693(94)90715-3

    Article  Google Scholar 

  31. G.J. Mao, Z.X. Li, Y.Z. Zhuo et al., Study of in-medium NN inelastic cross section from relativistic Boltzmann–Uehling–Uhlenbeck approach. Phys. Rev. C 49, 3137 (1994). https://doi.org/10.1103/PhysRevC.49.3137

    Article  Google Scholar 

  32. T. Alm, G. Röpke, W. Bauer et al., The in-medium nucleon–nucleon cross section and BUU simulations of heavy-ion reactions. Nucl. Phys. A 587, 815 (1995). https://doi.org/10.1016/0375-9474(95)00026-W

    Article  Google Scholar 

  33. H.J. Schulze, A. Schnell, G. Ropke et al., Nucleon–nucleon cross sections in nuclear matter. Phys. Rev. C 55, 3006 (1997). https://doi.org/10.1103/PhysRevC.55.3006

    Article  Google Scholar 

  34. C. Fuchs, A. Faessler, M. El-Shabshiry, Off-shell behavior of the in-medium nucleon–nucleon cross section. Phys. Rev. C 64, 024003 (2001). https://doi.org/10.1103/PhysRevC.64.024003

    Article  Google Scholar 

  35. F. Sammarruca, P. Krastev, Effective nucleon–nucleon cross sections in symmetric and asymmetric nuclear matter. Phys. Rev. C 73, 014001 (2006). https://doi.org/10.1103/PhysRevC.73.014001

    Article  Google Scholar 

  36. H.F. Zhang, Z.H. Li, U. Lombardo et al., Nucleon–nucleon cross sections in dense nuclear matter. Phys. Rev. C 76, 054001 (2007). https://doi.org/10.1103/PhysRevC.76.054001

    Article  Google Scholar 

  37. H.F. Zhang, U. Lombardo, W. Zuo, Transport parameters in neutron stars from in-medium NN cross sections. Phys. Rev. C 82, 015805 (2010). https://doi.org/10.1103/PhysRevC.82.015805

    Article  Google Scholar 

  38. Q.F. Li, Z.X. Li, G.J. Mao, Isospin dependence of nucleon–nucleon elastic cross section. Phys. Rev. C 62, 014606 (2000). https://doi.org/10.1103/PhysRevC.62.014606

    Article  Google Scholar 

  39. Q.F. Li, Z.X. Li, E.G. Zhao, Density and temperature dependence of nucleon–nucleon elastic cross section. Phys. Rev. C 69, 017601 (2004). https://doi.org/10.1103/PhysRevC.69.017601

    Article  Google Scholar 

  40. Q.F. Li, Z.X. Li, The isospin dependent nucleon–nucleon inelastic cross section in the nuclear medium. Phys. Lett. B 773, 557 (2017). https://doi.org/10.1016/j.physletb.2017.09.013

    Article  Google Scholar 

  41. J. Chen, Z.Q. Feng, J.S. Wang, Nuclear in-medium effects on \(\eta\) dynamics in proton–nucleus collisions. Nucl. Sci. Tech. 27, 73 (2016). https://doi.org/10.1007/s41365-016-0069-7

    Article  Google Scholar 

  42. O. Lopez, D. Durand, G. Lehaut et al., (INDRA Collaboration), In-medium effects for nuclear matter in the Fermi-energy domain. Phys. Rev. C 90, 064602 (2014). https://doi.org/10.1103/PhysRevC.90.064602

    Article  Google Scholar 

  43. B. Rubina, K. Mandeep, K. Suneel, Correlation between directed transverse flow and nuclear stopping around the energy of vanishing flow. Indian J. Phys. 89, 967 (2015). https://doi.org/10.1007/s12648-015-0672-1

    Article  Google Scholar 

  44. Z. Basrak, P. Eudes, V. de la Mota, Aspects of the momentum dependence of the equation of state and of the residual \(\rm {NN}\) cross section, and their effects on nuclear stopping. Phys. Rev. C 93, 054609 (2016). https://doi.org/10.1103/PhysRevC.93.054609

    Article  Google Scholar 

  45. H.L. Liu, Y.G. Ma, A. Bonasera et al., Mean free path and shear viscosity in central \(^{129}{\rm Xe}+^{119}{\rm Sn}\) collisions below 100 MeV/nucleon. Phys. Rev. C 96, 064604 (2017). https://doi.org/10.1103/PhysRevC.96.064604

