Skip to main content
Log in

Quantum Calculations on Plant Cell Wall Component Interactions

  • Original Research Article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Density functional theory calculations were performed to assess the relative interaction energies of plant cell wall components: cellulose, xylan, lignin and pectin. Monomeric and tetramer linear molecules were allowed to interact in four different configurations for each pair of compounds. The M05-2X exchange-correlation functional which implicitly accounts for short- and mid-range dispersion was compared against MP2 and RI-MP2 to assess the reliability of the former for modeling van der Waals forces between these PCW components. Solvation effects were examined by modeling the interactions in the gas phase, in explicit H2O, and in polarized continuum models (PCM) of solvation. PCMs were used to represent water, methanol, and chloroform. The results predict the relative ranges of each type of interaction and when specific configurations will be strongly preferred. Structures and energies are useful as a basis for testing classical force fields and as guidance for coarse-grained models of PCWs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

DFT:

Density functional theory

PCW:

Plant cell wall

CMF:

Cellulose microfibril

C:

Cellulose constrained to the crystalline form

G:

Cellulose unconstrained

X:

Xylan

L:

Lignin

P:

Pectin

References

  1. Cosgrove DJ, Jarvis MC (2012) Comparative structure and biomechanics of plant primary and secondary cell walls. Front Plant Sci 3:204

    Article  PubMed  PubMed Central  Google Scholar 

  2. Cosgrove D (2010) Cell walls: structure, biogenesis, and expansion. In: Taiz L, Zeiger E (eds) Plant physiology. Sinauer, Sunderland, pp 425–452

    Google Scholar 

  3. Park YB, Cosgrove DJ (2012) A revised architecture of primary cell walls based on biomechanical changes induced by substrate-specific endoglucanases. Plant Physiol 158:1933–1943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pauly M, Albersheim P, Darvill A, York WS (1999) Molecular domains of the cellulose/xyloglucan network in the cell walls of higher plants. Plant J 20:629–639

    Article  CAS  PubMed  Google Scholar 

  5. Dick-Perez M, Wang T, Salazar A, Zabotina OA, Hong M (2012) Multidimensional solid-state NMR studies of the structure and dynamics of pectic polysaccharides in uniformly 13C-labeled Arabidopsis primary cell walls. Magn Reson Chem 50:539–550

    Article  CAS  PubMed  Google Scholar 

  6. Wang T, Park YB, Cosgrove DJ, Hong M (2015) Cellulose–pectin spatial contacts are inherent to never-dried arabidopsis primary cell walls: evidence from solid-state nuclear magnetic resonance. Plant Physiol 168:871–884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. White PB, Wang T, Park YB, Cosgrove DJ, Hong M (2014) Water–polysaccharide interactions in the primary cell wall of arabidopsis thaliana from polarization transfer solid-state NMR. J Am Chem Soc 136:10399–10409

    Article  CAS  PubMed  Google Scholar 

  8. Zykwinska A, Gaillard C, Buléon A, Pontoire B, Garnier C, Thibault JF, Ralet MC (2007) Assessment of in vitro binding of isolated pectic domains to cellulose by adsorption isotherms, electron microscopy, and X-ray diffraction methods. Biomacromol 8:223–232

    Article  CAS  Google Scholar 

  9. Zykwinska A, Thibault JF, Ralet MC (2008) Modelling of xyloglucan, pectins and pectic side chains binding onto cellulose microfibrils. Carbohydr Polym 74:23–30

    Article  CAS  Google Scholar 

  10. Dick-Pérez M, Zhang Y, Hayes J, Salazar A, Zabotina OA, Hong M (2011) Structure and interactions of plant cell-wall polysaccharides by two- and three-dimensional magic-angle-spinning solid-state NMR. Biochemistry 50:989–1000

    Article  CAS  Google Scholar 

  11. Busse-Wicher M, Gomes TCF, Tryfona T, Nikolovski N, Stott K, Grantham NJ, Bolam DN, Skaf MS, Dupree P (2014) The pattern of xylan acetylation suggests xylan may interact with cellulose microfibrils as a twofold helical screw in the secondary plant cell wall of Arabidopsis thaliana. Plant J 79:492–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Langan P, Petridis L, O’Neill HM, Pingali SV, Foston M, Nishiyama Y, Schulz R, Lindner B, Hanson BL, Harton S, Heller WT, Urban V, Evans BR, Gnanakaran S, Ragauskas AJ, Smith JC, Davison BH (2014) Common processes drive the thermochemical pretreatment of lignocellulosic biomass. Green Chem 16:63–68

