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Abstract
Density functional theory calculations were performed to assess the relative interaction energies of plant cell wall compo-
nents: cellulose, xylan, lignin and pectin. Monomeric and tetramer linear molecules were allowed to interact in four differ-
ent configurations for each pair of compounds. The M05-2X exchange-correlation functional which implicitly accounts for 
short- and mid-range dispersion was compared against MP2 and RI-MP2 to assess the reliability of the former for modeling 
van der Waals forces between these PCW components. Solvation effects were examined by modeling the interactions in the 
gas phase, in explicit H2O, and in polarized continuum models (PCM) of solvation. PCMs were used to represent water, 
methanol, and chloroform. The results predict the relative ranges of each type of interaction and when specific configura-
tions will be strongly preferred. Structures and energies are useful as a basis for testing classical force fields and as guidance 
for coarse-grained models of PCWs.
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Abbreviations
DFT	� Density functional theory
PCW	� Plant cell wall
CMF	� Cellulose microfibril
C	� Cellulose constrained to the crystalline form
G	� Cellulose unconstrained
X	� Xylan
L	� Lignin
P	� Pectin

1  Introduction

Plant cell walls (PCWs) are found in diverse forms and serve 
diverse biological functions that depend on their physical 
and mechanical properties [1, 2]. These properties are of 
practical significance in the food, textile, wood products 
and biofuels industries and are believed to depend on the 
types, arrangement and covalent crosslinking of polymers 
within the cell wall as well as on abundant noncovalent 
bonding interactions between wall components. For exam-
ple, primary cell walls typically consist of scaffolds of cel-
lulose microfibrils embedded in a hydrated matrix of pectins 
(such as homogalacturonan), hemicelluloses (such as xylo-
glucan) and glycoproteins. Important noncovalent interac-
tions include direct cellulose–cellulose junctions [3], cel-
lulose–xyloglucan junctions [4], pectin–cellulose contacts 
[5–9] and physical entanglements of pectin with xyloglucan 
[10]. A different set of polymers (predominantly cellulose, 
lignin and xylan or mannan) make up the secondary cell 
walls of woody tissues with different kinds of noncovalent 
interactions [11, 12]. Water dynamics are also important 
for polymer interactions in both primary and secondary cell 
walls [7, 13].

Current understanding of these physical interactions 
within native cell walls is limited and consequently cur-
rent PCW models are based predominantly on biochemical 
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characterization and microscopy, with limited insights drawn 
from computational approaches. Our long-term goal is to 
create a predictive model for PCWs that can be revised as 
new information is gained and modified for various types of 
PCWs depending on their structure. With details included 
from molecular to continuum scales, the model could be 
validated by its ability to predict experimental observations 
such as spectroscopic and mechanical measurements. Previ-
ously, various PCW components such as cellulose [14–17] 
and lignin [18, 19], as well as component interactions 
[20–22], have been modeled with a similar approach. This 
work represents a first step toward systematic modeling of 
component interactions by simulating pairwise interactions 
between cellulose, xyloglucan, lignin, and pectin compo-
nents. The endless variations of possibilities make a com-
prehensive study impractical; however, modeling a subset of 
possible interactions can capture many of the basic interac-
tions. The main goal of this study is to explore the range of 
interaction energies and determine which are likely to be the 
strongest thermodynamically.

One would not expect to be able to model a complete 
PCW in atomic detail, so coarse-grained and continuum 
models will be necessary. Molecular-level interaction ener-
gies are the basis for the mesoscale behavior; however, 
estimates of these parameters could be fed into larger scale 
models and used as a benchmark for developing complete 
PCW models. In the interim, classical atomistic models can 
extend the spatial and compositional range of PCW simula-
tions, so we test our density functional theory (DFT) [23, 24] 
results against CHARMM [25] calculations on the same set 
of tetramers. These comparisons help assess the accuracy of 

the classical force field and provide targets for further refine-
ment of force field parameters. Components of larger scale 
simulations can also be extracted and quantum calculations 
conducted to evaluate the how well the short-range energies 
are estimated in the large-scale models [22].