    Article  Google Scholar 

  46. Y.Z. Xing, H.F. Zhang, X.B. Liu et al., Pauli-blocking effect in two-body collisions dominates the in-medium effects in heavy-ion reactions near Fermi energy. Nucl. Phys. A 957, 135 (2017). https://doi.org/10.1016/j.nuclphysa.2016.08.006

    Article  Google Scholar 

  47. Z.Q. Feng, Nuclear dynamics and particle production near threshold energies in heavy-ion collisions. Nucl. Sci. Tech. 29, 40 (2018). https://doi.org/10.1007/s41365-018-0379-z

    Article  Google Scholar 

  48. B.A. Li, B.J. Cai, L.W. Chen et al., Isospin dependence of nucleon effective masses in neutron-rich matter. Nucl. Sci. Tech. 27, 141 (2016). https://doi.org/10.1007/s41365-016-0140-4

    Article  Google Scholar 

  49. Q.F. Li, Z.X. Li, S. Soff et al., Probing the equation of state with pions. J. Phys. G 32, 151 (2006). https://doi.org/10.1088/0954-3899/32/2/007

    Article  Google Scholar 

  50. Q.F. Li, C.W. Shen, C.C. Guo et al., Nonequilibrium dynamics in heavy-ion collisions at low energies available at the GSI Schwerionen Synchrotron. Phys. Rev. C 83, 044617 (2011). https://doi.org/10.1103/PhysRevC.83.044617

    Article  Google Scholar 

  51. Y.J. Wang, C.C. Guo, Q.F. Li et al., Constraining the high-density nuclear symmetry energy with the transverse-momentum-dependent elliptic flow. Phys. Rev. C 89, 044603 (2014). https://doi.org/10.1103/PhysRevC.89.044603

    Article  Google Scholar 

  52. Y.J. Wang, C.C. Guo, Q.F. Li et al., Collective flow of light particles in Au + Au collisions at intermediate energies. Phys. Rev. C 89, 034606 (2014). https://doi.org/10.1103/PhysRevC.89.034606

    Article  Google Scholar 

  53. Y.J. Wang, C.C. Guo, Q.F. Li et al., Influence of differential elastic nucleon–nucleon cross section on stopping and collective flow in heavy-ion collisions at intermediate energies. Phys. Rev. C 94, 024608 (2016). https://doi.org/10.1103/PhysRevC.94.024608

    Article  Google Scholar 

  54. C. Hartnack, R.K. Puri, J. Aichelin et al., Modelling the many-body dynamics of heavy ion collisions: present status and future perspective. Eur. Phys. J. A 1, 151 (1998). https://doi.org/10.1007/s100500050045

    Article  Google Scholar 

  55. Y.J. Wang, C.C. Guo, Q.F. Li et al., 3H/3He ratio as a probe of the nuclear symmetry energy at sub-saturation densities. Eur. Phys. J. A 51, 37 (2015). https://doi.org/10.1140/epja/i2015-15037-8

    Article  Google Scholar 

  56. P.C. Li, Y.J. Wang, Q.F. Li, H.F. Zhang, Effects of the in-medium nucleon-nucleon cross section on collective flow and nuclear stopping in heavy-ion collisions in the Fermi-energy domain. Phys. Rev. C 97, 044620 (2018). https://doi.org/10.1103/PhysRevC.97.044620

    Article  Google Scholar 

  57. Q.F. Li, C.W. Shen, M. Di Toro, Probing the momentum-dependent medium modifications of the nucleon–nucleon elastic cross section. Mod. Phys. Lett. A 25, 669 (2010). https://doi.org/10.1142/S0217732310032846

    Article  Google Scholar 

  58. W.M. Guo, G.C. Yong, Y.J. Wang, Q.F. Li, H.F. Zhang, W. Zuo, Model dependence of isospin sensitive observables at high densities. Phys. Lett. B 726, 211 (2013). https://doi.org/10.1016/j.physletb.2013.07.056

    Article  Google Scholar 

  59. H. Kruse, B.V. Jacak, J.J. Molitoris et al., Vlasov–Uehling–Uhlenbeck theory of medium energy heavy ion reactions: role of mean field dynamics and two body collisions. Phys. Rev. C 31, 1770 (1985). https://doi.org/10.1103/PhysRevC.31.1770

    Article  Google Scholar 

  60. P. Russotto, P.Z. Wu, M. Zoric et al., Symmetry energy from elliptic flow in 197Au+197Au. Phys. Lett. B 697, 471 (2011). https://doi.org/10.1016/j.physletb.2011.02.033

