Skip to main content
Log in

A New Parameterization of an All-Atom Force Field for Cellulose

  • Multiscale Experiments and Modeling in Biomaterials and Biological Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

We have parametrized an AMBER force field in a TEAMFF database to accurately represent intra- and intermolecular interactions of cellulose. Parameters are obtained by fitting quantum mechanics (QM) energetic data on a training set of 12 simple and substituted heterocycles, alcohols, ethers, and saccharides. The temperature-dependent Lennard–Jones parameters were optimized by fitting experimental data of 23 molecular liquids at different temperatures using molecular dynamics (MD) simulations. Validation on cellobiose, the monomer of cellulose, exhibits excellent agreement between the data obtained by molecular mechanics calculations using the present force field and QM calculations in terms of conformational energies, structures, and vibrational frequencies. The MD simulation results of cellulose Iβ crystal agree well with the experimental data, showing a 0.1% deviation in density and less than 1% deviations in all the cell parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. B. Medronho, A. Romano, M.G. Miguel, L. Stigsson, and B. Lindman, Cellulose 19, 581. (2012).

    Article  Google Scholar 

  2. D. Ye, S. Rongpipi, S.N. Kiemle, W.J. Barnes, A.M. Chaves, C. Zhu, V.A. Norman, A. Liebman-Peláez, A. Hexemer, M.F. Toney, A.W. Roberts, C.T. Anderson, D.J. Cosgrove, E.W. Gomez, and E.D. Gomez, Nat. Commun. 11, 4720. (2020).

    Article  Google Scholar 

  3. J.-Y. Kim, H.W. Lee, S.M. Lee, J. Jae, and Y.-K. Park, Bioresour. Technol. 279, 373. (2019).

    Article  Google Scholar 

  4. J.V. Vermaas, L. Petridis, X. Qi, R. Schulz, B. Lindner, and J.C. Smith, Biotech. Biofuels 8, 217. (2015).

    Article  Google Scholar 

  5. T.M. Shiga, W. Xiao, H. Yang, X. Zhang, A.T. Olek, B.S. Donohoe, J. Liu, L. Makowski, T. Hou, M.C. McCann, N.C. Carpita, and N.S. Mosier, Biotech. Biofuels 10, 310. (2017).

    Article  Google Scholar 

  6. R. Tiwari, L. Nain, N.E. Labrou, and P. Shukla, Crit. Rev. Microbiol. 44, 244. (2018).

    Article  Google Scholar 

  7. X. Wu, R.J. Moon, and A. Martini, Cellulose 21, 2233. (2014).

    Article  Google Scholar 

  8. G. Lo Re, S. Spinella, A. Boujemaoui, F. Vilaseca, P.T. Larsson, F. Adås, L.A. Berglund, and A.C.S. Sustain, Chem. Eng. 6, 6753. (2018).

    Google Scholar 

  9. G. Molnár, D. Rodney, F. Martoïa, P.J.J. Dumont, Y. Nishiyama, K. Mazeau, and L. Orgéas, Proc. Nat. Acad. Sci. USA 115, 7260. (2018).

    Article  Google Scholar 

  10. G. Liu, W. Li, L. Chen, X. Zhang, D. Niu, Y. Chen, S. Yuan, Y. Bei, and Q. Zhu, Colloids Surf. A 594, 124663. (2020).

    Article  Google Scholar 

  11. D.W. Wei, H. Wei, A.C. Gauthier, J. Song, Y. Jin, and H. Xiao, J. Bioresour. Bioprod. 5, 1. (2020).

    Article  Google Scholar 

  12. S. Nie, H. Guo, Y. Lu, J. Zhuo, J. Mo, and Z.L. Wang, Adv. Mater. Tech. 5, 2000454. (2020).

    Article  Google Scholar 

  13. C. Chen, M. Liu, Y. Hou, L. Zhang, D. Wang, H. Shen, C. Ding, C. Li, S. Fu, and A.C.S. Sustain, Chem. Eng. 8, 8505–8518. (2020).

