Skip to main content

Advertisement

Log in

Quantum mechanical calculations on cellulose–water interactions: structures, energetics, vibrational frequencies and NMR chemical shifts for surfaces of Iα and Iβ cellulose

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Periodic and molecular cluster density functional theory calculations were performed on the Iα (001), Iα (021), Iβ (100), and Iβ (110) surfaces of cellulose with and without explicit H2O molecules of hydration. The energy-minimized H-bonding structures, water adsorption energies, vibrational spectra, and 13C NMR chemical shifts are discussed. The H-bonded structures and water adsorption energies (ΔEads) are used to distinguish hydrophobic and hydrophilic cellulose–water interactions. O–H stretching vibrational modes are assigned for hydrated and dry cellulose surfaces. Calculations of the 13C NMR chemical shifts for the C4 and C6 surface atoms demonstrate that these δ13C4 and δ13C6 values can be upfield shifted from the bulk values as observed without rotation of the hydroxymethyl groups from the bulk tg conformation to the gt conformation as previously assumed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Accelrys Inc. (2012) Materials Studio 5.5. San Diego, CA

  • Adamo C, Barone V, Introduction I (1998) Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: the mPW and mPW1PW models. J Chem Phys 108:664–675

    Article  CAS  Google Scholar 

  • Albersheim P, Darvill A, Roberts K, Sederoff R, Staehelin A (2011) Biochemistry of the cell wall molecules. In: Plant cell walls: from chemistry to biology. Garland Science, Taylor & Francis Group, LLC, NY, pp 67–118

  • Alecu IM, Zheng J, Zhao Y, Truhlar DG (2010) Computational thermochemistry: scale factor databases and scale factors for vibrational frequencies obtained from electronic model chemistries. J Chem Theory Comput 6:2872–2887

    Article  CAS  Google Scholar 

  • Blackwell J (1977) Infrared and Raman spectroscopy of cellulose. In: Aurthur J (ed) Cellulose chemistry and technology, ACS symposium series. American Chemical Society, Washington, DC, pp 206–218

    Chapter  Google Scholar 

  • Brizuela AB, Bichara LC, Romano E, Yurquina A, Locatelli S, Brandán SA (2012) A complete characterization of the vibrational spectra of sucrose. Carbohydr Res 361:212–218

    Article  CAS  Google Scholar 

  • Bućko T, Tunega D, Ángyán JG, Hafner J (2011) Ab initio study of structure and interconversion of native cellulose phases. J Phys Chem A 115:10097–10105

    Article  CAS  Google Scholar 

  • Buhl M, Kaupp M, Malkina OL, Malkin VG (1999) The DFT route to NMR chemical shifts. J Comput Chem 20:91–105

    Article  CAS  Google Scholar 

  • Chai J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620

    Article  CAS  Google Scholar 

  • Cheeseman JR, Trucks GW, Keith TA, Frisch MJ (1996) A comparison of models for calculating nuclear magnetic resonance shielding tensors. J Chem Phys 104:5497–5509

    Article  CAS  Google Scholar 

  • Cirtog M, Alikhani ME, Madebène B, Soulard P, Asselin P, Tremblay B (2011) Bonding nature and vibrational signatures of oxirane:(water)n = 1–3. Assessment of the performance of the dispersion-corrected DFT methods compared to the ab initio results and Fourier transform infrared experimental data. J Phys Chem A 115:6688–6701

    Article  CAS  Google Scholar 

  • Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PVR (1983) Efficient diffuse function-augmented basis sets for anion calculations. III. The 3-21+ G basis set for first-row elements, Li-F. J Comput Chem 4:294–301

    Article  CAS  Google Scholar 

  • Cremer D, Pople JA (1975) A general definition of ring puckering coordinates. J Am Chem Soc 97:1354–1358

    Article  CAS  Google Scholar 

  • Davidson TC, Newman RH, Ryan MJ (2004) Variations in the fibre repeat between samples of cellulose I from different sources. Carbohydr Res 339:2889–2893

    Article  CAS  Google Scholar 

  • Dick-Pérez M, Zhang Y, Hayes J, Salazar A, Zabotina OA, Hong M (2011) Structure and interactions of plant cell-wall polysaccharides by two- and three-dimensional magic-angle-spinning solid-state NMR. Biochemistry 50:989–1000