Although we do not assume that the PCW is an equi-
librium assemblage of the various components contained 
therein, when specific interactions occur, such as xyloglu-
can–cellulose, the bonding energetics control the strength of 
these local associations. Additionally, one would not expect 
plants to work directly against thermodynamic favorability 
and that nature would look to find favorable interactions to 
create a strong and stable PCW.

2 � Methods

This project was intended to evaluate the interactions of 
different plant cell wall components to help elucidate the 
molecular structure of the plant cell wall. The four compo-
nents that were evaluated in their monomeric and tetramer 
forms are cellulose (C, constrained to the crystalline form 
found in microfibrils, or G, unconstrained), xylan (X), lignin 
(L), and pectin (P). Monomer and tetramer units of each of 
the former components were built in Material Studio 8 [26] 
(Fig. 1). Several types of calculations were conducted to elu-
cidate favorable/unfavorable interactions. Tetramers of 1–4 
β-linked glucose (i.e., cellotetraose) and xylose were built 
to represent cellulose and xylan, respectively. For lignin, 
coniferyl alcohol was used to represent the monomeric sub-
unit linked with the β-O-4 ether bonds to form tetramers. 

Fig. 1   Structures of the tetramers included in this study: a glucose 
tetramer–amorphous cellulose, b xylose tetramer–hemicellulose, c 
coniferyl alcohol tetramer–lignin, and d galacturonic acid tetramer–

pectin. C atoms are shown in gray, O in red and H in white. Blue 
dashed lines represent H bonds. Methods for generating, optimizing 
and depicting each model are discussed in the text
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Finally, tetramers of galacturonic acid, where three of the 
four COOH groups were methyl esterified, were used to rep-
resent pectin (Fig. 1).

Interactions between monomers and tetramers were 
arranged into four different categories (stacked, stacked180, 
side-by-side, and side-by-side180—Fig. 2). To arrange the 
interactions appropriately, one molecule in the interaction 
was the reference point, while the other molecule was posi-
tioned to create the desired starting configuration. Figure 2 
shows the G–G interaction. The red/white tetramer was 
rotated around the yellow-highlighted tetramer, which was 
held in a constant orientation. For the “C” interactions, the 
tetramer was extracted from the Iβ cellulose structure [15, 
27], and the five glycosidic O atoms were frozen during 
energy minimizations.

To obtain initial starting configurations, energy mini-
mizations and molecular dynamics simulations were run 
in Materials Studio 7 utilizing the “Fine” quality con-
vergence parameters (Energy = 4.184 × 10−4  kJ/mol; 
Force = 2.092 × 10−2 kJ/mol/Å; Displacement = 5 × 10−5 
Å) and the COMPASS II force field [28]. MD simulations 
were run on the gas-phase dimers for 100,000 steps (time 
step = 1 fs) at 298 K using the NVT ensemble for each type 
of cell wall component interaction (except for the “C” mod-
els that were extracted from the cellulose crystal structure 
model). After MD simulations, the dimers were subjected to 
energy minimization using the COMPASSII force field. The 
resulting structures were used as input for quantum mechani-
cal geometry optimizations.

The cellulose microfibril (CMF) is a key building block 
of the plant cell wall. Due to the central role of the CMF, we 
modeled the cellotetraose molecule in both its fully relaxed 
state (the “G” tetramer) and as constrained to approximate 
four glucan monomers in a cellulose fiber (the “C” tetramer). 
These models were evaluated for their interactions with all 
the other PCW components we considered, including the 
“G” and “C” tetramers. These G–G and C–C interactions 
represent the energies holding cellulose polymers together 
within the CMF and, therefore, serve as a basis of compari-
son for the other dimeric interactions.