    Google Scholar 

  14. S. Chen, Y. Song, F. Xu, and A.C.S. Sustain, Chem. Eng. 6, 5173. (2018).

    Google Scholar 

  15. N. Dizge, E. Shaulsky, and V. Karanikola, J. Membr. Sci. 590, 117271. (2019).

    Article  Google Scholar 

  16. W. Huang, X. Tang, Z. Qiu, W. Zhu, Y. Wang, Y.-L. Zhu, Z. Xiao, H. Wang, D. Liang, J. Li, and Y. Xie, ACS Appl. Mater. Int. 12, 40968. (2020).

    Article  Google Scholar 

  17. T. Ishida, J. Phys. Chem. B 124, 3090. (2020).

    Article  Google Scholar 

  18. T. Endo, S. Yoshida, and Y. Kimura, Cryst. Growth Des. 20, 6267. (2020).

    Article  Google Scholar 

  19. P.B. Sánchez, S. Tsubaki, A.A.H. Pádua, and Y. Wada, Phys. Chem. Chem. Phys. 22, 1003. (2020).

    Article  Google Scholar 

  20. C.A. Pena, A. Soto, A.W.T. King, H. Rodríguez, and A.C.S. Sustain, Chem. Eng. 7, 9164. (2019).

    Google Scholar 

  21. A.S.M. Wittmar, D. Koch, O. Prymak, and M. Ulbricht, ACS Omega 5, 27314. (2020).

    Article  Google Scholar 

  22. D.N.S. Hon, Cellulose 1, 1. (1994).

    Article  Google Scholar 

  23. K.H. Meyer, and H. Mark, Ber. Dtsch. Chem. Ges. 61, 593. (1928).

    Article  Google Scholar 

  24. K.H. Meyer, and L. Misch, Helv. Chim. Acta 20, 232. (1937).

    Article  Google Scholar 

  25. Y. Nishiyama, P. Langan, and H. Chanzy, J. Am. Chem. Soc. 124, 9074. (2002).

    Article  Google Scholar 

  26. W. Plazinski, A. Lonardi, and P.H. Hünenberger, J. Comput. Chem. 37, 354. (2016).

    Article  Google Scholar 

  27. H.S. Hansen, and P.H. Hünenberger, J. Comput. Chem. 32, 998. (2011).

    Article  Google Scholar 

  28. R.D. Lins, and P.H. Hunenberger, J. Comput. Chem. 26, 1400. (2005).

    Article  Google Scholar 

  29. D. Kony, W. Damm, S. Stoll, and W.F. Van Gunsteren, J. Comput. Chem. 23, 1416. (2002).

    Article  Google Scholar 

  30. K.N. Kirschner, A.B. Yongye, S.M. Tschampel, J. González-Outeiriño, C.R. Daniels, B.L. Foley, and R.J. Woods, J. Comput. Chem. 29, 622. (2008).

    Article  Google Scholar 

  31. K. Vanommeslaeghe, E. Hatcher, C. Acharya, S. Kundu, S. Zhong, J. Shim, E. Darian, O. Guvench, P. Lopes, I. Vorobyov, and A.D. Mackerell, J. Comput. Chem. 31, 671. (2010).

    Google Scholar 

  32. O. Guvench, E. Hatcher, R.M. Venable, R.W. Pastor, and A.D. MacKerell, J. Chem. Theor. Comput. 5, 2353. (2009).

    Article  Google Scholar 

  33. J.F. Matthews, G.T. Beckham, M. Bergenstråhle-Wohlert, J.W. Brady, M.E. Himmel, and M.F. Crowley, J. Chem. Theor. Comput. 8, 735. (2012).

