Skip to main content
Log in

Towards lignin-protein crosslinking: amino acid adducts of a lignin model quinone methide

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

A Correction to this article was published on 28 May 2019

This article has been updated

Abstract

The polyaromatic structure of lignin has long been recognized as a key contributor to the rigidity of plant vascular tissues. Although lignin structure was once conceptualized as a highly networked, heterogeneous, high molecular weight polymer, recent studies have suggested a very different configuration may exist in planta. These findings, coupled with the increasing attention and interest in efficiently utilizing lignocellulosic materials for green materials and energy applications, have renewed interest in lignin chemistry. Here we focus on quinone methides (QMs)—key intermediates in lignin polymerization—that are quenched via reaction with cell-wall-available nucleophiles. Reactions with alcohol and uronic acid groups of hemicelluloses, for example, can lead to lignin-carbohydrate crosslinks. Our work is a first step toward exploring potential QM reactions with nucleophilic groups in cell wall proteins. We conducted a model compound study wherein the lignin model compound guaiacylglycerol-β-guaiacyl ether 1, was converted to its QM 2, then reacted with amino acids bearing nucleophilic side-groups. Yields for the QM-amino acid adducts ranged from quantitative in the case of QM-lysine 3, to zero (no reaction) in the cases of QM-threonine (Thr) 10 and QM-hydroxyproline (Hyp) 11. The structures of the QM-amino acid adducts were confirmed via 1D and 2D nuclear magnetic resonance (NMR) spectroscopy and density functional theory (DFT) calculations, thereby extending the lignin NMR database to include amino acid crosslinks. Some of the QM-amino acid adducts formed both syn- and anti-isomers, whereas others favored only one isomer. Because the QM-Thr 10 and QM-Hyp 11 compounds could not be experimentally prepared under conditions described here but could potentially form in vivo, we used DFT to calculate their NMR shifts. Characterization of these model adducts extends the lignin NMR database to aid in the identification of lignin-protein linkages in more complex in vitro and in vivo systems, and may allow for the identification of such linkages in planta.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

  • 28 May 2019

    The manuscript initially failed to cite the work of Dr. Cong et al., which was the basis for this effort. We apologize for this error.

  • 28 May 2019

    The manuscript initially failed to cite the work of Dr. Cong et al., which was the basis for this effort. We apologize for this error.

References

  • Adamo C, Barone V (1998) Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: the mPW and mPW1PW models. J Chem Phys 108:664–675

    Article  CAS  Google Scholar 

  • Albersheim P, Darvill A, Roberts K, Sederoff R, Staehelin A (2010) Principles of cell wall architecture and assembly. In: Plant cell walls. Garland Science, New York, New York, pp 227–272

  • Awad HM, Boersma MG, Vervoort J, Rietjens IMCM (2000) Peroxidase-catalyzed formation of quercetin quinone methide-glutathione adducts. Arch Biochem Biophys 378:224–233

    Article  CAS  Google Scholar 

  • Balakshin M, Capanema E, Gracz H, Chang H, Jameel H (2011) Quantification of lignin-carbohydrate linkages with high-resolution NMR spectroscopy. Planta 233:1097–1110

    Article  CAS  Google Scholar 

  • Barone G, Duca D, Silvestri A, Gomez-Paloma L, Riccio R, Bifulco G (2002) Determination of the relative stereochemistry of flexible organic compounds by ab initio methods: conformational analysis and Boltzmann-averaged GIAO 13C NMR chemical shifts. Chem Eur J 8(14):3240–3245

    Article  CAS  Google Scholar 

  • Beat K, Templeton MD, Lamb CJ (1989) Specific localization of a plant cell wall glycine-rich protein in protoxylem cells of the vascular system. Proc Natl Acad Sci USA 86:1529–1533

    Article  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Ann Rev Plant Biol 54:519–546

    Article  CAS  Google Scholar 

  • Bolton JL, Turnipseed SB, Thompson JA (1997) Influence of quinone methide reactivity on the alkylation of thiol and amino groups in proteins: studies utilizing amino acid and peptide models. Chem Biol Interact 107:185–200

    Article  CAS  Google Scholar 

  • Buhl M, Kaupp M, Malkina OL, Malkin VG (1999) The DFT route to NMR chemical shifts. J Comput Chem 20:91–105

    Article  CAS  Google Scholar 

  • Cances E, Mennucci B, Tomasi J (1997) A new integral equation formalism for the polarizable continuum model: theoretical background and applications to isotropic and anisotropic dielectrics. J Chem Phys 107(8):3032–3041