    Article  CAS  Google Scholar 

  13. Hill SJ, Franich RA, Callaghan PT, Newman RH (2009) Nature’s nanocomposites: a new look at molecular architecture in wood cell walls. N Z J For Sci 39:251–257

    CAS  Google Scholar 

  14. Parthasarathi R, Bellesia G, Chundawat SPS, Dale BE, Langan P, Gnanakaran S (2011) Insights into hydrogen bonding and stacking interactions in cellulose. J Phys Chem A 115:14191–14202

    Article  CAS  PubMed  Google Scholar 

  15. Kubicki JD, Mohamed MN-A, Watts HD (2013) Quantum mechanical modeling of the structures, energetics and spectral properties of Iα and Iβ cellulose. Cellulose 20:9–23

    Article  CAS  Google Scholar 

  16. Kubicki JD, Watts HD, Zhao Z, Zhong L (2014) Quantum mechanical calculations on cellulose–water interactions: structures, energetics, vibrational frequencies and NMR chemical shifts for surfaces of Iα and Iβ cellulose. Cellulose 21:909–926

    Article  CAS  Google Scholar 

  17. Watts HD, Mohamed MNA, Kubicki JD (2014) A DFT study of vibrational frequencies and 13C NMR chemical shifts of model cellulosic fragments as a function of size. Cellulose 21:53–70

    Article  CAS  Google Scholar 

  18. Watts H, Mohamed M, Kubicki J (2011) Comparison of multistandard and TMS-standard calculated NMR shifts for coniferyl alcohol and application of the multistandard method to lignin dimers. J Phys Chem B 115:1958–1970

    Article  CAS  PubMed  Google Scholar 

  19. Parthasarathi R, Romero RA, Redondo A, Gnanakaran S (2011) Theoretical study of the remarkably diverse linkages in lignin. J Phys Chem Lett 2:2660–2666

    Article  CAS  Google Scholar 

  20. Zhao Z, Shklyaev OE, Nili A, Mohamed MNA, Kubicki JD, Crespi VH, Zhong L (2013) Cellulose microfibril twist, mechanics, and implication for cellulose biosynthesis. J Phys Chem A 117:2580–2589

    Article  CAS  PubMed  Google Scholar 

  21. Diehl BG, Watts HD, Kubicki JD, Regner MR, Ralph J, Brown NR (2014) Towards lignin–protein crosslinking: amino acid adducts of a lignin model quinone methide. Cellulose 21:1395–1407

    Article  CAS  Google Scholar 

  22. Zhao Z, Crespi VH, Kubicki JD, Cosgrove DJ, Zhong L (2014) Molecular dynamics simulation study of xyloglucan adsorption on cellulose surfaces: effects of surface hydrophobicity and side-chain variation. Cellulose 21:1025–1039

    Article  CAS  Google Scholar 

  23. Hohenberg P, Kohn W (1964) Inhomogeneous. Electron Gas Phys Rev 136:B864–B871

    Article  Google Scholar 

  24. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138

    Article  Google Scholar 

  25. Guvench O, Hatcher ER, Venable RM, Pastor RW, MacKerell, AD Jr (2009) CHARMM additive all-atom force field for glycosidic linkages. J Chem Theory Comput 5:2353–2370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Materials Studio (2007) Release 7.0, Accelrys Software Inc., San Diego

  27. Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082

    Article  CAS  PubMed  Google Scholar 

  28. Sun HCOMPASS (1998) An AB initio force-field optimized for condensed-phase applicationsoverview with details on alkane and benzene compounds. J Phys Chem B 102:7338–7364

    Article  CAS  Google Scholar 

  29. Zhao Y, Schultz NE, Truhlar DG (2006) Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. J Chem Theory Comput 2:364–382

    Article  CAS  PubMed  Google Scholar 

  30. Rassolov VA, Ratner MA, Pople JA, Redfern PC, Curtiss LA (2001) 6-31G* basis set for third-row atoms. J Comput Chem 22:976–984

    Article  CAS  Google Scholar 

  31. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2009) Gaussian 09 Revision E.01. Wallingford, CT