Quantum mechanical energy minimizations using DFT 
methods [M05-2X/6-31G(d,p)] [29, 30] in Gaussian 09 
[31] were conducted starting from the geometry optimized 
interaction confirmations, to investigate other possible 
favorable interactions as well as compare the accuracy of 
the COMPASSII force field against a more accurate method. 
Although other methods may be available, this exchange-
correlation functional with dispersion corrections performs 
reasonably well for carbohydrate and carbohydrate–aro-
matic (e.g., lignin) interactions [32]. Interaction energies 
were calculated as in Eq. (1) and compared to those from 
COMPASSII. The energy difference between the dimer and 
the two individual monomers was calculated as the energy 
of the interaction via:

The reported ∆E values are divided by the number of 
monomeric units present to normalize the monomer versus 

(1)ΔE
interaction

= E
dimer

− E
monomer1

− E
monomer2

.

Fig. 2   Glucose–glucose tetramer (cellotetraose) interactions are 
shown in four orientations (a “Stacked”, b “Stacked180”, c “Side”, 
d “Side180”) to explore the range of potential interactions. Stacked 
configurations are more dominated by van der Waals interaction 

whereas as side-by-side interaction generally has more H-bonding. 
The tetramer in red/gray/white has different orientation relative to the 
tetramer in yellow, rotated by 180° around the x-axis
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tetramer interaction energies and compare the results with 
previously reported values [20]. These ∆E values were 
compared to MP2/6-31G(d,p)//M05-2X/6-311++G(d,p) 
single-point energies for selected monomers to test the accu-
racy of the M05-2X method. A test was also run compar-
ing the energies minimized with M05-2X/6-31G(d,p) and 
6-311++G(d,p). For the C–C interactions, the 6-31G(d,p) 
energy minimizations resulted in ∆Einteraction = − 38, − 38, 
− 39, and − 41 kJ/mol and the 6-311++G(d,p) energy min-
imizations resulted in − 30, − 27, − 26, and − 28 kJ/mol. 
The difference between the more computationally efficient 
smaller basis sets is within expected uncertainties for this 
work, so the smaller basis set was used throughout.

MP2 calculations on dimers of tetramers were beyond 
computational resource limits available, so RI-MP2 [33, 34] 
calculations were run selected models to compare RI-MP2/
def2-TZVP [35] results against M05-2X/6-31G(d,p), M05-
2X/6-311+G(d,p), and B3LYP/6-311+G(d,p) [36–43]. The 
selection of methods tests for the estimate of van der Waals 
forces between RI-MP2 and M05-2X as well as the effect of 
basis set and neglecting van der Waals forces using B3LYP. 
The C–C linear tetramer molecular systems (C–C Side, C–C 
Side180, C–C Stacked, C–C Stacked180), each having a sto-
ichiometry of C52H92O42, have been used as model systems 
to estimate the accuracy and efficiency of different methods. 
The RI-MP2 method implemented in ORCA 4.0 [44] was 
used to calculate intermolecular interaction energies of the 
four C–C systems, using the def2-TZVP basis set [45], the 
def2-TZVP/C auxiliary basis, and the RIJK approximation 
for the HF step [46].  SMD solvation module [47], imple-
mented in ORCA4.0, was also used to estimate interaction 
energies in water.

The intermolecular interaction energies were also calcu-
lated using M05-2X/6-311+G(d,p), M05-2X/6-31G(d,p), 
B3LYP/6-311++G(d,p) using Gaussian 09 program. The 
integral equation formalism for the polarizable continuum 
model (IEFPCM) solvation model [48] was used to estimate 
interaction energies in water. The results in Table 1 dem-
onstrate that neglect of van der Waals forces in the stacked 
configuration (B3LYP/6-311+G(d,p)) leads to discrepan-
cies of approximately 20 kJ/mol and that the small basis set 
(6-31G(d,p)) causes similar differences with the RI-MP2/
def2-TZVP results. The differences between the RI-MP2/
def2-TZVP and M05-2X/6-311+G(d,p) energies are signifi-
cantly less. Consequently, results reported in this study will 
be based on M05-2X/6-311+G(d,p) calculations, and we 
caution the reader that errors of at least ± 10 kJ/mol are to 
be expected.