    Article  CAS  Google Scholar 

  • Capanema EA, Balakshin MY, Kadla JF (2004) A comprehensive approach for quantitative lignin characterization by NMR spectroscopy. J Agric Food Chem 52:1850–1860

    Article  CAS  Google Scholar 

  • Cassab IG, Varner JE (1988) Cell wall proteins. Ann Rev Plant Physiol Plant Mol Biol 39:321–353

    Article  CAS  Google Scholar 

  • Chapple C, Ladisch M, Meilan R (2007) Loosening lignin’s grip on biofuel production. Nat Biotechnol 25:746–748

    Article  CAS  Google Scholar 

  • Cheeseman JR, Trucks GW, Keith TA, Frisch MJ (1996) A comparison of models for calculating nuclear magnetic resonance shielding tensors. J Chem Phys 104:5497–5509

    Article  CAS  Google Scholar 

  • Chen F, Dixon RA (2008) Genetic manipulation of lignin biosynthesis to improve biomass characteristics for agro-industrial processes. In Vitro Cell Dev Biol Anim 44:S28–S29

    Google Scholar 

  • Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PVR (1983) Efficient diffuse function-augmented basis sets for anion calculations. III. The 3-21 + G basis set for first-row elements, Li–F. J Comput Chem 4(3):294–301

    Article  CAS  Google Scholar 

  • Cosgrove D (2005) Growth of the plant cell wall. J Nat Rev Mol Cell Biol 6:850–861

    Article  CAS  Google Scholar 

  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA (2009) Gaussian 09, revision B01. Gaussian, Inc, Wallingford

    Google Scholar 

  • Gogonea V (1998) Self-consistent reaction field methods: cavities. In: Schleyer PVR, Schreiner PR, Allinger NL, Clark T, Gasteiger J, Kollman P, Schaefer HF III (eds) Encyclopedia of computational chemistry. Wiley, New York, pp 2560–2574

    Google Scholar 

  • Gottlieb HE, Kotlyar V, Nudelman A (1997) NMR chemical shifts of common laboratory solvents as trace impurities. J Org Chem 62(21):7512–7515

    Article  CAS  Google Scholar 

  • Harrak H, Chamberland H, Plante M, Bellemare G, Lafontaine JG, Tabaeizadeh Z (1991) A proline-, threonine-, and glycine-rich protein down-regulated by drought is localized in the cell wall of xylem elements. Plant Phys 121:557–564

    Article  Google Scholar 

  • Hohenberg P, Kohn W (1964) Inhomgeneous electron gas. Phys Rev 136(3b):B864–B871

    Article  Google Scholar 

  • Jose M, Puigdomenech P (1993) Structure and expression of genes encoding for structural proteins of the plant cell wall. New Phytol 125:259–282

    Article  CAS  Google Scholar 

  • Jung HG (1989) Forage lignins and their effects on fiber digestibility. Agron J 81:33–38

    Article  CAS  Google Scholar 

  • Jung HG, Allen MS (1995) Characteristics of plant cell walls affecting intake and digestibility of forages by ruminants. J Anim Sci 73:2774–2790

    CAS  Google Scholar 

  • Karadakov PB (2008) Ab initio calculation of NMR shielding constants. In: Webb GA (ed) Modern magnetic resonance. Springer, New York, pp 63–70

    Google Scholar 

  • Kawai S, Okita K, Sugishita K, Tanaka A, Ohashi H (1999) Simple method for synthesizing phenolic β-O-4 dilignols. J Wood Sci 45:440–443

    Article  CAS  Google Scholar 

  • Kieliszewski M, Lamport DTA, Tan L, Cannon MC (2011) Hydroxyproline-rich glycoproteins: form and function. Ann Plant Rev 41:321–342

    CAS  Google Scholar 

  • Kim H, Ralph J (2010) Solution-state 2D NMR of ball-milled plant cell wall gels in DMSO-d 6/pyridine-d 5. Org Biomol Chem 8:576–591

    Article  CAS  Google Scholar 

  • Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A):A1133–A1138

    Article  Google Scholar 

  • Krishnan RBJS, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 72:650

    Article  CAS  Google Scholar 

  • Landucci LL, Geddes SA, Kirk TK (1981) Synthesis of 14C labeled 3-methoxy-4-hydroxy-α-(2-methoxy-phenoxy)-β-hydroxypropiophenone, a lignin model compound. Holzforschung 35:66–69