    Article  Google Scholar 

  34. Z. Gong, and H. Sun, J. Chem. Eng. Data 64, 3718. (2019).

    Article  Google Scholar 

  35. Z. Wu, D.J. Beltran-Villegas, and A. Jayaraman, J. Chem. Theor. Comput. 16, 4599. (2020).

    Article  Google Scholar 

  36. L. Perić-Hassler, H.S. Hansen, R. Baron, and P.H. Hünenberger, Carbohydr. Res. 345, 1781. (2010).

    Article  Google Scholar 

  37. G.L. Strati, J.L. Willett, and F.A. Momany, Carbohydr. Res. 337, 1833. (2002).

    Article  Google Scholar 

  38. J. Wang, R.M. Wolf, J.W. Caldwell, P.A. Kollman, and D.A. Case, J. Comput. Chem. 25, 1157. (2004).

    Article  Google Scholar 

  39. B.R. Brooks, R.E. Bruccoleri, B.D. Olafson, D.J. States, S. Swaminathan, and M. Karplus, J. Comput. Chem. 4, 187. (1983).

    Article  Google Scholar 

  40. M.J. Hwang, T.P. Stockfisch, and A.T. Hagler, J. Am. Chem. Soc. 116, 2515. (1994).

    Article  Google Scholar 

  41. Z. Jin, C. Yang, F. Cao, F. Li, Z. Jing, L. Chen, Z. Shen, L. Xin, S. Tong, and H. Sun, J. Comput. Chem. 37, 653. (2016).

    Article  Google Scholar 

  42. Z. Gong, H. Sun, and B.E. Eichinger, J. Chem. Theor. Comput. 14, 3595. (2018).

    Article  Google Scholar 

  43. M.P. Oliveira, M. Andrey, S.R. Rieder, L. Kern, D.F. Hahn, S. Riniker, B.A.C. Horta, and P.H. Hünenberger, J. Chem. Theor. Comput. 16, 7525. (2020).

    Article  Google Scholar 

  44. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman, and D.J. Fox, Gaussian 09, Revision A.02. (Wallingford: Gaussian, 2018).

  45. D. Siderius, NIST Standard Reference Simulation Website. (Gaithersberg, MD: NIST, 2017).

  46. D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A.E. Mark, and H.J.C. Berendsen, J. Comput. Chem. 26, 1701. (2005).

    Article  Google Scholar 

  47. L. Martínez, R. Andrade, E.G. Birgin, and J.M. Martínez, J. Comput. Chem. 30, 2157. (2009).

    Article  Google Scholar 

  48. S. Plimpton, J. Comput. Phys. 117, 1. (1995).

    Article  Google Scholar 

  49. C.R. Groom, I.J. Bruno, M.P. Lightfoot, and S.C. Ward, Acta Crystallogr. B 72, 171. (2016).

    Article  Google Scholar 

  50. M. Diem, and C. Oostenbrink, J. Chem. Theor. Comput. 16, 5985. (2020).

    Article  Google Scholar 

  51. H. Sun, J. Phys. Chem. B 102, 7338. (1998).

    Article  Google Scholar 

  52. L. Paoloni, S. Rampino, and V. Barone, J. Chem. Theor. Comput. 15, 4280. (2019).

    Article  Google Scholar 

  53. C.C. Sun, J. Pharm. Sci. 94, 2132. (2005).

    Article  Google Scholar 

  54. S. Neyertz, A. Pizzi, A. Merlin, B. Maigret, D. Brown, and X. Deglise, J. Appl. Polym. Sci. 78, 1939. (2000).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the computational resources resource provided by the High-Performance Computing (HPC) Center of Shanghai Jiao Tong University.

Funding

This work was funded by the National Natural Science Foundation of China [Grant Nos. 21673138, 21603141, 21973060].

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript. All authors contributed equally.

Corresponding author

Correspondence to Huai Sun.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 418 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charvati, E., Zhao, L., Wu, L. et al. A New Parameterization of an All-Atom Force Field for Cellulose. JOM 73, 2335–2346 (2021). https://doi.org/10.1007/s11837-021-04732-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04732-9

Navigation