Another test was run to evaluate the effect of the model 
polymer length on the calculated interaction energies. 
Decamers of the C model chain were simulated as an iso-
lated chain with a monolayer of H2O and as a dimer com-
bining two decamers. The interaction energy calculated 

was − 57 kJ/mol/glucan compared with the − 37 kJ/mol/
glucan using the decamer. The reason why the interaction 
energy per glucan should become stronger with length is 
not clear but likely is a result of the greater flexibility in 
the decamer compared to the tetramer model. The reader 
is cautioned that the size effects of these small (compared 
to actual PCW biopolymers) models on the energetics of 
interaction could be significant and a source of uncertainty. 
Future work examining interaction energies as a function of 
size is desirable.

The gas-phase monomers and dimers were explicitly 
solvated using Schrödinger Maestro [49, 50] to create a 
first solvation sphere. In addition to the explicit solvation 
via H2O molecules, the monomers and dimers were energy 
minimized in an implicit solvent using IEFPCM. The default 
solvent properties of “Water” as defined in Gaussian 09 were 
used to mimic solvent effects in all cases. In some cases, 
additional calculations using the “Methanol” and “Chloro-
form” solvents as defined in Gaussian 09 was used as well to 
assess the effect of dielectric constant on the model results.

Molecular mechanics calculations were performed with 
the NAMD software [51] employing the CHARMM carbo-
hydrate [52, 53] and lignin [54] force fields. The coordinates 
were obtained from the DFT calculations.

3 � Results

Van der Waals or dispersion forces are significant com-
ponents of the interaction energies we are modeling. DFT 
calculations have long been known to be inadequate for 
modeling intermolecular interactions, which has led to the 
developments for including dispersion terms to the DFT 
energy. One such method is the M05-2X density functional 
[29]. An alternative method, Møller–Plessett second-order 
perturbation theory (MP2) [55], is considered reliable, but 

Table 1   Comparisons of intermolecular interaction energies (kJ/mol/
monomer) of C–C and G–L systems in IEFPCM models of water 
using various quantum methods

Methods Side180 Side Stacked180 Stacked

C–C–T
 RI-MP2/def2-TZVP − 20.1 − 20.1 − 22.7 − 22.7
 M05-2X/6-311+G(d,p) − 30.0 − 29.9 − 29.2 − 28.4
 M05-2X/6-31G(d,p) − 40.4 − 40.4 − 39.6 − 39.6
 B3LYP/6-311++G(d,p) − 21.3 − 21.3 − 1.7 − 1.7

G–L–T
 RI-MP2/def2-TZVP − 20.2 − 20.2 − 26.8 − 39.5
 M05-2X/6-311+G(d,p) − 16.0 − 16.7 − 23.4 − 35.3
 M05-2X/6-31G(d,p) − 21.6 − 22.0 − 30.5 − 42.6
 B3LYP/6-311++G(d,p) − 6.3 − 8.9 0.6 − 0.9
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MP2 is computationally expensive as it scales as N5 where 
N is the number of basis functions. Consequently, MP2 is 
impractical for models larger than the monomer pairs consid-
ered here. Hence, we selected monomer pairs to use as tests 
of the accuracy of the M05-2X method compared to MP2. 
Figure 3 compares the interaction energies for monomer 
pairs G+L, L+X and G+X as obtained with M05-2X and 
MP2. Although the MP2 ∆E values are generally 10–15 kJ/
mol more negative than the M05-2X values, the relative 
ordering of pairwise interactions is the same throughout. 
MP2 energies are known to be dependent on basis set, and 
overestimation of van der Waals forces between molecules is 

common especially with small basis sets such as 6-31G(d,p) 
[56]. One should consider this − 10 to − 15 kJ/mol discrep-
ancy when applying the ∆E values presented in this study.

Energy minimizations with explicit solvation for tetramer 
(and larger) models become impractical. For example, a pec-
tin–pectin tetramer with full explicit solvation has a stoichi-
ometry of COH–nH2O. Numerous simulation steps on such 
a model are required to find an energy minimum for such a 
model requiring months of CPU time. Consequently, implicit 
solvation is more practical for this size of molecule. To 
assess the relative accuracy of the IEFPCM against explicit 
solvation by H2O molecules, a set of supra-molecular dimers 
(G–X, L–L, P–P) consisting of various monomeric com-
pounds included in this study were subjected to both explicit 
and implicit solvation. The G–X, L–L and P–P dimers were 
selected to represent the common cellulose–hemicellulose 
interaction as well as the most hydrophobic and hydrophilic 
compound interactions, respectively.