    Article  Google Scholar 

  • Leary GJ (1980) Quinone methides and the structure of lignin. Wood Sci Technol 14:21–34

    Article  CAS  Google Scholar 

  • Leary G, Miller IJ, Thomas W, Woolhouse AD (1977) The chemistry of reactive lignin intermediates. Part 5. Rates of reactions of quinone methides with water, alcohols, phenols, and carboxylic acids. J Chem Soc, Perkin Trans 2 13:1737–1739

    Article  Google Scholar 

  • Li X, Weng JK, Chapple C (2008) Improvement of biomass through lignin modification. Plant J 54:569–581

    Article  CAS  Google Scholar 

  • Liang H, Frost CJ, Wei X, Brown NR, Carlson JE, Tien M (2008) Improved sugar release from lignocellulosic material by introducing a tyrosine-rich cell wall peptide gene in poplar. Clean 36(8):662–668

    CAS  Google Scholar 

  • Lodewyk MW, Siebert MR, Tantillo DJ (2012) Computational prediction of 1H and 13C chemical shifts: a useful tool for natural product, mechanistic, and synthetic organic chemistry. Chem Rev 112(3):1839–1862

    Article  CAS  Google Scholar 

  • Mansfield SD, Kim H, Lu F, Ralph J (2012) Whole plant cell wall characterization using solution-state 2D NMR. Nat Protoc 7(9):1579–1589

    Article  CAS  Google Scholar 

  • McQueen-Mason S, Cosgrove D (1994) Disruption of hydrogen bonding between plant cell wall polymers by proteins that induce wall extension. J Proc Natl Acad Sci USA 91:6574–6578

    Article  CAS  Google Scholar 

  • Miyagawa Y, Takemoto O, Takano T, Kamitakahara H, Nakatsubo F (2012) Fractionation and characterization of lignin carbohydrate complexes (LCCs) of Eucalyptus globulus in residues left after MWL isolation. Part I: analyses of hemicellulose-lignin fractionation (HC-L). Holzforschung 66:459–465

    Article  CAS  Google Scholar 

  • Mostaghni F, Abbas T, Seyed AM (2013) Synthesis, spectroscopic characterization and DFT calculations of β-O-4 type lignin model compounds. Spectrochimica Acta Part A Mol Biomol Spec 110:430–436

    Article  CAS  Google Scholar 

  • Nagy PI, Tejada FR, Messer WS (2005) Theoretical studies of the tautomeric equilibria for five-member N-heterocycles in the gas phase and in solution. J Phys Chem 109:22588–22602

    Article  CAS  Google Scholar 

  • Papajak E, Zheng J, Xu X, Leverentz HR, Truhlar DG (2011) Perspectives on basis sets beautiful: seasonal plantings of diffuse basis functions. J Chem Theory Comput 7(10):3027–3034

    Article  CAS  Google Scholar 

  • Ralph J, Young RA (1983) Stereochemical aspects of addition reactions involving lignin model quinone methides. J Wood Chem Technol 3(2):161–181

    Article  CAS  Google Scholar 

  • Ralph J, Lundquist K, Brunow G, Lu F, Kim H, Schatz PF, Marita JM, Hatfield RD, Ralph SA, Christensen JH (2004a) Lignins: natural polymers from oxidative coupling of 4-hydroxyphenylpropanoids. Phytochem Rev 3:29–60

    Article  CAS  Google Scholar 

  • Ralph SA, Ralph J, Landucci LL (2004) NMR database of lignin and cell wall model compounds. http://ars.usda.gov/Services/docs.htm?docid=10491 Accessed 27 Sept 2013

  • Ralph J, Schatz PF, Lu F, Kim H, Akiyama T, Nelsen SF (2009) Quinone methides in lignification. In: Rokita SE (ed) Quinone methides. Wiley, New Jersey, pp 385–420

    Chapter  Google Scholar 

  • Ramakrishnan K, Fisher J (1983) Nucleophilic trapping of 7,11-dideoxyanthracyclinone quinone methides. J Am Chem Soc 105:7187–7188

    Article  CAS  Google Scholar 

  • Ryser U, Schorderet M, Zhao G, Studer D, Ruel K, Hauf G, Keller B (1997) Structural cell-wall proteins in protoxylem development: evidence for a repair process mediated by a glycine-rich protein. Plant J 12(1):97–111

    Article  CAS  Google Scholar 

  • Sarotti AM, Pellegrinet SC (2009) A multi-standard approach for GIAO 13C NMR calculations. J Org Chem 74(19):7254–7260