    Article  CAS  Google Scholar 

  • Eck B (2012) wxDragon 1.8.0-reg. Copyright 1994–2012 mbB

  • Erata T, Shikano T, Yunoki S, Takai M (1997) The complete assignment of the 13C CP/MAS NMR spectrum of native cellulose by using 13C labeled glucose. Cellul Commun 4:128–131

    CAS  Google Scholar 

  • Fekri N, Khayami M, Heidari R, Jamee R (2008) Chemical analysis of flax seed, sweet basil, dragon head and quince seed mucilages. Res J Biol Sci 3:166–170

    Google Scholar 

  • Fernandes AN, Thomas LH, Altaner CM, Callow P, Forsyth VT, Apperely DC, Kennedy CJ, Jarvis MC (2011) Nanostructure of cellulose microfibrils in spruce wood. Proc Natl Acad Sci USA 108:E1195–E1203

    Article  Google Scholar 

  • French AD, Csonka GI (2011) Hydroxyl orientations in cellobiose and other polyhydroxyl compounds: modeling versus experiment. Cellulose 18(4):897–909

    Article  CAS  Google Scholar 

  • French AD, Johnson GP, Cramer CJ, Csonka GI (2012) Conformational analysis of cellobiose by electronic structure theories. Carbohydr Res 350:68–76

    Article  CAS  Google Scholar 

  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC et al. (2009) Gaussian 09 Revision B.01. Wallingford, CT

  • Fubini B, Zanetti G, Altilia S, Tiozzo R, Lison D, Saffiotti U (1999) Relationship between surface properties and cellular responses to crystalline silica: studies with heat-treated cristobalite. Chem Res Toxicol 12:737–745

    Article  CAS  Google Scholar 

  • Gazit OM, Katz A (2013) Understanding the role of defect sites in glucan hydrolysis on surfaces. J Am Chem Soc 135:4398–4402

    Article  CAS  Google Scholar 

  • Gonzalez-Outeiriño J, Kirschner KN, Thobhani S, Woods RJ (2006) Reconciling solvent effects on rotamer populations in carbohydrates—A joint MD and NMR analysis. Can J Chem 84:569–579

    Article  Google Scholar 

  • Gottlieb HE, Kotlyar V, Nudelman A (1997) NMR chemical shifts of common laboratory solvents as trace impurities. J Org Chem 62:7512–7515

    Article  CAS  Google Scholar 

  • Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799

    Article  CAS  Google Scholar 

  • Guvench O, Hatcher ER, Venable RM, Pastor RW, MacKerell AD Jr (2009) CHARMM additive all-atom force field for glycosidic linkages. J Chem Theory Comput 5:2353–2370

    Article  CAS  Google Scholar 

  • Hanus J, Mazeau K (2006) The xyloglucan—cellulose assembly at the atomic scale. Biopolymers 82:59–73

    Article  CAS  Google Scholar 

  • Harris DM, Corbin K, Wang T, Gutierrez R, Bertolo AL, Carloalberto P, Smilgies D-M, Estevez JM, Bonetta D, Urbanowicz BR et al (2012) Cellulose microfibril crystallinity is reduced by mutating C-terminal transmembrane region residues CESA1A903V and CESA3T942I of cellulose synthase. Proc Natl Acad Sci USA 109:4098–4103

    Article  Google Scholar 

  • Heiner AP, Teleman O (1997) Interface between monoclinic crystalline cellulose and water: breakdown of the odd/even duplicity. Langmuir 13:511–518

    Google Scholar 

  • Heiner AP, Kuutti L, Teleman O (1998) Comparison of the interface between water and four surfaces of native crystalline cellulose by molecular dynamics simulations. Carbohydr Res 306:205–220

    Article  CAS  Google Scholar 

  • Hiejima Y, Yao M (2004) Phase behaviour of water confined in Vycor glass at high temperatures and pressures. J Phys: Condens Matter 16:7903–7908

    CAS  Google Scholar 

  • Horii F, Hirai A, Kitamaru R (1983) Solid-state 13C-NMR study of conformations of the oligosaccharide and cellulose conformation of the CH2OH group about the exo-cyclic C–C bond. Polym Bull 10:357–361