  32. Raju RK, Ramraj A, Hillier IH, Vincent MA, Burton NA (2009) Carbohydrate–aromatic π interactions: a test of density functionals and the DFT-D method. Phys Chem Chem Phys 11:3411

    Article  CAS  PubMed  Google Scholar 

  33. Weigend F, Häser M (1997) RI-MP2: first derivatives and global consistency. Theor Chem Acc Theory Comput Model (Theoretica Chim Acta) 97:331–340

    CAS  Google Scholar 

  34. Weigend F, Häser M, Patzelt H, Ahlrichs R (1998) RI-MP2: optimized auxiliary basis sets and demonstration of efficiency. Chem Phys Lett 294:143–152

    Article  CAS  Google Scholar 

  35. Hellweg A, Hättig C, Höfener S, Klopper W (2007) Optimized accurate auxiliary basis sets for RI-MP2 and RI-CC2 calculations for the atoms Rb to Rn. Theor Chem Acc 117:587–597

    Article  CAS  Google Scholar 

  36. Hehre WJ, Ditchfield K, Pople JA (1972) Self-consistent molecular orbital methods. XII. Further extensions of gaussian-type basis sets for use in molecular orbital studies of organic molecules. J Chem Phys 56:2257–2261

    Article  CAS  Google Scholar 

  37. Ditchfield R, Hehre WJ, Pople JA (1971) Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules. J Chem Phys 54:724–728

    Article  CAS  Google Scholar 

  38. Becke AD (1993) Becke’s three parameter hybrid method using the LYP correlation functional. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  39. Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation–energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  40. Hariharan PC, Pople JA (1974) Accuracy of AHn equilibrium geometries by single determinant molecular orbital theory. Mol Phys 27:209–214

    Article  CAS  Google Scholar 

  41. McLean AD, Chandler GS (1980) Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z = 11–18. J Chem Phys 72:5639–5648

    Article  CAS  Google Scholar 

  42. Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PVR (1983) Efficient diffuse function-augmented basis sets for anion calculations. III. The 3–21 + G basis set for first-row elements, Li-F. J Comput Chem 4:294–301

    Article  CAS  Google Scholar 

  43. Frisch MJ, Pople JA, Binkley JS (1984) Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J Chem Phys 80:3265–3269

    Article  CAS  Google Scholar 

  44. Neese F (2012) The ORCA program system. Wiley Interdiscip Rev Comput Mol Sci 2:73–78

    Article  CAS  Google Scholar 

  45. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7:3297

    Article  CAS  PubMed  Google Scholar 

  46. Weigend F (2008) Hartree-fock exchange fitting basis sets for H to Rn. J Comput Chem 29:167–175

    Article  CAS  PubMed  Google Scholar 

  47. Marenich AV, Cramer CJ, Truhlar DG (2009) Unviersal solvation modle based on solute electron density and a contiuum model of the solvent defind by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396

    Article  CAS  PubMed  Google Scholar 

  48. Cancès E, Mennucci B, Tomasi J (1997) A new integral equation formalism for the polarizable continuum model: theoretical background and applications to isotropic and anisotropic dielectrics. J Chem Phys 107:3032–3041

    Article  Google Scholar 

  49. Yang H (2014) Schrödinger Maestro, Release 2014-1. Schrödinger, LLC, New York

  50. Bowers K, Chow E, Xu H, Dror R, Eastwood M, Gregersen B, Klepeis J, Kolossvary I, Moraes M, Sacerdoti F, Salmon J, Shan Y, Shaw D (2006) Scalable algorithms for molecular dynamics simulations on commodity clusters. In: ACM/IEEE SC 2006 conference (SC’06); IEEE, pp 43–43

  51. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Guvench O, Hatcher E, Venable RM, Pastor RW, MacKerell AD (2009) CHARMM additive all-atom force field for glycosidic linkages between hexopyranoses. J Chem Theory Comput 5:2353–2370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Guvench O, Greenr SN, Kamath G, Brady JW, Venable RM, Pastor RW, Mackerell AD (2008) Additive empirical force field for hexopyranose monosaccharides. J Comput Chem 29:2543–2564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Petridis L, Smith JC (2009) A molecular mechanics force field for lignin. J Comput Chem 30:457–467