    Article  CAS  Google Scholar 

  • Sarotti AM, Pellegrinet SC (2012) Application of the multi-standard methodology for calculating (1)H NMR chemical shifts. J Org Chem 77(14):6059–6065

    Article  CAS  Google Scholar 

  • Schreckenbach G, Ziegler T (1995) Calculation of NMR shielding tensors using gauge-including atomic orbitals and modern density functional theory. J Chem Phys 99(2):606–611

    Article  CAS  Google Scholar 

  • Stewart JJ, Kadla JF, Mansfield SD (2006) The influence of lignin chemistry and ultrastructure on the pulping efficiency of clonal aspen (Populus termuloides Michx). Holzforschung 60:111–122

    Article  CAS  Google Scholar 

  • Terashima N, Atalla RH, Ralph SA, Landucci LL, Lapierre C, Monties B (1995) New preparations of lignin polymer models under conditions that approximate cell wall lignification. Holzforschung 49:521–527

    Article  CAS  Google Scholar 

  • Toikka M, Jussi S, Teleman A, Brunow G (1998) Lignin-carbohydrate model compounds. Formation of lignin-methyl arabinoside and lignin-methyl galactoside benzyl ethers via quinone methide intermediates. J Chem Soc, Perkin Trans 1 1:3813–3818

    Article  Google Scholar 

  • Vanholme R, Morreel K, Ralph J, Boerjan W (2010) Lignin biosynthesis and structure. Plant Phys 153:895–905

    Article  CAS  Google Scholar 

  • Watts HD, Mohamed MNA, Kubicki JD (2011) Comparison of multistandard and TMS-standard calculated NMR shifts for coniferyl alcohol and application of the multistandard method to lignin dimers. J Phys Chem B 115(9):1958–1970

    Article  CAS  Google Scholar 

  • Whitmore FW (1978a) Lignin-carbohydrate complex formed in isolated cell walls of callus. Phytochem 17:421–425

    Article  CAS  Google Scholar 

  • Whitmore FW (1978b) Lignin-protein complex catalyzed by peroxidase. Plant Sci Lett 13:241–245

    Article  CAS  Google Scholar 

  • Whitmore FW (1982) Lignin-protein complex in cell walls of Pinus elliottii: amino acid constituents. Phytochem 21(2):315–318

    Article  CAS  Google Scholar 

  • Wolinski K, Hinton JF, Pulay P (1990) Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J Am Chem Soc 112(23):8251–8260

    Article  CAS  Google Scholar 

  • Xu Y, Chen C, Thomas TP, Azadi P, Diehl B, Tsai C, Brown N, Carlson JE, Tien M, Liang H (2013) Wood chemistry analysis and expression profiling of a poplar clone expressing a tyrosine-rich peptide. Plant Cell Rep 32:1827–1841

    Article  CAS  Google Scholar 

  • Yuan T, Sun S, Xu F, Sun R (2011) Characterization of lignin structures and lignin-carbohydrate complex (LCC) linkages by quantitative 13C and 2D HSQC NMR spectroscopy. J Agric Food Chem 59:10604–10614

    Article  CAS  Google Scholar 

  • Zhao Y, Shultz NE, Truhlar DG (2006) Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. J Chem Theory Comput 2(2):364–382

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported as part of The Center for Lignocellulose Structure and Formation, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001090, and the DOE Great Lakes Bioenergy Research Center (DOE Office of Science BER DE-FC02-07ER64494). The authors would like to thank and acknowledge the Center for Lignocellulose Structure and Formation (CLSF) and the members thereof. Student fellowships were provided by the USDA National Needs Program and the National Science Foundation. The authors would like to thank Dr. Alan Benesi and Dr. Wenbin Luo for assistance in acquiring NMR spectra of the lignin model compounds, Dr. James Miller for acquiring mass spec data, and Dr. Josh Stapleton for providing assistance with UV/Vis. The primary author would also like to acknowledge Paul Munson and Curtis Frantz for valuable discussion, and valuable interactions with Dan Gall and other members of the Wisconsin lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brett G. Diehl.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10570_2014_181_MOESM1_ESM.doc

The online version of this article contains supplementary material, which is available to authorized users. (DOC 8251 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diehl, B.G., Watts, H.D., Kubicki, J.D. et al. Towards lignin-protein crosslinking: amino acid adducts of a lignin model quinone methide. Cellulose 21, 1395–1407 (2014). https://doi.org/10.1007/s10570-014-0181-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0181-y

Keywords

Navigation