Figure 4a compares the calculated interaction energies 
for each pair with both solvation methods. The explicit 
solvation method values are − 110 to − 220 kJ/mol lower 
in energy than the implicit solvation values. This is due to 
the inclusion of the energy of interaction of the H2O mol-
ecules assigned to each monomer as they H-bond in the 
dimer (Fig. 4b). Furthermore, the implicit solvation method 
has been formulated to approximate Gibbs free energies of 
solvation whereas the implicitly solvated models provide 
potential energy changes. Consequently, the absolute energy 
differences between explicit and implicit solvation are not 
directly comparable, and one can focus on the relative energy 
differences. The L–L interaction has the weakest interaction 
using either solvation method (not including the entropic 
component of hydrophobic interactions), but the P–P dimer 
is the lowest in energy using explicit solvation versus the 

Fig. 3   Comparison of interaction energies for M05-2X/6-31G(d,p)//
M05-2X/6-311++G(d,p) (black) and MP2/6-31G(d,p)//M05-2X/6-
311++G(d,p) (red) on glucose–lignin (G++L), lignin–xylose 
(L++X), and glucose–xylose (G++X) pairs of monomers. Each set 
of interactions (i.e., G+L, L+X and G+X) are ordered as Stacked, 
Stacked180, Side, and Side180. MP2-based energies are more nega-
tive than M05-2X energies, but the relative ordering of interaction 
energies are the same for all three pairs

Fig. 4   a Comparison of Stacked monomer pair interaction energies 
as calculated with explicit solvation with H2O molecules and with 
the implicit IEFPCM model. b G–X explicit solvation models show-

ing H-bonds (blue dashed lines) between H2O and each monomer in 
addition to H-bonds between the methylated “Glucose” and “Xylose” 
models
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G–X dimer using implicit solvation. Hence, we must use 
caution when interpreting our calculated interactions of the 
tetramers using the implicit solvation model. Energy differ-
ences of 20 kJ/mol can be considered significant in light of 
these test results, but differences on the order of 5 kJ/mol 
should be considered the same within error.

The G and C tetramers represent extreme cases of the 
varying degree of cellulose crystallinity found in PCWs. If 
a section of cellulose is tightly constrained and well ordered 
within a CMF, then the C tetramer will be a better approxi-
mation. On the other hand, if a section of a cellulose chain 
has significant freedom to relax upon interactions with other 
PCW components, then the G tetramer is closer to reality. 
The G tetramer will also better reflect interactions that may 
occur with disordered or “amorphous” cellulose. Figure 5 
compares the interaction energies in all four configurations 
for the G–G, G–X, G–L and G–P dimers of tetramers. The 
values are reasonable compared to previously reported 
values for cellulose–hemicellulose interactions in water. 
CHARMM-based classical MD results produced values of 
approximately − 20 to − 40 kJ/mol from simulations [22]; 
note that those values were based on tetramer units and 
reported in kcal/mol. The interaction energy results reported 
here and those previously reported results [22] are much 
smaller than those reported for gas-phase calculations [57]; 
this discrepancy can be attributed to the presence of water 
in the calculations presented here.

Examination of the details of Fig. 6a reveals several 
important points. First, the G–G stacked interactions are 
generally stronger than the G–G side-by-side interactions. 
This implies that in aqueous solution the hydrophobic inter-
actions between layers of cellulose polymers will dominate 
assembly over the H-bonding interactions found within lay-
ers of the CMF, consistent with prior work [58]. This does 
not consider the entropic contribution, which will also be 
significant for these hydrophobic interactions [59].