    Article  CAS  PubMed  Google Scholar 

  55. Møller C, Plesset MS (1934) Note on an approximation treatment for many-electron systems. Phys Rev 46:618–622

    Article  Google Scholar 

  56. Haldar S, Gnanasekaran R, Hobza P (2015) c A comparison of ab initio quantum-mechanical and experimental D0 binding energies of eleven H-bonded and eleven dispersion–bound complexes. Phys Chem Chem Phys 17:26645–26652

    Article  CAS  PubMed  Google Scholar 

  57. Hanus J, Mazeau K (2006) The xyloglucan–cellulose assembly at the atomic scale. Biopolymers 82:59–73

    Article  CAS  PubMed  Google Scholar 

  58. Cousins SK, Brown RM (1995) Cellulose I microfibril assembly: computational molecular mechanics energy analysis favours bonding by van der Waals forces as the initial step in crystallization. Polymer 36:3885–3888

    Article  CAS  Google Scholar 

  59. Hummer G, Garde S, García AE, Paulaitis ME, Pratt LR (1998) Hydrophobic effects on a molecular scale. J Phys Chem B 102:10469–10482

    Article  CAS  Google Scholar 

  60. Lindner B, Petridis L, Schulz R, Smith JC (2013) Solvent-driven preferential association of lignin with regions of crystalline cellulose in molecular dynamics simulation. Biomacromol 14:3390–3398

    Article  CAS  Google Scholar 

  61. Vermaas JV, Petridis L, Qi X, Schulz R, Lindner B, Smith JC (2015) Mechanism of lignin inhibition of enzymatic biomass deconstruction. Biotechnol Biofuels 8:217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cosgrove DJ (2014) Re-constructing our models of cellulose and primary cell wall assembly. Curr Opin Plant Biol 22:122–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jarvis MC (1992) Control of thickness of collenchyma cell walls by pectins. Planta 187:218–220

    Article  CAS  PubMed  Google Scholar 

  64. Zykwinska A, Thibault JF, Ralet MC (2008) Competitive binding of pectin and xyloglucan with primary cell wall cellulose. Carbohydr Polym 74:957–961

    Article  CAS  Google Scholar 

  65. Wang T, Hong M (2016) Solid-state NMR investigations of cellulose structure and interactions with matrix polysaccharides in plant primary cell walls. J Exp Bot 67:503–514

    Article  CAS  PubMed  Google Scholar 

  66. Abraham MH (1982) Free energies, enthalpies, and entropies of solution of gaseous nonpolar nonelectrolytes in water and nonaqueous solvents. The hydrophobic effect. J Am Chem Soc 104:2085–2094

    Article  CAS  Google Scholar 

  67. Sedov IA, Magsumov TI, Solomonov BN (2016) Solvation of hydrocarbons in aqueous–organic mixtures. J Chem Thermodyn 96:153–160

    Article  CAS  Google Scholar 

  68. Bakulin AA, Cringus D, Pieniazek PA, Skinner JL, Jansen TLC, Pshenichnikov MS (2013) Dynamics of water confined in reversed micelles: multidimensional vibrational spectroscopy study. J Phys Chem B 117:15545–15558

    Article  CAS  PubMed  Google Scholar 

  69. Huang YR, Liu KH, Mou CY, Sun CK (2015) Relaxation dynamics of surface-adsorbed water molecules in nanoporous silica probed by terahertz spectroscopy. Appl Phys Lett 107:081607

    Article  CAS  Google Scholar 

  70. Nimlos MR, Beckham GT, Matthews JF, Bu L, Himmel ME, Crowley MF (2012) Binding preferences, surface attachment, diffusivity, and orientation of a family 1 carbohydrate-binding module on cellulose. J Biol Chem 287:20603–20612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported as part of The Center for LignoCellulose Structure and Formation, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences under Award # DE-SC0001090. This research was conducted with Advanced CyberInfrastructure computational resources provided by NERSC, The Institute for CyberScience at The Pennsylvania State University (http://ics.psu.edu), and the Texas Advanced Computing Center (TACC). Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the US Department of Energy under Contract DE-AC05-00OR22725.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James D. Kubicki.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Watts, H.D., Gibilterra, V. et al. Quantum Calculations on Plant Cell Wall Component Interactions. Interdiscip Sci Comput Life Sci 11, 485–495 (2019). https://doi.org/10.1007/s12539-018-0293-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-018-0293-4

Keywords

Navigation