    Article  CAS  Google Scholar 

  • Horii F, Hirai A, Kitamaru R (1984) CP-MAS C-13 NMR study of spin relaxation phenomena of cellulose containing crystalline and noncrystalline components. J Carbohydr Chem 3:641–662

    Article  CAS  Google Scholar 

  • Horikawa Y, Itoh T, Sugiyama J (2006) Preferential uniplanar orientation of cellulose microfibrils reinvestigated by the FTIR technique. Cellulose 13:309–316

    Article  CAS  Google Scholar 

  • Iijima M, Morita S, Barlow PW (2008) Structure and function of the root cap. Plant Prod Sci 11:17–27

    Article  Google Scholar 

  • Ireta J, Neugebauer J, Scheffler M (2004) On the accuracy of DFT for describing hydrogen bonds: dependence on the bond directionality. J Phys Chem A 108:5692–5698

    Article  CAS  Google Scholar 

  • Jarvis MC (1994) Relationship of chemical shift to glycosidic conformation in the solid-state 13C NMR spectra of (1 → 4)-linked glucose polymers and oligomers: anomeric and related effects. Carbohydr Res 259:311–318

    Article  CAS  Google Scholar 

  • Jarvis MC (2011) Plant cell walls: supramolecular assemblies. Food Hydrocolloids 25:257–262

    Article  CAS  Google Scholar 

  • Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University Press, New York

    Google Scholar 

  • Kalutskaya EP, Gusev SS (1981) An infrared spectroscopic investigation of the hydration of cellulose. Polym Sci USSR 22(3):550–556

    Article  Google Scholar 

  • Karadakov PB (2006) Ab Initio Calculation of NMR Shielding Constants. In: Webb GA (ed) Modern magnetic resonance. Springer, Netherlands, pp 63–70

    Chapter  Google Scholar 

  • Kirschner KN, Woods RJ (2001) Solvent interactions determine carbohydrate conformation. Proc Natl Acad Sci USA 98:10541–10545

    Article  CAS  Google Scholar 

  • Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186

    Article  CAS  Google Scholar 

  • Kresse G, Hafner J (1993) Ab initio molecular dynamics for open-shell transition metals. Phys Rev B 48:13115–13118

    Article  CAS  Google Scholar 

  • Kresse G, Hafner J (1994) Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys Rev B 49:14251–14269

    Article  CAS  Google Scholar 

  • Kresse G, Furthmüller J, Hafner J (1994) Theory of the crystal structures of selenium and tellurium: the effect of generalized-gradient corrections to the local-density approximation. Phys Rev B 50:13181–13185

    Article  CAS  Google Scholar 

  • Krishnan R, Brinkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 72:650–654

    Article  CAS  Google Scholar 

  • Kubicki JD, Mohamed MN-A, Watts HD (2013) Quantum mechanical modeling of the structures, energetics and spectral properties of Iα and Iβ cellulose. Cellulose 20:9–23

    Article  CAS  Google Scholar 

  • Lee CM, Mohamed MA, Watts HD, Kubicki JD, Kim S (2013) Sum-frequency-generation (SFG) vibration spectra and density functional theory calculations with dispersion corrections (DFT-D2) for cellulose Iα; and Iβ. J Phys Chem B 117:6681–6692

    Article  CAS  Google Scholar 

  • Lehtiö J, Sugiyama J, Gustavsson M, Fransson L, Linder M, Teeri TT (2003) The binding specificity and affinity determinants of family 1 and family 3 cellulose binding modules. Proc Natl Acad Sci USA 100:484–489

    Article  CAS  Google Scholar 

  • Li Y, Lin M, Davenport JW (2011) Ab initio studies of cellulose I: crystal structure, intermolecular forces, and interactions with water. J Phys Chem 115:11533–11539

    Google Scholar 

  • Lindberg B, Mosihuzzaman M, Nahar N, Abeysekera RM, Brown RG, Willison JHM (1990) An unusual (4-O-methyl-D-glucurono)-D-xylan isolated from the mucilage of seeds of the quince tree (Cydonia oblonga). Carbohydr Res 207:307–310

    Article  CAS  Google Scholar 

  • Liu Y, Gamble G, Thibodeaux D (2010) Two-dimensional attenuated total reflection infrared correlation spectroscopy study of the desorption process of water-soaked cotton fibers. Appl Spectrosc 64:1355–1363