    Article  Google Scholar 

  61. Q.F. Li, Y.J. Wang, X.B. Wang et al., Influence of coalescence parameters on the production of protons and Helium-3 fragments. Sci. China Phys. Mech. Astron. 59, 672013 (2016). https://doi.org/10.1007/s11433-016-0120-3

    Article  Google Scholar 

  62. Q.F. Li, Y.J. Wang, X.B. Wang et al., Rapidity distribution of protons from the potential version of UrQMD model and the traditional coalescence afterburner. Sci. China Phys. Mech. Astron. 59, 622001 (2016). https://doi.org/10.1007/s11433-015-5768-2

    Article  Google Scholar 

  63. Q.F. Li, Y.J. Wang, X.B. Wang et al., Helium-3 production from Pb+Pb collisions at SPS energies with the UrQMD model and the traditional coalescence afterburner. Sci. China Phys. Mech. Astron. 59, 622001 (2016). https://doi.org/10.1007/s11433-015-5775-3

    Article  Google Scholar 

  64. Y.X. Zhang, Z.X. Li, C.S. Zhou et al., Effect of isospin-dependent cluster recognition on the observables in heavy ion collisions. Phys. Rev. C 85, 051602 (2012). https://doi.org/10.1103/PhysRevC.85.051602

    Article  Google Scholar 

  65. S. Kumar, Y.G. Ma, Directed flow of isospin sensitive fragments within a modified clusterization algorithm in heavy-ion collisions. Nucl. Sci. Tech. 24, 050509 (2013). https://doi.org/10.13538/j.1001-8042/nst.2013.05.009

    Article  Google Scholar 

  66. T.T. Ding, C.W. Ma, An improved thermometer for intermediate-mass fragments. Nucl. Sci. Tech. 27, 132 (2016). https://doi.org/10.1007/s41365-016-0142-2

    Article  Google Scholar 

  67. C.W. Ma, C.Y. Qiao, T.T. Ding, Y.D. Song, Temperature of intermediate mass fragments in simulated 40Ca \(+\) 40Ca reactions around the Fermi energies by AMD model. Nucl. Sci. Tech. 27, 111 (2016). https://doi.org/10.1007/s41365-016-0112-8

    Article  Google Scholar 

  68. H.L. Lao, F.H. Liu et al., Kinetic freeze-out temperatures in central and peripheral collisions: which one is larger ? Nucl. Sci. Tech. 29, 82 (2018). https://doi.org/10.1007/s41365-018-0425-x

    Article  Google Scholar 

  69. A. Andronic, J. Lukasik, W. Reisdorf et al., Systematics of stopping and flow in Au+ Au collisions. Eur. Phys. J. A 30, 31 (2006). https://doi.org/10.1140/epja/i2006-10101-2

    Article  Google Scholar 

  70. W. Reisdorf et al., Systematics of azimuthal asymmetries in heavy ion collisions in the \(1A\) GeV regime. Nucl. Phys. A 876, 1 (2012). https://doi.org/10.1016/j.nuclphysa.2011.12.006

    Article  Google Scholar 

  71. H.C. Song, Y. Zhou, K. Gajdošová, Collective flow and hydrodynamics in large and small systems at the LHC. Nucl. Sci. Tech. 28, 99 (2017). https://doi.org/10.1007/s41365-017-0245-4

    Article  Google Scholar 

  72. G. Lehaut et al., Study of nuclear stopping in central collisions at intermediate energies. Phys. Rev. Lett. 104, 232701 (2010). https://doi.org/10.1103/PhysRevLett.104.232701

    Article  Google Scholar 

  73. W. Reisdorf et al., (FOPI Collaborations), Systematics of central heavy ion collisions in the 1A GeV regime. Nucl. Phys. A 848, 366 (2010). https://doi.org/10.1016/j.nuclphysa.2010.09.008

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong-Jia Wang or Qing-Feng Li.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 11875125, 11747312, 11675066, and 11505057) and the Zhejiang Provincial Natural Science Foundation of China (No. LY18A050002).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, PC., Wang, YJ., Li, QF. et al. Collective flow and nuclear stopping in heavy ion collisions in Fermi energy domain. NUCL SCI TECH 29, 177 (2018). https://doi.org/10.1007/s41365-018-0510-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-018-0510-1

Keywords

Navigation