Second, specific G–L and G–P stacked interactions are 
comparable or greater than the most favorable G–G interac-
tion energy. This prediction has relevance to lignin protect-
ing CMFs from enzymatic degradation in secondary cell 
walls [60, 61] and the role of pectin as a spacer between 
CMFs in primary cell walls [62, 63]. Both lignin and pectin 
interactions with the G tetramer can be stronger than that 
of the G–X interactions, which may help explain why CMF 
may have only 20% of their surfaces in contact with hemicel-
lulose in PCWs [10]. This result appears contrary to in vitro 
adsorption studies of xyloglucan and pectin component onto 
cellulose that show preference for xyloglucans [8, 64]. The 
primary source of this difference could be the use of xylans 
in the tetramer rather than xyloglucans. Another issue is that 
our results are normalized to a per monomer basis, so direct 
comparison with experiments where the polymer lengths 
may be different between adsorbates is not possible. We note 

that prior results do demonstrate that certain components of 
pectin (i.e., the arabinan and galactan side chains) do adsorb 
significantly to cellulose when xyloglucan is not present or 

Fig. 5   a Interaction energies (∆E) as calculated using Eq. (1) for the 
G, X, L and P tetramers interacting with the G tetramer (i.e., uncon-
strained cellotetraose). b G–L Stacked model shows minimal H-bond-
ing with the dimer formation dominated by hydrophobic interactions. 
c Glucose–pectin Stacked180 tetramer interactions show significant 
H-bonding (dashed blue lines)
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is in low concentration [8, 64]. Xyloglucan coverage of cel-
lulose microfibrils in plant cell walls may be 20% or less 
[10], so there could be opportunity for pectin–cellulose 
binding without competition from xyloglucan in plant cell 
walls. Significant pectin–cellulose interactions are also seen 
in ss-NMR spectra of primary cell walls in Arabidopsis and 
Brachypodium [65].

Inspection of the G–L and G–P configurations shows 
that one type of interaction is strongly favored in each case 
(Fig. 5b “Stacked” and Fig. 5c “Stacked180”, respectively). 
With the alternating nature of glucan orientations within the 
cellulose polymer [27], these results imply that both pectin 
and lignin will selectively bind to the CMF while having 
weaker interactions at adjacent glucan units in primary and 
secondary cell walls, respectively.

Full relaxation of the “Glucose” tetramer allows the 
model to deviate significantly from the ordered structure 
of cellulose microfibrils [27]; to prevent this, we modeled 

the same tetramer with the C atoms fixed to retain a better 
approximation of the configuration found in cellulose. The 
interaction energies for the various components and configu-
rations are shown in Fig. 6a. Compared to the G–G interac-
tions (Fig. 5a), the C–C interactions are slightly stronger 
with the notable exception of the C–C Side180 configura-
tion. This implies a strong asymmetry for cellulose polymer 
interactions within a layer and a preference for the alignment 
shown in Fig. 6b. Both of the “Stacked” interaction ener-
gies are as strong as the “Side” interaction, which again is 
consistent with previous results showing that layer-to-layer 
interactions dominate cellulose microfibril assembly [58], 
especially considering that these more hydrophobic interac-
tions would also gain thermodynamic stability from entropy 
gains due to water release [66, 67] that is not accounted 
for in this calculation. The interactions of the “C” tetramer 
with the other model tetramers (Fig. 7a) are similar to those 
calculated for the “G” tetramer (Fig. 5a) except that the C–P 
Stacked180 configuration is no longer the strongest. This 
suggests that pectin interactions with cellulose microfibrils 
(as opposed to unassembled cellulose polymers) will be 
similar in a PCW to cellulose–xyloglucan interactions on a 
per monomer basis. Also notable are the weak interactions 
of the Side180 C–C and C–X tetramer pairs, which imply 
that this anti-parallel arrangement is not favorable.