    Article  CAS  Google Scholar 

  • Lodewyk MW, Siebert MR, Tantillo DJ (2012) Computational prediction of 1H and 13C chemical shifts: a useful tool for natural product, mechanistic, and synthetic organic chemistry. Chem Rev 112:1839–1862

    Article  CAS  Google Scholar 

  • Malm E, Bulone V, Wickholm K, Larsson P, Iversen T (2010) The surface structure of well-ordered native cellulose fibrils in contact with water. Carbohydr Res 345:97–100

    Article  CAS  Google Scholar 

  • Mann J, Marrinan HJ (1956) The reaction between cellulose and heavy water. Trans Faraday Soc 52:481–487

    Article  CAS  Google Scholar 

  • Maréchal Y, Chanzy H (2000) The hydrogen bond network in Iβ cellulose as observed by infrared spectrometry. J Mol Struct 523:183–196

    Article  Google Scholar 

  • Matthews JF, Skopec CE, Mason PE, Zuccato P, Torget RW, Sugiyama J, Himmel ME, Brady JW (2006) Computer simulation studies of microcrystalline cellulose Iβ. Carbohydr Res 341:138–152

    Article  CAS  Google Scholar 

  • Matthews JF, Bergenstråhle M, Beckham GT, Himmel ME, Nimlos MR, Brady JW, Crowley MF (2011) High-temperature behavior of cellulose I. J Phys Chem B 115:2155–2166

    Article  CAS  Google Scholar 

  • Matthews JF, Beckham GT, Bergenstråhle-Wohlert M, Brady JW, Himmel ME, Crowley MF (2012) Comparison of cellulose Iβ simulations with three carbohydrate force fields. J Chem Theory Comput 8:735–748

    Article  CAS  Google Scholar 

  • Nakashima K, Sugiyama J, Satoh N (2008) A spectroscopic assessment of cellulose and the molecular mechanisms of cellulose biosynthesis in the ascidian Ciona intestinalis. Mar Genom 1:9–14

    Article  Google Scholar 

  • Naran R, Chen G, Carpita NC (2008) Novel rhamnogalacturonan I and arabinoxylan polysaccharides of flax seed mucilage. Plant Physiol 148:132–141

    Article  CAS  Google Scholar 

  • Newman RH, Davidson TC (2004) Molecular conformations at the cellulose—water interface. Cellulose 11:23–32

    Article  CAS  Google Scholar 

  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082

    Article  CAS  Google Scholar 

  • Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306

    Article  CAS  Google Scholar 

  • Nishiyama Y, Johnson GP, French AD, Forsyth VT, Langan P (2008) Neutron crystallography, molecular dynamics, and quantum mechanics studies of the nature of hydrogen bonding in cellulose Iβ. Biomacromolecules 9:3133–3140

    Article  CAS  Google Scholar 

  • O’Dell WB, Baker DC, McLain SE (2012) Structural evidence for inter-residue hydrogen bonding observed for cellobiose in aqueous solution. PLoS ONE 7:e45311

    Article  CAS  Google Scholar 

  • Paterson MS (1982) The determination of hydroxyl by infrared absorption in quartz, silicate glasses and similar minerals. Bull Minér 105:20–29

    CAS  Google Scholar 

  • Petridis L, Pingali S, Urban V, Heller W, O’Neill H, Foston M, Ragauskas A, Smith J (2011) Self-similar multiscale structure of lignin revealed by neutron scattering and molecular dynamics simulation. Phys Rev E 83:4–7

    Article  CAS  Google Scholar 

  • Radloff D, Boeffel C, Spiess HW (1996) Cellulose and cellulose/poly (vinyl alcohol) blends. 2. Water organization revealed by solid-state NMR spectroscopy. Macromolecules 29(5):1528–1534

    Article  CAS  Google Scholar 

  • Rappé AK, Casewit CJ, Colwell KS, Goddard WA III, Skiff WM (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 114:10024–10035

    Article  Google Scholar 

  • Rassolov VA, Ratner MA, Pople JA, Redfern PC, Curtiss LA (2001) 6-31G* basis set for third-row atoms. J Comput Chem 22:976–984