Other PCW interaction energies fall within a similar 
range as those with the G and C tetramers (Fig. 7). The range 
of calculated energies is from − 10 to − 40 kJ/mol-monomer 
with most values falling in the − 20 to 30 kJ/mol-monomer 
range. The most favorable interaction is the Stacked180 X–L 
dimer, which is similar to the Stacked G–L dimer (Fig. 5a). 
Based on these results, one can infer that in the complex 
assemblage of the PCW, hydrophobic interactions bond the 

Fig. 6   a Energy differences (kJ/mol normalized to a per monomer 
basis) of constrained (see “Methods” section) cellotetraose (“C” 
tetramer in the cellulose structure) used to mimc cellulose with other 
PCW components. b Side C–C configuration showing H-bonds 
(dashed blue lines) that dominate side-by-side interactions as well as 
influence intramolecular interactions

Fig. 7   Energies of X, L and P interactions with each other show the 
relative preference of each component for other components as well 
as the more favorable configurations for each type of interaction
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lignin to the cellulose and hemicellulose at specific points 
in these polymers. These sites of interaction are likely to 
exclude water, which will affect the mechanical properties 
of the polymer mixture by creating points of rigidity and 
possibly inhibiting enzymatic attack since water is less avail-
able. The Stacked X–P and the Side P–P interactions are 
also relatively strong. Pectin is predicted to be a good bind-
ing agent of PCW components even in this aqueous model 
where the hydrophilic nature of pectin is included in the 
reacting tetramer molecules [64].

A critical parameter that will influence the thermody-
namics of PCW component interactions is the nature of the 
medium in which the interactions take place (e.g., which 
solvent). Experiments are often performed in vitro with the 
assumption that the water within the PCW behaves in a man-
ner similar to bulk water. However, prior work has dem-
onstrated that water within cells can exhibit much slower 
dynamics than bulk water [68]. Consequently, the decreased 
dynamic response causes a decrease in the polarizability of 
the water [69]. On the macroscopic thermodynamic scale, 
this translates into a lower dielectric constant [69]. Hence, 
water within the PCW may have a dielectric constant, ε, 
closer to that of organic solvents (e.g., 10–40) than bulk 
water at standard temperature and pressure (i.e., 78.4). Such 
a decrease would enhance the strength of H-bond energies 
among PCW components relative to the PCW compo-
nent–water interactions and alter the ∆E of various interac-
tions depending on the hydrophilicity of the components 
involved. To complicate matters, one would expect ε to vary 
within PCWs as a function of composition, with primary cell 
walls exhibiting higher water content and εs than secondary 
cell walls with their higher hydrophobic lignin content.

In the absence of data on the ε of PCWs, we varied the 
ε input into Gaussian 09 to test the effect on calculated ∆E 
values. Dielectric constants representative of methanol and 
chloroform (32.7 and 4.8) were used to explore the range of 
variability. (Note: this is not a perfect representation of water 
with a lower ε, but this method examines the magnitude 
effect of lowering ε to a first approximation.) Figure 8 shows 
the results of this computational experiment, and the results 
vary significantly. For example, the C–C Side interactions 
are enhanced by a few kJ/monomer in the lowest dielec-
tric constant solvent, chloroform; whereas the C–C Stacked 
interactions are decreased by approximately one-third. These 
results make chemical sense because the hydrophilic interac-
tions between PCW components are enhanced in the lower 
ε solvent, and the hydrophobic interactions are decreased. 
The models including the lignin tetramer (C–L Stacked, L–L 
Stacked180 and L–L Side180) do not exhibit any system-
atic pattern, complicating interpretation. The P–P Side180 
interaction is decreased in chloroform when the opposite 
should be expected for hydrophilic associations, and the 
P–P Stacked180 resulted in small changes with dielectric 

constant (Fig. 8). Due to the simple nature of this test, one 
cannot derive quantitative predictions on PCW component 
interactions from these results. However, one can conclude 
that the ε effect is likely to be significant. Based on this 
conclusion, obtaining experimentally based estimates of the 
variations in ε in PCWs is imperative to improve our under-
standing of PCW architecture and mechanical properties.

To move forward with larger scale, models of PCW com-
ponent interactions that are more complex, classical molecu-
lar simulations will be necessary because the size of the 
model system quickly becomes too large for quantum cal-
culations to be practical at this point. The CHARMM force 
field has been used extensively to model certain PCW com-
ponents [60, 70], so we start with a comparison of DFT ver-
sus CHARMM interaction energies for our model tetramers 
(Fig. 9). The ability to accurately predict ∆E of interaction 
among these components is a critical test for models that 
attempt to reproduce PCW structures and behavior because 
the configurations calculated are based on the energy–struc-
ture relationship. (Note: The DFT results themselves will 
contain significant errors, so calorimetric measurement of 
these interaction energies is desirable to create a benchmark 
for both computational methods.)

The results for the G–L and L–L tetramer models are 
mixed. For example, good agreement was found for the 
L–L Side, G–L Side180, G–L Stacked and L–L Stacked180 
configurations. On the other hand, significant (i.e., 10 kJ/
monomer or more) deviation can be seen for the G–L Side, 
L–L Side180, L–L Stacked, and L–L Stacked180 (Fig. 9). 
Much of this discrepancy may be due to inadequacies in 
the DFT method in calculating the van der Waals forces for 
these interactions. The DFT results may be 10–15 kJ/mol 

Fig. 8   Interaction energies of various model components in water, 
methanol and chloroform are shown to highlight the effective of 
dielectric constant on the calculated ∆E values. The dielectric con-
stant within a PCW is likely to be lower than that of bulk water, so 
changing ε value illustrates how various types of interactions will be 
affected differently depending on the ε present
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lower than actual values based on our comparison to MP2 
calculations (Fig. 3). We conclude that the CHARMM force 
field is behaving reasonably well for the G and L component 
interactions, but further testing against experimental thermo-
dynamic is required to test the force field and guide future 
parameter refinement.

4 � Summary

In this case, we have shown that the M05-2X method tracks 
the trend of interaction energies calculated with the more 
computationally intensive MP2 method, but the interac-
tion energies are systematically less negative (i.e., thermo-
dynamically favorable) by 10–15 kJ/mol/monomer. Thus, 
relative interaction energies can be assessed with M05-2X, 
but when modeling plant cell wall components with classical 
or coarse-grained methods, this systematic difference should 
be accounted for.

The results also indicate that the commonly used implicit 
solvation method IEFPCM does not replicate interaction 
energies calculated with explicit solvation by H2O mole-
cules. This is to be expected because polarized continuum 
models are not designed to account for stronger, short-range 
H-bonding. In addition, energy minimization with explicit 
solvation is more complicated and will result in more local 
potential energy minima. This discrepancy can be addressed 
in the future with extensive MD or Monte Carlo simulation 
of the explicitly solvated interactions and calculating single-
point energies with quantum mechanical methods.

For G–G, G–L and G–P interactions, the stacked configu-
rations tend to have the largest interaction energies. Com-
bined with the entropic factor that will favor this type of 
hydrophobic interaction, the Gibbs free energy of this type 
of interaction energy is likely to be even more favorable 
than the side-by-side interactions. Most of the interactions 
with the “C” (cellulose-like) tetramer are similar considering 
the computational error. A notable exception is the Side180 
interaction that is not found in crystalline cellulose, which 
suggests the models are reproducing energetics observed 
in the larger experimental systems. The range of interac-
tion energies is typically − 5 to − 20 kJ/mol/monomer, but 
notable exceptions such as the X–L, X–P and P–P interac-
tions can be − 30 to − 40 kJ/mol/monomer. This could indi-
cate that pectin interactions via H-bonding more strongly 
influence the mechanical properties of the plant cell wall. 
These interactions will be a function of hydration with H2O 
competing with other PCW components for interaction with 
pectin, so these results could be re-examined with explicitly 
solvated models in the future.

The variations in model interaction energies with solvent 
dielectric in the polarized continuum model are significant 
and non-systematic. This result points to a knowledge gap in 
our understanding of plant cell wall behavior, i.e., the state 
of water within the matrix of the PCW. This work indicates 
that addressing this factor will be important in generating 
improved classical and coarse-grained models of PCWs. The 
CHARMM results are reasonably accurate for the models 
tested here, but they also have room for improvement by 
further parameterization. This is particularly problematic for 
secondary PCWs where lignin is a significant component.
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