    Article  CAS  Google Scholar 

  • Sarotti AM, Pellegrinet SC (2009) A multi-standard approach for GIAO 13C NMR calculations. J Organ Chem 74:7254–7260

    Article  CAS  Google Scholar 

  • Schaftenaar G, Noordik JH (2000) Molden: a pre- and post-processing program for molecular and electronic structures. J Comput Aided Mol Des 14:123–134

    Article  CAS  Google Scholar 

  • Schreckenbach G, Ziegler T (1995) Calculation of NMR shielding tensors using gauge-including atomic orbitals and modern density functional theory. J Phys Chem 99:606–611

    Article  CAS  Google Scholar 

  • Skinner JL, Pieniazek PA, Gruenbaum SM (2012) Vibrational spectroscopy of water at interfaces. Acc Chem Res 45:93–100

    Article  CAS  Google Scholar 

  • Sternberg U, Koch F, Prieß W, Witter R (2003) Crystal structure refinements of cellulose polymorphs using solid state 13C chemical shifts. Cellulose 10:189–199

    Article  CAS  Google Scholar 

  • Šturcová S, His I, Apperley DC, Sugiyama J, Jarvis MC (2004) Structural details of crystalline cellulose from higher plants. Biomacromolecules 5:1333–1339

    Article  CAS  Google Scholar 

  • Thomas LH, Forsyth VT, Sturcová A, Kennedy CJ, May RP, Altaner CM, Apperley DC, Wess TJ, Jarvis MC (2013) Structure of cellulose microfibrils in primary cell walls from collenchyma. Plant Physiol 161:465–476

    Article  CAS  Google Scholar 

  • Watts HD, Mohamed MNA, Kubicki JD (2011) Comparison of multistandard and TMS-standard calculated NMR shifts for coniferyl alcohol and application of the multistandard method to lignin dimers. J Phys Chem B 115:1958–1970

    Article  CAS  Google Scholar 

  • Wickholm K, Larsson PT, Iversen T (1998) Assignment of non-crystalline forms in cellulose I by CP/MAS 13C NMR spectroscopy. Carbohydr Res 312:123–129

    Article  CAS  Google Scholar 

  • Wiitala KW, Hoye TR, Cramer CJ (2006) Hybrid density functional methods empirically optimized for the computation of 13C and 1H chemical shifts in chloroform solution. J Chem Theory Comput 2(4):1085–1092

    Google Scholar 

  • Wiley JH, Atalla RH (1987) Band assignments in the Raman spectra of celluloses. Carbohydr Res 160:113–129

    Article  CAS  Google Scholar 

  • Witter R, Sternberg U, Hesse S, Kondo T, Koch F-T, Ulrich AS (2006) 13C chemical shift constrained crystal structure refinement of cellulose Iα and its verification by NMR anisotropy experiments. Macromolecules 38:6125–6132

    Article  CAS  Google Scholar 

  • Wolinski K, Hinton JF, Pulay P (1990) Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J Am Chem Soc 112:8251–8260

    Article  CAS  Google Scholar 

  • Zhang C, Lindan PJD (2003) Towards a first-principles picture of the oxide–water interface. J Chem Phys 119:9183–9190

    Article  CAS  Google Scholar 

  • Zhao Y, Schultz NE, Truhlar DG (2006) Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. J Chem Theory Comput 2:364–382

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the U.S. Department of Energy grant for the Energy Frontier Research Center in Lignocellulose Structure and Formation (CLSF) from the Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001090. The authors also thank Yoshiharu Nishiyama for suggesting DFT-D2 calculations as a methodology for modeling cellulose. We also acknowledge discussions with Roger Newman and Mike Jarvis as well as numerous CLSF participants that improved the manuscript. Computational support was provided by the Research Computation and Cyberinfrastructure group at The Pennsylvania State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James D. Kubicki.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3967kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kubicki, J.D., Watts, H.D., Zhao, Z. et al. Quantum mechanical calculations on cellulose–water interactions: structures, energetics, vibrational frequencies and NMR chemical shifts for surfaces of Iα and Iβ cellulose. Cellulose 21, 909–926 (2014). https://doi.org/10.1007/s10570-013-0029-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-013-0029-x

Keywords

Navigation